International Journal of Computer Network and Information Security (IJCNIS)

ISSN: 2074-9090 (Print)

ISSN: 2074-9104 (Online)

DOI: https://doi.org/10.5815/ijcnis

Website: https://www.mecs-press.org/ijcnis

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 137

(IJCNIS) in Google Scholar Citations / h5-index

IJCNIS is committed to bridge the theory and practice of computer network and information security. From innovative ideas to specific algorithms and full system implementations, IJCNIS publishes original, peer-reviewed, and high quality articles in the areas of computer network and information security. IJCNIS is well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of computer network, information security, and their applications.

 

IJCNIS has been abstracted or indexed by several world class databases: ScopusSCImago, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, VINITI, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..

Latest Issue
Most Viewed
Most Downloaded

IJCNIS Vol. 17, No. 3, Jun. 2025

REGULAR PAPERS

Preliminary Study of Step-Count Authentication using Wearable Device

By Sirapat Boonkrong Wata Kanjanapruthipong

DOI: https://doi.org/10.5815/ijcnis.2025.03.01, Pub. Date: 8 Jun. 2025

Authentication, an identity verification and confirmation method, is a defense mechanism that reduces the risk of adversarial attacks, specifically to identity theft and impersonation in computer systems. Existing authentication methods exhibit vulnerabilities, such as password dictionary attack, credential stuffing, and identity spoofing. In this study, we examine the possibility of using a class of biometric data, namely step counts, to investigate their potential in person identification and verification. For this purpose, we collected step-count data from research volunteers over a period of 33 days or over 560 hours. Subsequently, we used these data to establish an appropriate threshold and tested their accuracy using a confusion matrix. Our evaluations showed that a suitable threshold range for step-count authentication is x ̅-1S.D.≤Range ≤ x ̅+1S.D., where S.D. represents standard deviation and x ̅ is the mean value of step counts of an individual. Moreover, we constructed a receiver operating characteristic curve and calculated the area under the curve, which showed that step counts have the potential to be used in behavioral biometric authentication methods. Thus, using the threshold range method, step counts can potentially become another behavioral biometric factor for authentication systems.

[...] Read more.
Big Data Time Series Forecasting Using Pattern Sequencing Similarity

By Gaurav Sharma Kailash Chandra Bandhu

DOI: https://doi.org/10.5815/ijcnis.2025.03.02, Pub. Date: 8 Jun. 2025

Time series forecasting in big data analytics is crucial for making decisions in a variety of fields. but faces challenges due to high dimensionality, non-stationarity, and dynamic patterns. Conventional approaches frequently produce inaccurate results because they are unable to capture sudden variations and intricate temporal connections. This study proposes a Multi-scale Dynamic Time Warping-based Hierarchical Clustering (MDTWbH) approach to improve forecasting accuracy and scalability. Multi-scale Dynamic Time Warping (MDTW) transforms time series data into multi-scale representations, preserving local and global patterns, while Hierarchical Clustering groups similar sequences for enhanced predictive performance. The proposed framework integrates data preprocessing, outlier detection, and missing value interpolation to refine input data. It employs Apache Hadoop and Spark for efficient big data processing. Long Short Term Memory (LSTM) is applied within each cluster for accurate forecasting, and accuracy, precision, recall, F1-score, MAE, and RMSE are used to assess the performance of the model. Experimental results on electricity demand, wind speed, and taxi demand datasets demonstrate superior performance compared to existing techniques. MDTWbH provides a scalable and interpretable solution for large-scale time series forecasting by efficiently capturing evolving temporal patterns.

[...] Read more.
Sturdy Blockchain Combined with E-apps Repositories Based on Reliable Camouflaging and Integrating Mechanisms

