International Journal of Computer Network and Information Security (IJCNIS)

ISSN: 2074-9090 (Print)

ISSN: 2074-9104 (Online)

DOI: https://doi.org/10.5815/ijcnis

Website: https://www.mecs-press.org/ijcnis

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 140

(IJCNIS) in Google Scholar Citations / h5-index

IJCNIS is committed to bridge the theory and practice of computer network and information security. From innovative ideas to specific algorithms and full system implementations, IJCNIS publishes original, peer-reviewed, and high quality articles in the areas of computer network and information security. IJCNIS is well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of computer network, information security, and their applications.

 

IJCNIS has been abstracted or indexed by several world class databases: ScopusSCImago, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, VINITI, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..

Latest Issue
Most Viewed
Most Downloaded

IJCNIS Vol. 17, No. 6, Dec. 2025

REGULAR PAPERS

FED-SCADA: A Trustworthy and Energy-efficient Federated IDS for Smart Grid Edge Gateways Using SNNs and Differential Evolution

By Mohammad Othman Nassar Feras Fares AL-Mashagba

DOI: https://doi.org/10.5815/ijcnis.2025.06.01, Pub. Date: 8 Dec. 2025

The increasing digitalization of smart grid systems has introduced new cybersecurity challenges, particularly at the supervisory control and data acquisition (SCADA) edge gateways where resource constraints, latency sensitivity, and privacy concerns limit the applicability of centralized security solutions. This paper presents FED-SCADA, a novel federated intrusion detection system (IDS) that integrates Spiking Neural Networks (SNNs) for energy-efficient inference and Differential Evolution (DE) for optimizing model convergence in decentralized, non-independent and identically distributed (non-IID) environments. The proposed architecture enables real-time, privacy-preserving intrusion detection across distributed SCADA subsystems in a smart grid context. FED-SCADA is evaluated using three public IIoT/SCADA datasets: TON_IoT, Edge-IIoTset, and SWaT. FED-SCADA achieves a detection accuracy of 96.4%, inference latency of 28 ms, and energy consumption of 1.1 mJ per sample, demonstrating strong performance under real-time and energy-constrained conditions outperforming base-line federated learning models such as FedAvg-CNN and FedSVM. A detailed methodology flowchart and pseudocode are included to support reproducibility. To the best of our knowledge, this is the first study to combine neuromorphic computing, evolutionary optimization, and federated learning for trustworthy and efficient smart grid cybersecurity.

[...] Read more.
Reliable Communication in Delay Tolerant Network by Utilizing the Concept of Acknowledgement based Hop by Hop Retransmission

By S. Dheenathayalan

DOI: https://doi.org/10.5815/ijcnis.2025.06.02, Pub. Date: 8 Dec. 2025

A delay-tolerant network is one that may temporarily hold packets at intermediate nodes while waiting for an end-to-end route to be rebuilt or restored. Due to the difficulty of establishing reliable routing in such a network, we use the Wavelength Routing Algorithm-based idea of hop-by-hop retransmission acknowledgement. It calculates the blocking probability for each connection request and decides whether the connection proceeds or not. This helps to reduce power consumption and the available resources. During retransmission, the intermediate nodes may have some duplicate messages; we utilize the concept of Cuckoo search to omit the duplicate messages. Our proposed mechanism is implemented in the ONE simulator, which states the performance of our reliable communication in comparison with other existing algorithms.

[...] Read more.
Energy-Efficient Traffic Management Scheme for Wireless Sensor Network

By Shailaja S. Halli Poornima G. Patil

DOI: https://doi.org/10.5815/ijcnis.2025.06.03, Pub. Date: 8 Dec. 2025

Densely distributed nodes and high data flow rates close to sinks can cause serious problems for WSNs, especially concerning energy consumption and network complexity. As node and channel traffic management is essential for energy efficiency, not much research has been done on how to solve these problems. This paper presented a novel method that uses a Water Wave Game Theory algorithm to identify and characterize traffic areas that use less energy. Based on different network parameters, the algorithm calculates a fitness function that estimates player stability. Mobile sinks and nearby nodes are notified when the fitness level is low, anticipating energy-efficient traffic patterns and implicitly establishing an alarm threshold. Establish the LAFLC algorithm to tackle complex energy-efficient traffic scenarios. This algorithm optimizes system decisions about mobile data collectors, routing, and node mobility by dynamically learning and adapting to the characteristics of energy-efficient traffic. As a result, it eliminates the need for data rerouting and the replacement of multiple traffic nodes when mobile data collectors are in motion. The proposed approach demonstrates a superior Packet Delivery Ratio (PDR) of 99.95%, throughput of 3500bps, energy consumption of 0.39J, reliability of 98.8% and energy efficiency of 99.9% compared to existing techniques.

