Open Access Journals

Explore All Journals...

Recent Articles >> More

Project-Based Learning with Gallery Walk: The Association with the Learning Motivation and Achievement

By Zamree Che-aron Wannisa Matcha

DOI: https://doi.org/10.5815/ijmecs.2023.05.01, Pub. Date: 8 Oct. 2023

With the rapid and constant changes in computer and information technology, the content and learning methods in Computer Science related courses need to be continuously adapted and consistently aligned with the latest developments in the field. This paper proposes a learning approach called the Gallery-walk integrated Project-Based Learning (G-PBL) which can develop students’ lifelong learning skills that are extremely crucial for Computer Science students. The G-PBL was designed by incorporating the advantages of Project-Based Learning (PBL) and gallery walk learning strategy. In contrast to traditional PBL where students may present their project work to instructors only, students have to present their project work to their classmates as part of the G-PBL approach. All students are required to evaluate their peers’ project work and then give feedback and suggestions. For the research experiments, the G-PBL was implemented as an instructional approach in two Computer Science related courses. This study focuses on exploring the differences in knowledge gain, learning motivation, and perceived usefulness when learning by using the teacher-centered and G-PBL approach. Moreover, the impact of gender differences on learning outcomes is also investigated. The results reveal that using the G-PBL approach helps students to gain more knowledge significantly, for both male and female students. In terms of motivation, female students are more favorable toward the G-PBL approach. On the contrary, male students prefer learning via a teacher-centered approach. Regarding the perceived usefulness, female students strongly view the G-PBL as a highly effective learning approach, whereas male students are more prone to concur that the teacher-centered approach is a more effective learning method.

[...] Read more.
Sample of Groups: A New Strategy to Find a Representative Point for Each Undisclosed Cluster

By Wallace A. Pinheiro Ana B. S. Pinheiro

DOI: https://doi.org/10.5815/ijitcs.2023.05.01, Pub. Date: 8 Oct. 2023

Some problems involving the selection of samples from undisclosed groups are relevant in various areas such as health, statistics, economics, and computer science. For instance, when selecting a sample from a population, well-known strategies include simple random and stratified random selection. Another related problem is selecting the initial points corresponding to samples for the K-means clustering algorithm. In this regard, many studies propose different strategies for choosing these samples. However, there is no consensus on the best or most effective ap-proaches, even when considering specific datasets or domains. In this work, we present a new strategy called the Sam-ple of Groups (SOG) Algorithm, which combines concepts from grid, density, and maximum distance clustering algo-rithms to identify representative points or samples located near the center of the cluster mass. To achieve this, we create boxes with the right size to partition the data and select the representatives of the most relevant boxes. Thus, the main goal of this work is to find quality samples or seeds of data that represent different clusters. To compare our approach with other algorithms, we not only utilize indirect measures related to K-means but also employ two direct measures that facili-tate a fairer comparison among these strategies. The results indicate that our proposal outperforms the most common-ly used algorithms.

[...] Read more.
Image Denoising based on Enhanced Wavelet Global Thresholding Using Intelligent Signal Processing Algorithm

By Joseph Isabona Agbotiname Lucky Imoize Stephen Ojo

DOI: https://doi.org/10.5815/ijigsp.2023.05.01, Pub. Date: 8 Oct. 2023

Denoising is a vital aspect of image preprocessing, often explored to eliminate noise in an image to restore its proper characteristic formation and clarity. Unfortunately, noise often degrades the quality of valuable images, making them meaningless for practical applications. Several methods have been deployed to address this problem, but the quality of the recovered images still requires enhancement for efficient applications in practice. In this paper, a wavelet-based universal thresholding technique that possesses the capacity to optimally denoise highly degraded noisy images with both uniform and non-uniform variations in illumination and contrast is proposed. The proposed method, herein referred to as the modified wavelet-based universal thresholding (MWUT), compared to three state-of-the-art denoising techniques, was employed to denoise five noisy images. In order to appraise the qualities of the images obtained, seven performance indicators comprising the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Structural Content (SC), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Method (SSIM), Signal-to-Reconstruction-Error Ratio (SRER), Blind Spatial Quality Evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) were employed. The first five indicators – RMSE, MAE, SC, PSNR, SSIM, and SRER- are reference indicators, while the remaining two – NIQE and BRISQUE- are referenceless. For the superior performance of the proposed wavelet threshold algorithm, the SC, PSNR, SSIM, and SRER must be higher, while lower values of NIQE, BRISQUE, RMSE, and MAE are preferred. A higher and better value of PSNR, SSIM, and SRER in the final results shows the superior performance of our proposed MWUT denoising technique over the preliminaries. Lower NIQE, BRISQUE, RMSE, and MAE values also indicate higher and better image quality results using the proposed modified wavelet-based universal thresholding technique over the existing schemes. The modified wavelet-based universal thresholding technique would find practical applications in digital image processing and enhancement.