By Rasha Hallem Razzaq Duaa Hammoud Tahayur Wid Alaa Jebbar Mishall Al-Zubaidie

DOI: https://doi.org/10.5815/ijcnis.2025.03.03, Pub. Date: 8 Jun. 2025

The development of technology around us is going through a rapid and significant state that is almost causing a technological revolution, so one of the most important problems facing us in the current technological era is the management of warehouse data and the growth occurring in the volume of data that is dealt with on a daily basis, whether in terms of its storage or security, especially if the data is huge and large. Therefore, we developed a proposed model in our study that provides security in addition to storage/warehouse management. In our proposed model, the El-Gamal and GLUON functions address the security problem. In addition to supporting other security methods, such as GLUON, which is secure and fast, for encryption. Hybrid Blockchain technology is used in our proposed model to deal with the storage of this type of huge data, and also for the purpose of organizing warehouse storage. Data is exposed to intrusion or loss when using any traditional, centralized technology or when storing it in databases, so we chose the hybrid Blockchain to be an integrated fit with our proposed model, and also because it allows the distribution of data across public and private domains. Our proposed model, upon examination, shows that it effectively dealt with defending against attacks such as NotPetya, GoldenEye, WannaCry, Emotet, Trickbot, Conti, and DarkSide. In addition, the results of lightweight GLUON and El-Gamal showed that the performance analysis of our model was very successful, where the time it takes to create a block was between 0.01 ns and not more than 0.09 ns which is considered too fast for such a system that deals with a big data. As a result, we were able to gain an effective model for data repository control, security, performance, and management. 

[...] Read more.
On Cryptanalysis of 3-DES using Nature-Inspired Algorithms

By Subinoy Sikdar Sagnik Dutta Malay Kule

DOI: https://doi.org/10.5815/ijcnis.2025.03.04, Pub. Date: 8 Jun. 2025

This paper presents a novel cryptanalysis method of DES (2-DES and 3-DES) using nature-inspired algorithms; namely Cuckoo Search Algorithm and Grey Wolf Optimization Algorithm. We have shown the loophole of 2-DES and 3-DES encryption systems and discovered the vulnerabilities by some simple mathematical calculations. The Meet-In-The-Middle approach can be executed on 2-DES along with Known Plaintext Attack, Chosen Plaintext Attack, and Chosen Ciphertext Attack. The valid key pairs along with the original key pairs can successfully be recovered by this attack algorithm. But in the Ciphertext Only Attack, the Meet-In-The-Middle approach fails to recover the plaintext as well as the valid key pairs both for 2-DES and 3-DES. To overcome this problem, we have proposed a novel cryptanalysis method of 3-DES with Ciphertext Only Attack using Cuckoo Search Algorithm and Grey Wolf Optimization Algorithm (GWO). We have developed a suitable fitness function, accelerating the algorithm toward the optimal solution. This paper shows how CSA and GWO can break a 3-DES cryptosystem using a Ciphertext Only Attack. This proposed cryptanalysis method can also be applied to any round of DES.

[...] Read more.
GraphConvDeep: A Deep Learning Approach for Enhancing Binary Code Similarity Detection using Graph Embeddings

By Nandish M. Jalesh Kumar Mohan H. G. Manjunath Sargur Krishnamurthy

DOI: https://doi.org/10.5815/ijcnis.2025.03.05, Pub. Date: 8 Jun. 2025

Binary code similarity detection (BCSD) is a method for identifying similarities between two or more slices of binary code (machine code or assembly code) without access to their original source code. BCSD is often used in many areas, such as vulnerability detection, plagiarism detection, malware analysis, copyright infringement and software patching. Numerous approaches have been developed in these areas via graph matching and deep learning algorithms. Existing solutions have low detection accuracy and lack cross-architecture analysis. This work introduces a cross-platform graph deep learning-based approach, i.e., GraphConvDeep, which uses graph convolution networks to compute the embedding. The proposed GraphConvDeep approach relies on the control flow graph (CFG) of individual binary functions. By evaluating the distance between two embeddings of functions, the similarity is detected. The experimental results show that GraphConvDeep is better than other cutting-edge methods at accurately detecting similarities, achieving an average accuracy of 95% across different platforms. The analysis shows that the proposed approach achieves better performance with an area under the curve (AUC) value of 96%, particularly in identifying real-world vulnerabilities.