[...] Read more.
CLEFIA-based Lightweight Encryption for Resource-Constrained Systems: Design, Algorithms and Security Analysis

By Sergiy Gnatyuk Berik Akhmetov Dauriya Zhaxygulova Yuliia Polishchuk

DOI: https://doi.org/10.5815/ijcnis.2025.06.04, Pub. Date: 8 Dec. 2025

Emerging classes of distributed and embedded systems increasingly require cryptographic mechanisms that provide confidentiality, integrity, and authenticity while operating under strict limitations on computation, energy consumption, memory capacity, and communication bandwidth. Conventional symmetric and asymmetric cryptographic algorithms often fail to meet these stringent requirements. Lightweight cryptography (LWC) offers a promising solution by enabling secure real-time data transmission, command authentication, telemetry encryption, and protection of sensitive information in embedded systems. This paper presents a multicriteria analysis of widely adopted LWC algorithms, identifying the CLEFIA block cipher standardized in ISO/IEC 29192-2 as a balanced choice between security and performance. An enhanced LWC method based on the mentioned cipher is proposed, aiming to improve encryption throughput without compromising cryptographic robustness. Experimental results demonstrate that the proposed method achieves an encryption speedup over the baseline CLEFIA implementation. Furthermore, the improved algorithm successfully passes statistical randomness tests and shows increased resistance to linear and differential cryptanalysis. Notably, the cipher begins to exhibit random substitution characteristics from the third round, reinforcing its suitability for secure deployment in resource-limited environments. The results obtained in this study will be valuable for ensuring confidentiality, integrity, and authenticity in low-power and resource-constrained systems, as well as in modern information platforms where low latency is critical.

[...] Read more.
A4C: A Novel Hybrid Algorithm for Resource-Aware Scheduling in Cloud Environment

By Santhosh Kumar Medishetti Bigul Sunitha Devi Maheswari Bandi Rani Sailaja Velamakanni Rameshwaraiah Kurupati Ganesh Reddy Karri

DOI: https://doi.org/10.5815/ijcnis.2025.06.05, Pub. Date: 8 Dec. 2025

Scheduling in cloud computing is an NP-hard problem, where traditional metaheuristic algorithms often fail to deliver approximate solutions within a feasible time frame. As cloud infrastructures become increasingly dynamic, efficient Task Scheduling (TS) remains a major challenge, especially when minimizing makespan, execution time, and resource utilization. To address this, we propose the Ant Colony Asynchronous Advantage Actor-Critic (A4C) algorithm, which synergistically combines the exploratory strengths of Ant Colony Optimization (ACO) with the adaptive learning capabilities of the Asynchronous Advantage Actor-Critic (A3C) model. While ACO efficiently explores task allocation paths, it is prone to getting trapped in local optima. The integration with A3C overcomes this limitation by leveraging deep reinforcement learning for real-time policy and value estimation, enabling adaptive and informed scheduling decisions. Extensive simulations show that the A4C algorithm improves throughput by 18.7%, reduces makespan by 16%, execution time by 14.60%, and response time by 21.4% compared to conventional approaches. These results validate the practical effectiveness of A4C in handling dynamic workloads, reducing computational overhead, and ensuring timely task completion. The proposed model not only enhances scheduling efficiency but also supports quality-driven service delivery in cloud environments, making it well-suited for managing complex and time-sensitive cloud applications.

[...] Read more.
Scalable-pos: Towards Decentralized and Efficient Energy Saving Consensus in Blockchain

By Anupama B. S. Sunitha N. R. G. S. Thejas

DOI: https://doi.org/10.5815/ijcnis.2025.06.06, Pub. Date: 8 Dec. 2025

Blockchain has become peer-to-peer immutable distributed ledger technology network, and its consensus protocol is essential to the management of decentralized data. The consensus algorithm, at core of blockchain technology (BCT), has direct impact on blockchain's security, stability, decentralization, and many other crucial features. A key problem in development of blockchain applications is selecting the right consensus algorithm for various scenarios. Ensuring scalability is the most significant drawback of BCT. The industry has been rejuvenated and new architectures have been sparked by the usage of consensus protocols for blockchains(BC). Researchers analyzed shortcomings of proof of work (PoW) consensus process and subsequently, alternative protocols like proof of stake (PoS) arose. PoS, together with other improvements, lowers the unimaginably high energy usage of PoW, making it protocol of time.  In PoS, only the user with highest stake becomes the validator. To overcome this, we propose Scalable Proof of Stake (SPoS), a novel consensus protocol, which is an enhancement of PoS protocol. In the proposed algorithm, each stakeholder based on the stake gets a chance to become the validator and can mine blocks in the blockchain. Clustering of the stakeholders is done using mean shift algorithm. Each cluster gets a different number of blocks to mine in BC. Cluster with highest stake will get a greater number of blocks to mine when compared to other groups and the cluster with the least stake gets least number of blocks to mine when compared to other groups. To mine the blocks, validator is chosen based on the cluster in which he is present. Fair mining is ensured for all stakeholders based on number of stakes. Mining is distributed among all the stakeholders. Since the validators are chosen fast, the transaction rate is high in the network. Validators in PoS are selected according to the quantity of cryptocurrency they stake.  More stakeholders will get chance of validating blocks and receiving rewards.  Over time, this reduces fairness and decentralization by concentrating on wealth and power. This is addressed in SPoS using clustering-based validator assignment.

[...] Read more.
Abstractive Text Summarization: A Hybrid Evaluation of Integrating Flan-T5 (Dual Framework) with Pegasus Reveals Conciseness Advantages across Diverse Datasets

By Abdulrahman Mohsen Ahmed Zeyad Arun Biradar

DOI: https://doi.org/10.5815/ijcnis.2025.06.07, Pub. Date: 8 Dec. 2025

Abstractive summarization plays a critical role in managing large volumes of textual data, yet it faces persistent challenges in consistency and evaluation. Our study compares two state-of-the-art models, PEGASUS and Flan-T5, across a diverse range of benchmark datasets using both ROUGE and BARTScore metrics. Findings reveal that PEGASUS excels in generating detailed, coherent summaries for large-scale texts evidenced by an R-1 score of 0.5874 on Gigaword while Flan-T5, enhanced by our novel T5 Dual Summary Framework, produces concise outputs that closely align with reference lengths. Although ROUGE effectively measures lexical overlap, its moderate correlation with BARTScore indicates that it may overlook deeper semantic quality. This underscores the need for hybrid evaluation approaches that integrate semantic analysis with human judgment to more accurately capture summary meaning. By introducing a robust benchmark and the pioneering T5 Dual Framework, our research advocates for task-specific optimization and more comprehensive evaluation methods. Moreover, current dataset limitations point to the necessity for broader, more inclusive training sets in future studies.