[...] Read more.
Exploration on Quick Response (QR) Code Behaviour in Commerce based Platforms Using Machine Learning

By Archana Uriti Surya Prakash Yalla

DOI: https://doi.org/10.5815/ijieeb.2023.05.01, Pub. Date: 8 Oct. 2023

The "rapid response" code, or QR code, is made to quickly decode vast amounts of data. Any managed device, such as a smartphone, is able to capture it, and it is simple to access simply scanning the 2D matrix code. The dataset is analyzed utilizing machine learning techniques, such as the confusion matrix score utilized for the multinomial naive Bayes algorithm's performance analysis. The QR code generation is limited to single product and is extended now to include all products. Due to its ability to provide clients with benefits including speedy, error-free access and the ability to store a lot of data. Generally, many people are using the online payment for any transaction for flexibility and one can do at any place at any time. For bulk or huge payment, cash is not a good option. Hence many retailers join in the e-wallet companies and make their payment so flexible and faster transaction. Because of these benefits, QR code has becoming widespread.

[...] Read more.
Digital Control and Management of Water Supply Infrastructure Using Embedded Systems and Machine Learning

By Martin C. Peter Steve Adeshina Olabode Idowu-Bismark Opeyemi Osanaiye Oluseun Oyeleke

DOI: https://doi.org/10.5815/ijisa.2023.05.01, Pub. Date: 8 Oct. 2023

Water supply infrastructure operational efficiency has a direct impact on the quantity of portable water available to end users. It is commonplace to find water supply infrastructure in a declining operational state in rural and some urban centers in developing countries. Maintenance issues result in unabated wastage and shortage of supply to users. This work proposes a cost-effective solution to the problem of water distribution losses using a Microcontroller-based digital control method and Machine Learning (ML) to forecast and manage portable water production and system maintenance. A fundamental concept of hydrostatic pressure equilibrium was used for the detection and control of leakages from pipeline segments. The results obtained from the analysis of collated data show a linear direct relationship between water distribution loss and production quantity; an inverse relationship between Mean Time Between Failure (MTBF) and yearly failure rates, which are the key problem factors affecting water supply efficiency and availability. Results from the prototype system test show water supply efficiency of 99% as distribution loss was reduced to 1% due to Line Control Unit (LCU) installed on the prototype pipeline. Hydrostatic pressure equilibrium being used as the logic criteria for leak detection and control indeed proved potent for significant efficiency improvement in the water supply infrastructure.

[...] Read more.
D2D Communication Using Distributive Deep Learning with Coot Bird Optimization Algorithm

By Nethravathi H. M. Akhila S. Vinayakumar Ravi

DOI: https://doi.org/10.5815/ijcnis.2023.05.01, Pub. Date: 8 Oct. 2023

D2D (Device-to-device) communication has a major role in communication technology with resource and power allocation being a major attribute of the network. The existing method for D2D communication has several problems like slow convergence, low accuracy, etc. To overcome these, a D2D communication using distributed deep learning with a coot bird optimization algorithm has been proposed. In this work, D2D communication is combined with the Coot Bird Optimization algorithm to enhance the performance of distributed deep learning. Reducing the interference of eNB with the use of deep learning can achieve near-optimal throughput. Distributed deep learning trains the devices as a group and it works independently to reduce the training time of the devices. This model confirms the independent resource allocation with optimized power value and the least Bit Error Rate for D2D communication while sustaining the quality of services. The model is finally trained and tested successfully and is found to work for power allocation with an accuracy of 99.34%, giving the best fitness of 80%, the worst fitness value of 46%, mean value of 6.76 and 0.55 STD value showing better performance compared to the existing works.

[...] Read more.

More...