[...] Read more.
Post-quantum Digital Signatures using ElGamal Approach

By Maksim Iavich Dana Amirkhanova Sairangazhykyzy

DOI: https://doi.org/10.5815/ijcnis.2025.03.06, Pub. Date: 8 Jun. 2025

The paper offers a novel digital signature scheme that integrates ElGamal cryptographic principles with the Short Integer Solution (SIS) problem, specifically designed to ensure post-quantum security. As quantum computers advance and present significant risks to traditional cryptographic systems, this scheme offers an interesting alternative for securing digital signatures against potential quantum threats. The scheme uses only basic secure principles. The offered approach offers key generation, where parameters and random matrices are selected, and signature generation, which involves creating signatures based on hashed messages and matrix computations. Verification ensures the authenticity and integrity of signatures. We provide experimental evaluations detailing key generation, signature creation, and verification times across different matrix dimensions and message sizes. Key generation takes between 2.5–10.2 seconds, while signature generation ranges from 0.20 to 9.30 milliseconds and verification from 0.18 to 8.90 milliseconds, depending on message size and matrix dimension. The scheme maintains a consistent signature size of 1.7 KB, independent of message length due to a hash-and-sign strategy. These results demonstrate that the scheme balances post-quantum security with practical performance, especially in high-security contexts. A comparison with traditional ElGamal encryption reveals the trade-offs between security and efficiency. While the SIS-based scheme delivers enhanced protection against quantum threats, it also entails increased computational complexity and larger signature sizes compared to conventional schemes.
Overall, our proposed digital signature scheme stands as an excellent option for safe communications in a post-quantum world, representing a crucial step in protecting the authenticity and integrity of digital exchanges against changing technological risks. We believe that as quantum computing continues to develop, research into robust cryptographic alternatives will become increasingly important for safeguarding sensitive information across various sectors.

[...] Read more.
Development and Testing of Voice User Interfaces Based on BERT Models for Speech Recognition in Distance Learning and Smart Home Systems

By Victoria Vysotska Zhengbing Hu Nikita Mykytyn Olena Nagachevska Kateryna Hazdiuk Dmytro Uhryn

DOI: https://doi.org/10.5815/ijcnis.2025.03.07, Pub. Date: 8 Jun. 2025

Voice User Interfaces (VUIs) focus on their application in IT and linguistics. Our research examines the capabilities and limitations of small and multilingual BERT models in the context of speech recognition and command conversion. We evaluate the performance of these models through a series of experiments, including the application of confusion matrices to assess their effectiveness. The findings reveal that larger models like multilingual BERT theoretically offer advanced capabilities but often demand more substantial resources and well-balanced datasets. Conversely, smaller models, though less resource-intensive, may sometimes provide more practical solutions. Our study underscores the importance of dataset quality, model fine-tuning, and efficient resource management in optimising VUIS. Insights gained from this research highlight the potential of neural networks to enhance and improve user interaction. Despite challenges in achieving a fully functional interface, the study provides valuable contributions to the VUIs development and sets the stage for future advancements in integrating AI with linguistic technologies. The article describes the development of a voice user interface (VUI) capable of recognising, analysing, and interpreting the Ukrainian language. For this purpose, several neural network architectures were used, including the Squeezeformer-CTC model, as well as a modified w2v-bert-2.0-uk model, which was used to decode speech commands into text. The multilingual BERT model (mBERT) for the classification of intentions was also tested. The developed system showed the prospects of using BERT models in combination with lightweight ASR architectures to create an effective voice interface in Ukrainian. Accuracy indicators (F1 = 91.5%, WER = 12.7%) indicate high-quality recognition, which is provided even in models with low memory capacity. The system is adaptable to conditions with limited resources, particularly for educational and living environments with a Ukrainian-speaking audience.

[...] Read more.
Multi-modal Cyberbullying Detection with Severity Analysis Using Deep-Tensor Fusion Framework

By Neha Minder Singh Sanjay Kumar Sharma

DOI: https://doi.org/10.5815/ijcnis.2025.03.08, Pub. Date: 8 Jun. 2025

In today’s internet age, cyberbullying is a serious threat to people. Bullies hurt their victims by using online social media sites like Facebook, Twitter, and so on. Since then, cyberbullying or online bullying has become an increasingly significant societal problem due to its psychological and emotional impact on the victim. To overcome this issue, the proposed method is used for the identification of social network cyberbullying using many modalities. The first step is data collection, the data are collected through text, image, audio and video. Firstly, the text data is pre-processed using tokenization, stemming, lemmatization, spell correction, and PoS tagging methods. After pre-processing, feature extraction is done using Log Term Frequency-based Modified Inverse Class Frequency (LTF-MICF) and glove modelling, and the feature is extracted using the convolutional dense capsule network (Conv_DCapNet) model. Second, image data is pre-processed using Gabor filtering and image resizing. Once the pre-processing is done, the feature is extracted using image modality generation through Self-attention based bidirectional gated recurrent auto-encoder network (SA_BiGR_AENet). Third, audio (acoustic) data is extracted using the Librosa library and Attentional convolutional BiLSTM. The next step is video extraction, in this video data are extracted using keyframe extraction and Residual 101 network. Finally, in the fusion method, all four extracted features (text, image, audio and video) are fused by the deep tensor fusion framework. After that, the sigmoid layer classifies whether the data is cyberbullying or not. Then, the notification of highly detected severe is sent to the user. Thus, the proposed method detects cyberbullying. Python tool is used for implementation, and the performance metrics of recall is 96%, F1-score for bullying class 92% and weighted F1-score 91% compared with existing methods.