[...] Read more.
ITD-GMJN: Insider Thread Detection in Cloud Computing using Golf Optimized MICE based Jordan Neural Network

By B. GAYATHRI

DOI: https://doi.org/10.5815/ijcnis.2025.06.08, Pub. Date: 8 Dec. 2025

Cloud computing refers to a high-level network architecture that allows consumers, authorized users, owners, and users to swiftly access and store their data. These days, the user's internal risks have a significant impact on this cloud. An intrusive party is established as a network member and presented as a user. Once they have access to the network, they will attempt to attack or steal confidential information while others are exchanging information or conversing. For the cloud network's external security, there are numerous options. But it's important to deal with internal or insider threats. Thus in the proposed work, an advanced deep learning with optimized missing value imputation is developed to mitigate insider thread in the cloud system. Behavioral log files were taken in an organization which is split into sequential data and standalone data based on the login process. This data was not ready for the detection process due to improper data samples so it was pre-processed using Multivariate Imputation by Chained Equations (MICE) imputation. In this imputation process, the estimation parameter was optimally chosen using the Golf Optimization Algorithm (GOA). After the missing values were filled, the data proceeded to the extraction process. In this, the sequential data are proceeded for the domain extractor and the standalone data are proceeded for Long Short-Term Memory-Autoencoder (LS-AE). Both features are fused to create a single data which is further given to the detection process using Jordan Neural Network (JNN). The proposed method offers 96% accuracy, 92% recall, 91.6% specificity, 8.39% fall out and 8% Miss Rate. The results showed that the recommended JNN detection model has successfully detected insider threads in a cloud system. 

[...] Read more.
Hybrid LSTM-attention Model for DDoS Attack Detection in Software-defined Networking

By Rikie Kartadie Danny Kriestanto Muhammad Agung Nugroho Chuan-Ming Liu

DOI: https://doi.org/10.5815/ijcnis.2025.06.09, Pub. Date: 8 Dec. 2025

Distributed Denial of Service (DDoS) attacks threaten Software-Defined Networking (SDN) environments, requiring effective real-time detection. This study introduces a hybrid LSTM-Attention model to improve DDoS detection in SDN, combining Long Short-Term Memory (LSTM) networks for temporal pattern recognition with an attention mechanism to prioritize key traffic features like packet and byte counts per second. Trained on 15,000 balanced samples from the SDN DDoS dataset, the model achieved 96.90% accuracy, 100% recall for DDoS instances, and a 0.97 F1-score, outperforming statistical (88.5%), machine learning (94.0%), and other deep learning (95.0%) methods. Attention weight visualization confirmed its focus on critical features. With a two-hour training time on modest hardware (Google Colab, 12 GB RAM) and an AUC of 0.99, the model is efficient and robust for real-time use. It offers a scalable, interpretable framework for network security, providing actionable insights for administrators and supporting future detection of slow-rate attacks and insider breaches. As a proof-of-concept, a subsampled slow-rate DDoS simulation (10% of volumetric spikes) achieved 89.5% accuracy with tuned attention weights, suggesting potential for rate adjustments. Preliminary tests on UNSW-NB15 subsets, focusing on behavioral features, yielded 85.2% recall, indicating that integrating user profiling could enhance real-world detection.

[...] Read more.
Assault Type Detection in WSN Based on Modified DBSCAN with Osprey Optimization Using Hybrid Classifier LSTM with XGBOOST for Military Sector

By R. Preethi

DOI: https://doi.org/10.5815/ijcnis.2025.06.10, Pub. Date: 8 Dec. 2025

Military tasks constitute the most important and significant applications of WSNs. In military, Sensor node deployment increases activities, efficient operation, saves loss of life, and protects national sovereignty. Usually, the main difficulties in military missions are energy consumption and security in the network. Another major security issues are hacking or masquerade attack. To overcome the limitations, the proposed method modified DBSCAN with OSPREY optimization Algorithm (OOA) using hybrid classifier Long Short-Term Memory (LSTM) with Extreme Gradient Boosting (XGBOOST) to detect attack types in the WSN military sector for enhancing security. First, nodes are deployed and modified DBSCAN algorithm is used to cluster the nodes to reduce energy consumption. To select the cluster head optimally by using the OSPREY optimization Algorithm (OOA) based on small distance and high energy for transfer data between the base station and nodes. Hybrid LSTM-XGBOOST classifier utilized to learn the parameter and predict the four assault types such as scheduling, flooding, blackhole and grayhole assault. Classification and network metrics including Packet Delivery Ratio (PDR), Throughput, Average Residual Energy (ARE), Packet Loss Ratio (PLR), Accuracy and F1_score are used to evaluate the performance of the model. Performance results show that PDR of 94.12%, 3.2 Mbps throughput at 100 nodes, ARE of 8.94J, PLR of 5.88%, accuracy of 96.14%, and F1_score of 95.04% are achieved. Hence, the designed model for assault prediction types in WSN based on modified DBSCAN clustering with a hybrid classifier yields better results.

[...] Read more.
Machine Learning-based Intrusion Detection Technique for IoT: Simulation with Cooja

By Ali H. Farea Kerem Kucuk

DOI: https://doi.org/10.5815/ijcnis.2024.01.01, Pub. Date: 8 Feb. 2024

The Internet of Things (IoT) is one of the promising technologies of the future. It offers many attractive features that we depend on nowadays with less effort and faster in real-time. However, it is still vulnerable to various threats and attacks due to the obstacles of its heterogeneous ecosystem, adaptive protocols, and self-configurations. In this paper, three different 6LoWPAN attacks are implemented in the IoT via Contiki OS to generate the proposed dataset that reflects the 6LoWPAN features in IoT. For analyzed attacks, six scenarios have been implemented. Three of these are free of malicious nodes, and the others scenarios include malicious nodes. The typical scenarios are a benchmark for the malicious scenarios for comparison, extraction, and exploration of the features that are affected by attackers. These features are used as criteria input to train and test our proposed hybrid Intrusion Detection and Prevention System (IDPS) to detect and prevent 6LoWPAN attacks in the IoT ecosystem. The proposed hybrid IDPS has been trained and tested with improved accuracy on both KoU-6LoWPAN-IoT and Edge IIoT datasets. In the proposed hybrid IDPS for the detention phase, the Artificial Neural Network (ANN) classifier achieved the highest accuracy among the models in both the 2-class and N-class. Before the accuracy improved in our proposed dataset with the 4-class and 2-class mode, the ANN classifier achieved 95.65% and 99.95%, respectively, while after the accuracy optimization reached 99.84% and 99.97%, respectively. For the Edge IIoT dataset, before the accuracy improved with the 15-class and 2-class modes, the ANN classifier achieved 95.14% and 99.86%, respectively, while after the accuracy optimized up to 97.64% and 99.94%, respectively. Also, the decision tree-based models achieved lightweight models due to their lower computational complexity, so these have an appropriate edge computing deployment. Whereas other ML models reach heavyweight models and are required more computational complexity, these models have an appropriate deployment in cloud or fog computing in IoT networks.

[...] Read more.
Public vs Private vs Hybrid vs Community - Cloud Computing: A Critical Review

By Sumit Goyal

DOI: https://doi.org/10.5815/ijcnis.2014.03.03, Pub. Date: 8 Feb. 2014

These days cloud computing is booming like no other technology. Every organization whether it’s small, mid-sized or big, wants to adapt this cutting edge technology for its business. As cloud technology becomes immensely popular among these businesses, the question arises: Which cloud model to consider for your business? There are four types of cloud models available in the market: Public, Private, Hybrid and Community. This review paper answers the question, which model would be most beneficial for your business. All the four models are defined, discussed and compared with the benefits and pitfalls, thus giving you a clear idea, which model to adopt for your organization.

[...] Read more.
Classification of HHO-based Machine Learning Techniques for Clone Attack Detection in WSN

By Ramesh Vatambeti Vijay Kumar Damera Karthikeyan H. Manohar M. Sharon Roji Priya C. M. S. Mekala

DOI: https://doi.org/10.5815/ijcnis.2023.06.01, Pub. Date: 8 Dec. 2023

Thanks to recent technological advancements, low-cost sensors with dispensation and communication capabilities are now feasible. As an example, a Wireless Sensor Network (WSN) is a network in which the nodes are mobile computers that exchange data with one another over wireless connections rather than relying on a central server. These inexpensive sensor nodes are particularly vulnerable to a clone node or replication assault because of their limited processing power, memory, battery life, and absence of tamper-resistant hardware. Once an attacker compromises a sensor node, they can create many copies of it elsewhere in the network that share the same ID. This would give the attacker complete internal control of the network, allowing them to mimic the genuine nodes' behavior. This is why scientists are so intent on developing better clone assault detection procedures. This research proposes a machine learning based clone node detection (ML-CND) technique to identify clone nodes in wireless networks. The goal is to identify clones effectively enough to prevent cloning attacks from happening in the first place. Use a low-cost identity verification process to identify clones in specific locations as well as around the globe. Using the Optimized Extreme Learning Machine (OELM), with kernels of ELM ideally determined through the Horse Herd Metaheuristic Optimization Algorithm (HHO), this technique safeguards the network from node identity replicas. Using the node identity replicas, the most reliable transmission path may be selected. The procedure is meant to be used to retrieve data from a network node. The simulation result demonstrates the performance analysis of several factors, including sensitivity, specificity, recall, and detection.

[...] Read more.
D2D Communication Using Distributive Deep Learning with Coot Bird Optimization Algorithm

By Nethravathi H. M. Akhila S. Vinayakumar Ravi

DOI: https://doi.org/10.5815/ijcnis.2023.05.01, Pub. Date: 8 Oct. 2023

D2D (Device-to-device) communication has a major role in communication technology with resource and power allocation being a major attribute of the network. The existing method for D2D communication has several problems like slow convergence, low accuracy, etc. To overcome these, a D2D communication using distributed deep learning with a coot bird optimization algorithm has been proposed. In this work, D2D communication is combined with the Coot Bird Optimization algorithm to enhance the performance of distributed deep learning. Reducing the interference of eNB with the use of deep learning can achieve near-optimal throughput. Distributed deep learning trains the devices as a group and it works independently to reduce the training time of the devices. This model confirms the independent resource allocation with optimized power value and the least Bit Error Rate for D2D communication while sustaining the quality of services. The model is finally trained and tested successfully and is found to work for power allocation with an accuracy of 99.34%, giving the best fitness of 80%, the worst fitness value of 46%, mean value of 6.76 and 0.55 STD value showing better performance compared to the existing works.