[...] Read more.
Machine Learning-based Intrusion Detection Technique for IoT: Simulation with Cooja

By Ali H. Farea Kerem Kucuk

DOI: https://doi.org/10.5815/ijcnis.2024.01.01, Pub. Date: 8 Feb. 2024

The Internet of Things (IoT) is one of the promising technologies of the future. It offers many attractive features that we depend on nowadays with less effort and faster in real-time. However, it is still vulnerable to various threats and attacks due to the obstacles of its heterogeneous ecosystem, adaptive protocols, and self-configurations. In this paper, three different 6LoWPAN attacks are implemented in the IoT via Contiki OS to generate the proposed dataset that reflects the 6LoWPAN features in IoT. For analyzed attacks, six scenarios have been implemented. Three of these are free of malicious nodes, and the others scenarios include malicious nodes. The typical scenarios are a benchmark for the malicious scenarios for comparison, extraction, and exploration of the features that are affected by attackers. These features are used as criteria input to train and test our proposed hybrid Intrusion Detection and Prevention System (IDPS) to detect and prevent 6LoWPAN attacks in the IoT ecosystem. The proposed hybrid IDPS has been trained and tested with improved accuracy on both KoU-6LoWPAN-IoT and Edge IIoT datasets. In the proposed hybrid IDPS for the detention phase, the Artificial Neural Network (ANN) classifier achieved the highest accuracy among the models in both the 2-class and N-class. Before the accuracy improved in our proposed dataset with the 4-class and 2-class mode, the ANN classifier achieved 95.65% and 99.95%, respectively, while after the accuracy optimization reached 99.84% and 99.97%, respectively. For the Edge IIoT dataset, before the accuracy improved with the 15-class and 2-class modes, the ANN classifier achieved 95.14% and 99.86%, respectively, while after the accuracy optimized up to 97.64% and 99.94%, respectively. Also, the decision tree-based models achieved lightweight models due to their lower computational complexity, so these have an appropriate edge computing deployment. Whereas other ML models reach heavyweight models and are required more computational complexity, these models have an appropriate deployment in cloud or fog computing in IoT networks.

[...] Read more.
Public vs Private vs Hybrid vs Community - Cloud Computing: A Critical Review

By Sumit Goyal

DOI: https://doi.org/10.5815/ijcnis.2014.03.03, Pub. Date: 8 Feb. 2014

These days cloud computing is booming like no other technology. Every organization whether it’s small, mid-sized or big, wants to adapt this cutting edge technology for its business. As cloud technology becomes immensely popular among these businesses, the question arises: Which cloud model to consider for your business? There are four types of cloud models available in the market: Public, Private, Hybrid and Community. This review paper answers the question, which model would be most beneficial for your business. All the four models are defined, discussed and compared with the benefits and pitfalls, thus giving you a clear idea, which model to adopt for your organization.

[...] Read more.
D2D Communication Using Distributive Deep Learning with Coot Bird Optimization Algorithm

By Nethravathi H. M. Akhila S. Vinayakumar Ravi

DOI: https://doi.org/10.5815/ijcnis.2023.05.01, Pub. Date: 8 Oct. 2023

D2D (Device-to-device) communication has a major role in communication technology with resource and power allocation being a major attribute of the network. The existing method for D2D communication has several problems like slow convergence, low accuracy, etc. To overcome these, a D2D communication using distributed deep learning with a coot bird optimization algorithm has been proposed. In this work, D2D communication is combined with the Coot Bird Optimization algorithm to enhance the performance of distributed deep learning. Reducing the interference of eNB with the use of deep learning can achieve near-optimal throughput. Distributed deep learning trains the devices as a group and it works independently to reduce the training time of the devices. This model confirms the independent resource allocation with optimized power value and the least Bit Error Rate for D2D communication while sustaining the quality of services. The model is finally trained and tested successfully and is found to work for power allocation with an accuracy of 99.34%, giving the best fitness of 80%, the worst fitness value of 46%, mean value of 6.76 and 0.55 STD value showing better performance compared to the existing works.