[...] Read more.
Forensics Image Acquisition Process of Digital Evidence

By Erhan Akbal Sengul Dogan

DOI: https://doi.org/10.5815/ijcnis.2018.05.01, Pub. Date: 8 May 2018

For solving the crimes committed on digital materials, they have to be copied. An evidence must be copied properly in valid methods that provide legal availability. Otherwise, the material cannot be used as an evidence. Image acquisition of the materials from the crime scene by using the proper hardware and software tools makes the obtained data legal evidence. Choosing the proper format and verification function when image acquisition affects the steps in the research process. For this purpose, investigators use hardware and software tools. Hardware tools assure the integrity and trueness of the image through write-protected method. As for software tools, they provide usage of certain write-protect hardware tools or acquisition of the disks that are directly linked to a computer. Image acquisition through write-protect hardware tools assures them the feature of forensic copy. Image acquisition only through software tools do not ensure the forensic copy feature. During the image acquisition process, different formats like E01, AFF, DD can be chosen. In order to provide the integrity and trueness of the copy, hash values have to be calculated using verification functions like SHA and MD series. In this study, image acquisition process through hardware-software are shown. Hardware acquisition of a 200 GB capacity hard disk is made through Tableau TD3 and CRU Ditto. The images of the same storage are taken through Tableau, CRU and RTX USB bridge and through FTK imager and Forensic Imager; then comparative performance assessment results are presented.

[...] Read more.
A Critical appraisal on Password based Authentication

By Amanpreet A. Kaur Khurram K. Mustafa

DOI: https://doi.org/10.5815/ijcnis.2019.01.05, Pub. Date: 8 Jan. 2019

There is no doubt that, even after the development of many other authentication schemes, passwords remain one of the most popular means of authentication. A review in the field of password based authentication is addressed, by introducing and analyzing different schemes of authentication, respective advantages and disadvantages, and probable causes of the ‘very disconnect’ between user and password mechanisms. The evolution of passwords and how they have deep-rooted in our life is remarkable. This paper addresses the gap between the user and industry perspectives of password authentication, the state of art of password authentication and how the most investigated topic in password authentication changed over time. The author’s tries to distinguish password based authentication into two levels ‘User Centric Design Level’ and the ‘Machine Centric Protocol Level’ under one framework. The paper concludes with the special section covering the ways in which password based authentication system can be strengthened on the issues which are currently holding-in the password based authentication.

[...] Read more.
Social Engineering: I-E based Model of Human Weakness for Attack and Defense Investigations

By Wenjun Fan Kevin Lwakatare Rong Rong

DOI: https://doi.org/10.5815/ijcnis.2017.01.01, Pub. Date: 8 Jan. 2017

Social engineering is the attack aimed to manipulate dupe to divulge sensitive information or take actions to help the adversary bypass the secure perimeter in front of the information-related resources so that the attacking goals can be completed. Though there are a number of security tools, such as firewalls and intrusion detection systems which are used to protect machines from being attacked, widely accepted mechanism to prevent dupe from fraud is lacking. However, the human element is often the weakest link of an information security chain, especially, in a human-centered environment. In this paper, we reveal that the human psychological weaknesses result in the main vulnerabilities that can be exploited by social engineering attacks. Also, we capture two essential levels, internal characteristics of human nature and external circumstance influences, to explore the root cause of the human weaknesses. We unveil that the internal characteristics of human nature can be converted into weaknesses by external circumstance influences. So, we propose the I-E based model of human weakness for social engineering investigation. Based on this model, we analyzed the vulnerabilities exploited by different techniques of social engineering, and also, we conclude several defense approaches to fix the human weaknesses. This work can help the security researchers to gain insights into social engineering from a different perspective, and in particular, enhance the current and future research on social engineering defense mechanisms.

[...] Read more.
Comparative Analysis of KNN Algorithm using Various Normalization Techniques

By Amit Pandey Achin Jain

DOI: https://doi.org/10.5815/ijcnis.2017.11.04, Pub. Date: 8 Nov. 2017

Classification is the technique of identifying and assigning individual quantities to a group or a set. In pattern recognition, K-Nearest Neighbors algorithm is a non-parametric method for classification and regression. The K-Nearest Neighbor (kNN) technique has been widely used in data mining and machine learning because it is simple yet very useful with distinguished performance. Classification is used to predict the labels of test data points after training sample data. Over the past few decades, researchers have proposed many classification methods, but still, KNN (K-Nearest Neighbor) is one of the most popular methods to classify the data set. The input consists of k closest examples in each space, the neighbors are picked up from a set of objects or objects having same properties or value, this can be considered as a training dataset. In this paper, we have used two normalization techniques to classify the IRIS Dataset and measure the accuracy of classification using Cross-Validation method using R-Programming. The two approaches considered in this paper are - Data with Z-Score Normalization and Data with Min-Max Normalization.

[...] Read more.
Password Security: An Analysis of Password Strengths and Vulnerabilities

By Katha Chanda

DOI: https://doi.org/10.5815/ijcnis.2016.07.04, Pub. Date: 8 Jul. 2016

Passwords can be used to gain access to specific data, an account, a computer system or a protected space. A single user may have multiple accounts that are protected by passwords. Research shows that users tend to keep same or similar passwords for different accounts with little differences. Once a single password becomes known, a number of accounts can be compromised. This paper deals with password security, a close look at what goes into making a password strong and the difficulty involved in breaking a password. The following sections discuss related work and prove graphically and mathematically the different aspects of password securities, overlooked vulnerabilities and the importance of passwords that are widely ignored. This work describes tests that were carried out to evaluate the resistance of passwords of varying strength against brute force attacks. It also discusses overlooked parameters such as entropy and how it ties in to password strength. This work also discusses the password composition enforcement of different popular websites and then presents a system designed to provide an adaptive and effective measure of password strength. This paper contributes toward minimizing the risk posed by those seeking to expose sensitive digital data. It provides solutions for making password breaking more difficult as well as convinces users to choose and set hard-to-break passwords.

[...] Read more.
Statistical Techniques for Detecting Cyberattacks on Computer Networks Based on an Analysis of Abnormal Traffic Behavior

By Zhengbing Hu Roman Odarchenko Sergiy Gnatyuk Maksym Zaliskyi Anastasia Chaplits Sergiy Bondar Vadim Borovik

DOI: https://doi.org/10.5815/ijcnis.2020.06.01, Pub. Date: 8 Dec. 2020

Represented paper is currently topical, because of year on year increasing quantity and diversity of attacks on computer networks that causes significant losses for companies. This work provides abilities of such problems solving as: existing methods of location of anomalies and current hazards at networks, statistical methods consideration, as effective methods of anomaly detection and experimental discovery of choosed method effectiveness. The method of network traffic capture and analysis during the network segment passive monitoring is considered in this work. Also, the processing way of numerous network traffic indexes for further network information safety level evaluation is proposed. Represented methods and concepts usage allows increasing of network segment reliability at the expense of operative network anomalies capturing, that could testify about possible hazards and such information is very useful for the network administrator. To get a proof of the method effectiveness, several network attacks, whose data is storing in specialised DARPA dataset, were chosen. Relevant parameters for every attack type were calculated. In such a way, start and termination time of the attack could be obtained by this method with insignificant error for some methods.

[...] Read more.
Machine Learning-based Intrusion Detection Technique for IoT: Simulation with Cooja

By Ali H. Farea Kerem Kucuk

DOI: https://doi.org/10.5815/ijcnis.2024.01.01, Pub. Date: 8 Feb. 2024

The Internet of Things (IoT) is one of the promising technologies of the future. It offers many attractive features that we depend on nowadays with less effort and faster in real-time. However, it is still vulnerable to various threats and attacks due to the obstacles of its heterogeneous ecosystem, adaptive protocols, and self-configurations. In this paper, three different 6LoWPAN attacks are implemented in the IoT via Contiki OS to generate the proposed dataset that reflects the 6LoWPAN features in IoT. For analyzed attacks, six scenarios have been implemented. Three of these are free of malicious nodes, and the others scenarios include malicious nodes. The typical scenarios are a benchmark for the malicious scenarios for comparison, extraction, and exploration of the features that are affected by attackers. These features are used as criteria input to train and test our proposed hybrid Intrusion Detection and Prevention System (IDPS) to detect and prevent 6LoWPAN attacks in the IoT ecosystem. The proposed hybrid IDPS has been trained and tested with improved accuracy on both KoU-6LoWPAN-IoT and Edge IIoT datasets. In the proposed hybrid IDPS for the detention phase, the Artificial Neural Network (ANN) classifier achieved the highest accuracy among the models in both the 2-class and N-class. Before the accuracy improved in our proposed dataset with the 4-class and 2-class mode, the ANN classifier achieved 95.65% and 99.95%, respectively, while after the accuracy optimization reached 99.84% and 99.97%, respectively. For the Edge IIoT dataset, before the accuracy improved with the 15-class and 2-class modes, the ANN classifier achieved 95.14% and 99.86%, respectively, while after the accuracy optimized up to 97.64% and 99.94%, respectively. Also, the decision tree-based models achieved lightweight models due to their lower computational complexity, so these have an appropriate edge computing deployment. Whereas other ML models reach heavyweight models and are required more computational complexity, these models have an appropriate deployment in cloud or fog computing in IoT networks.

[...] Read more.
Optimal Route Based Advanced Algorithm using Hot Link Split Multi-Path Routing Algorithm

By Akhilesh A. Waoo Sanjay Sharma Manjhari Jain

DOI: https://doi.org/10.5815/ijcnis.2014.08.07, Pub. Date: 8 Jul. 2014

Present research work describes advancement in standard routing protocol AODV for mobile ad-hoc networks. Our mechanism sets up multiple optimal paths with the criteria of bandwidth and delay to store multiple optimal paths in the network. At time of link failure, it will switch to next available path. We have used the information that we get in the RREQ packet and also send RREP packet to more than one path, to set up multiple paths, It reduces overhead of local route discovery at the time of link failure and because of this End to End Delay and Drop Ratio decreases. The main feature of our mechanism is its simplicity and improved efficiency. This evaluates through simulations the performance of the AODV routing protocol including our scheme and we compare it with HLSMPRA (Hot Link Split Multi-Path Routing Algorithm) Algorithm. Indeed, our scheme reduces routing load of network, end to end delay, packet drop ratio, and route error sent. The simulations have been performed using network simulator OPNET. The network simulator OPNET is discrete event simulation software for network simulations which means it simulates events not only sending and receiving packets but also forwarding and dropping packets. This modified algorithm has improved efficiency, with more reliability than Previous Algorithm.