[...] Read more.
Classification of HHO-based Machine Learning Techniques for Clone Attack Detection in WSN

By Ramesh Vatambeti Vijay Kumar Damera Karthikeyan H. Manohar M. Sharon Roji Priya C. M. S. Mekala

DOI: https://doi.org/10.5815/ijcnis.2023.06.01, Pub. Date: 8 Dec. 2023

Thanks to recent technological advancements, low-cost sensors with dispensation and communication capabilities are now feasible. As an example, a Wireless Sensor Network (WSN) is a network in which the nodes are mobile computers that exchange data with one another over wireless connections rather than relying on a central server. These inexpensive sensor nodes are particularly vulnerable to a clone node or replication assault because of their limited processing power, memory, battery life, and absence of tamper-resistant hardware. Once an attacker compromises a sensor node, they can create many copies of it elsewhere in the network that share the same ID. This would give the attacker complete internal control of the network, allowing them to mimic the genuine nodes' behavior. This is why scientists are so intent on developing better clone assault detection procedures. This research proposes a machine learning based clone node detection (ML-CND) technique to identify clone nodes in wireless networks. The goal is to identify clones effectively enough to prevent cloning attacks from happening in the first place. Use a low-cost identity verification process to identify clones in specific locations as well as around the globe. Using the Optimized Extreme Learning Machine (OELM), with kernels of ELM ideally determined through the Horse Herd Metaheuristic Optimization Algorithm (HHO), this technique safeguards the network from node identity replicas. Using the node identity replicas, the most reliable transmission path may be selected. The procedure is meant to be used to retrieve data from a network node. The simulation result demonstrates the performance analysis of several factors, including sensitivity, specificity, recall, and detection.

[...] Read more.
A Critical appraisal on Password based Authentication

By Amanpreet A. Kaur Khurram K. Mustafa

DOI: https://doi.org/10.5815/ijcnis.2019.01.05, Pub. Date: 8 Jan. 2019

There is no doubt that, even after the development of many other authentication schemes, passwords remain one of the most popular means of authentication. A review in the field of password based authentication is addressed, by introducing and analyzing different schemes of authentication, respective advantages and disadvantages, and probable causes of the ‘very disconnect’ between user and password mechanisms. The evolution of passwords and how they have deep-rooted in our life is remarkable. This paper addresses the gap between the user and industry perspectives of password authentication, the state of art of password authentication and how the most investigated topic in password authentication changed over time. The author’s tries to distinguish password based authentication into two levels ‘User Centric Design Level’ and the ‘Machine Centric Protocol Level’ under one framework. The paper concludes with the special section covering the ways in which password based authentication system can be strengthened on the issues which are currently holding-in the password based authentication.

[...] Read more.
Forensics Image Acquisition Process of Digital Evidence

By Erhan Akbal Sengul Dogan

DOI: https://doi.org/10.5815/ijcnis.2018.05.01, Pub. Date: 8 May 2018

For solving the crimes committed on digital materials, they have to be copied. An evidence must be copied properly in valid methods that provide legal availability. Otherwise, the material cannot be used as an evidence. Image acquisition of the materials from the crime scene by using the proper hardware and software tools makes the obtained data legal evidence. Choosing the proper format and verification function when image acquisition affects the steps in the research process. For this purpose, investigators use hardware and software tools. Hardware tools assure the integrity and trueness of the image through write-protected method. As for software tools, they provide usage of certain write-protect hardware tools or acquisition of the disks that are directly linked to a computer. Image acquisition through write-protect hardware tools assures them the feature of forensic copy. Image acquisition only through software tools do not ensure the forensic copy feature. During the image acquisition process, different formats like E01, AFF, DD can be chosen. In order to provide the integrity and trueness of the copy, hash values have to be calculated using verification functions like SHA and MD series. In this study, image acquisition process through hardware-software are shown. Hardware acquisition of a 200 GB capacity hard disk is made through Tableau TD3 and CRU Ditto. The images of the same storage are taken through Tableau, CRU and RTX USB bridge and through FTK imager and Forensic Imager; then comparative performance assessment results are presented.