[...] Read more.
Classification of HHO-based Machine Learning Techniques for Clone Attack Detection in WSN

By Ramesh Vatambeti Vijay Kumar Damera Karthikeyan H. Manohar M. Sharon Roji Priya C. M. S. Mekala

DOI: https://doi.org/10.5815/ijcnis.2023.06.01, Pub. Date: 8 Dec. 2023

Thanks to recent technological advancements, low-cost sensors with dispensation and communication capabilities are now feasible. As an example, a Wireless Sensor Network (WSN) is a network in which the nodes are mobile computers that exchange data with one another over wireless connections rather than relying on a central server. These inexpensive sensor nodes are particularly vulnerable to a clone node or replication assault because of their limited processing power, memory, battery life, and absence of tamper-resistant hardware. Once an attacker compromises a sensor node, they can create many copies of it elsewhere in the network that share the same ID. This would give the attacker complete internal control of the network, allowing them to mimic the genuine nodes' behavior. This is why scientists are so intent on developing better clone assault detection procedures. This research proposes a machine learning based clone node detection (ML-CND) technique to identify clone nodes in wireless networks. The goal is to identify clones effectively enough to prevent cloning attacks from happening in the first place. Use a low-cost identity verification process to identify clones in specific locations as well as around the globe. Using the Optimized Extreme Learning Machine (OELM), with kernels of ELM ideally determined through the Horse Herd Metaheuristic Optimization Algorithm (HHO), this technique safeguards the network from node identity replicas. Using the node identity replicas, the most reliable transmission path may be selected. The procedure is meant to be used to retrieve data from a network node. The simulation result demonstrates the performance analysis of several factors, including sensitivity, specificity, recall, and detection.

[...] Read more.
A Critical appraisal on Password based Authentication

By Amanpreet A. Kaur Khurram K. Mustafa

DOI: https://doi.org/10.5815/ijcnis.2019.01.05, Pub. Date: 8 Jan. 2019

There is no doubt that, even after the development of many other authentication schemes, passwords remain one of the most popular means of authentication. A review in the field of password based authentication is addressed, by introducing and analyzing different schemes of authentication, respective advantages and disadvantages, and probable causes of the ‘very disconnect’ between user and password mechanisms. The evolution of passwords and how they have deep-rooted in our life is remarkable. This paper addresses the gap between the user and industry perspectives of password authentication, the state of art of password authentication and how the most investigated topic in password authentication changed over time. The author’s tries to distinguish password based authentication into two levels ‘User Centric Design Level’ and the ‘Machine Centric Protocol Level’ under one framework. The paper concludes with the special section covering the ways in which password based authentication system can be strengthened on the issues which are currently holding-in the password based authentication.

[...] Read more.
D2D Communication Using Distributive Deep Learning with Coot Bird Optimization Algorithm

By Nethravathi H. M. Akhila S. Vinayakumar Ravi

DOI: https://doi.org/10.5815/ijcnis.2023.05.01, Pub. Date: 8 Oct. 2023

D2D (Device-to-device) communication has a major role in communication technology with resource and power allocation being a major attribute of the network. The existing method for D2D communication has several problems like slow convergence, low accuracy, etc. To overcome these, a D2D communication using distributed deep learning with a coot bird optimization algorithm has been proposed. In this work, D2D communication is combined with the Coot Bird Optimization algorithm to enhance the performance of distributed deep learning. Reducing the interference of eNB with the use of deep learning can achieve near-optimal throughput. Distributed deep learning trains the devices as a group and it works independently to reduce the training time of the devices. This model confirms the independent resource allocation with optimized power value and the least Bit Error Rate for D2D communication while sustaining the quality of services. The model is finally trained and tested successfully and is found to work for power allocation with an accuracy of 99.34%, giving the best fitness of 80%, the worst fitness value of 46%, mean value of 6.76 and 0.55 STD value showing better performance compared to the existing works.

[...] Read more.
Public vs Private vs Hybrid vs Community - Cloud Computing: A Critical Review

By Sumit Goyal

DOI: https://doi.org/10.5815/ijcnis.2014.03.03, Pub. Date: 8 Feb. 2014

These days cloud computing is booming like no other technology. Every organization whether it’s small, mid-sized or big, wants to adapt this cutting edge technology for its business. As cloud technology becomes immensely popular among these businesses, the question arises: Which cloud model to consider for your business? There are four types of cloud models available in the market: Public, Private, Hybrid and Community. This review paper answers the question, which model would be most beneficial for your business. All the four models are defined, discussed and compared with the benefits and pitfalls, thus giving you a clear idea, which model to adopt for your organization.

[...] Read more.
Detecting Remote Access Network Attacks Using Supervised Machine Learning Methods

By Samuel Ndichu Sylvester McOyowo Henry Okoyo Cyrus Wekesa

DOI: https://doi.org/10.5815/ijcnis.2023.02.04, Pub. Date: 8 Apr. 2023

Remote access technologies encrypt data to enforce policies and ensure protection. Attackers leverage such techniques to launch carefully crafted evasion attacks introducing malware and other unwanted traffic to the internal network. Traditional security controls such as anti-virus software, firewall, and intrusion detection systems (IDS) decrypt network traffic and employ signature and heuristic-based approaches for malware inspection. In the past, machine learning (ML) approaches have been proposed for specific malware detection and traffic type characterization. However, decryption introduces computational overheads and dilutes the privacy goal of encryption. The ML approaches employ limited features and are not objectively developed for remote access security. This paper presents a novel ML-based approach to encrypted remote access attack detection using a weighted random forest (W-RF) algorithm. Key features are determined using feature importance scores. Class weighing is used to address the imbalanced data distribution problem common in remote access network traffic where attacks comprise only a small proportion of network traffic. Results obtained during the evaluation of the approach on benign virtual private network (VPN) and attack network traffic datasets that comprise verified normal hosts and common attacks in real-world network traffic are presented. With recall and precision of 100%, the approach demonstrates effective performance. The results for k-fold cross-validation and receiver operating characteristic (ROC) mean area under the curve (AUC) demonstrate that the approach effectively detects attacks in encrypted remote access network traffic, successfully averting attackers and network intrusions.

[...] Read more.
Information Technology Risk Management Using ISO 31000 Based on ISSAF Framework Penetration Testing (Case Study: Election Commission of X City)

By I Gede Ary Suta Sanjaya Gusti Made Arya Sasmita Dewa Made Sri Arsa

DOI: https://doi.org/10.5815/ijcnis.2020.04.03, Pub. Date: 8 Aug. 2020

Election Commission of X City is an institution that serves as the organizer of elections in the X City, which has a website as a medium in the delivery of information to the public and as a medium for the management and structuring of voter data in the domicile of X City. As a website that stores sensitive data, it is necessary to have risk management aimed at improving the security aspects of the website of Election Commission of X City. The Information System Security Assessment Framework (ISSAF) is a penetration testing standard used to test website resilience, with nine stages of attack testing which has several advantages over existing security controls against threats and security gaps, and serves as a bridge between technical and managerial views of penetration testing by applying the necessary controls on both aspects. Penetration testing is carried out to find security holes on the website, which can then be used for assessment on ISO 31000 risk management which includes the stages of risk identification, risk analysis, and risk evaluation. The main findings of this study are testing a combination of penetration testing using the ISSAF framework and ISO 31000 risk management to obtain the security risks posed by a website. Based on this research, obtained the results that there are 18 security gaps from penetration testing, which based on ISO 31000 risk management assessment there are two types of security risks with high level, eight risks of medium level security vulnerabilities, and eight risks of security vulnerability with low levels. Some recommendations are given to overcome the risk of gaps found on the website.

[...] Read more.
Evaluation of GAN-based Models for Phishing URL Classifiers

By Thi Thanh Thuy Pham Tuan Dung Pham Viet Cuong Ta

DOI: https://doi.org/10.5815/ijcnis.2023.02.01, Pub. Date: 8 Apr. 2023

Phishing attacks by malicious URL/web links are common nowadays. The user data, such as login credentials and credit card numbers can be stolen by their careless clicking on these links. Moreover, this can lead to installation of malware on the target systems to freeze their activities, perform ransomware attack or reveal sensitive information. Recently, GAN-based models have been attractive for anti-phishing URLs. The general motivation is using Generator network (G) to generate fake URL strings and Discriminator network (D) to distinguish the real and the fake URL samples. This is operated in adversarial way between G and D so that the synthesized URL samples by G become more and more similar to the real ones. From the perspective of cybersecurity defense, GAN-based motivation can be exploited for D as a phishing URL detector or classifier. This means after training GAN on both malign and benign URL strings, a strong classifier/detector D can be achieved. From the perspective of cyberattack, the attackers would like to to create fake URLs that are as close to the real ones as possible to perform phishing attacks. This makes them easier to fool users and detectors. In the related proposals, GAN-based models are mainly exploited for anti-phishing URLs. There have been no evaluations specific for GAN-generated fake URLs. The attacker can make use of these URL strings for phishing attacks. In this work, we propose to use TLD (Top-level Domain) and SSIM (Structural Similarity Index Score) scores for evaluation the GAN-synthesized URL strings in terms of the structural similariy with the real ones. The more similar in the structure of the GAN-generated URLs are to the real ones, the more likely they are to fool the classifiers. Different GAN models from basic GAN to others GAN extensions of DCGAN, WGAN, SEQGAN are explored in this work. We show from the intensive experiments that D classifier of basic GAN and DCGAN surpasses other GAN models of WGAN and SegGAN. The effectiveness of the fake URL patterns generated from SeqGAN is the best compared to other GAN models in both structural similarity and the ability in deceiving the phishing URL classifiers of LSTM (Long Short Term Memory) and RF (Random Forest).

[...] Read more.
Password Security: An Analysis of Password Strengths and Vulnerabilities

By Katha Chanda

DOI: https://doi.org/10.5815/ijcnis.2016.07.04, Pub. Date: 8 Jul. 2016

Passwords can be used to gain access to specific data, an account, a computer system or a protected space. A single user may have multiple accounts that are protected by passwords. Research shows that users tend to keep same or similar passwords for different accounts with little differences. Once a single password becomes known, a number of accounts can be compromised. This paper deals with password security, a close look at what goes into making a password strong and the difficulty involved in breaking a password. The following sections discuss related work and prove graphically and mathematically the different aspects of password securities, overlooked vulnerabilities and the importance of passwords that are widely ignored. This work describes tests that were carried out to evaluate the resistance of passwords of varying strength against brute force attacks. It also discusses overlooked parameters such as entropy and how it ties in to password strength. This work also discusses the password composition enforcement of different popular websites and then presents a system designed to provide an adaptive and effective measure of password strength. This paper contributes toward minimizing the risk posed by those seeking to expose sensitive digital data. It provides solutions for making password breaking more difficult as well as convinces users to choose and set hard-to-break passwords.

[...] Read more.