[...] Read more.
Social Engineering: I-E based Model of Human Weakness for Attack and Defense Investigations

By Wenjun Fan Kevin Lwakatare Rong Rong

DOI: https://doi.org/10.5815/ijcnis.2017.01.01, Pub. Date: 8 Jan. 2017

Social engineering is the attack aimed to manipulate dupe to divulge sensitive information or take actions to help the adversary bypass the secure perimeter in front of the information-related resources so that the attacking goals can be completed. Though there are a number of security tools, such as firewalls and intrusion detection systems which are used to protect machines from being attacked, widely accepted mechanism to prevent dupe from fraud is lacking. However, the human element is often the weakest link of an information security chain, especially, in a human-centered environment. In this paper, we reveal that the human psychological weaknesses result in the main vulnerabilities that can be exploited by social engineering attacks. Also, we capture two essential levels, internal characteristics of human nature and external circumstance influences, to explore the root cause of the human weaknesses. We unveil that the internal characteristics of human nature can be converted into weaknesses by external circumstance influences. So, we propose the I-E based model of human weakness for social engineering investigation. Based on this model, we analyzed the vulnerabilities exploited by different techniques of social engineering, and also, we conclude several defense approaches to fix the human weaknesses. This work can help the security researchers to gain insights into social engineering from a different perspective, and in particular, enhance the current and future research on social engineering defense mechanisms.

[...] Read more.
Comparative Analysis of KNN Algorithm using Various Normalization Techniques

By Amit Pandey Achin Jain

DOI: https://doi.org/10.5815/ijcnis.2017.11.04, Pub. Date: 8 Nov. 2017

Classification is the technique of identifying and assigning individual quantities to a group or a set. In pattern recognition, K-Nearest Neighbors algorithm is a non-parametric method for classification and regression. The K-Nearest Neighbor (kNN) technique has been widely used in data mining and machine learning because it is simple yet very useful with distinguished performance. Classification is used to predict the labels of test data points after training sample data. Over the past few decades, researchers have proposed many classification methods, but still, KNN (K-Nearest Neighbor) is one of the most popular methods to classify the data set. The input consists of k closest examples in each space, the neighbors are picked up from a set of objects or objects having same properties or value, this can be considered as a training dataset. In this paper, we have used two normalization techniques to classify the IRIS Dataset and measure the accuracy of classification using Cross-Validation method using R-Programming. The two approaches considered in this paper are - Data with Z-Score Normalization and Data with Min-Max Normalization.

[...] Read more.
Statistical Techniques for Detecting Cyberattacks on Computer Networks Based on an Analysis of Abnormal Traffic Behavior

By Zhengbing Hu Roman Odarchenko Sergiy Gnatyuk Maksym Zaliskyi Anastasia Chaplits Sergiy Bondar Vadim Borovik

DOI: https://doi.org/10.5815/ijcnis.2020.06.01, Pub. Date: 8 Dec. 2020

Represented paper is currently topical, because of year on year increasing quantity and diversity of attacks on computer networks that causes significant losses for companies. This work provides abilities of such problems solving as: existing methods of location of anomalies and current hazards at networks, statistical methods consideration, as effective methods of anomaly detection and experimental discovery of choosed method effectiveness. The method of network traffic capture and analysis during the network segment passive monitoring is considered in this work. Also, the processing way of numerous network traffic indexes for further network information safety level evaluation is proposed. Represented methods and concepts usage allows increasing of network segment reliability at the expense of operative network anomalies capturing, that could testify about possible hazards and such information is very useful for the network administrator. To get a proof of the method effectiveness, several network attacks, whose data is storing in specialised DARPA dataset, were chosen. Relevant parameters for every attack type were calculated. In such a way, start and termination time of the attack could be obtained by this method with insignificant error for some methods.

[...] Read more.
Performance Analysis of 5G New Radio LDPC over Different Multipath Fading Channel Models

By Mohammed Hussein Ali Ghanim A. Al-Rubaye

DOI: https://doi.org/10.5815/ijcnis.2023.04.01, Pub. Date: 8 Aug. 2023

The creation and developing of a wireless network communication that is fast, secure, dependable, and cost-effective enough to suit the needs of the modern world is a difficult undertaking. Channel coding schemes must be chosen carefully to ensure timely and error-free data transfer in a noisy and fading channel. To ensure that the data received matches the data transmitted, channel coding is an essential part of the communication system's architecture. NR LDPC (New Radio Low Density Parity Check) code has been recommended for the fifth-generation (5G) to achieve the need for more internet traffic capacity in mobile communications and to provide both high coding gain and low energy consumption. This research presents NR-LDPC for data transmission over two different multipath fading channel models, such as Nakagami-m and Rayleigh in AWGN. The BER performance of the NR-LDPC code using two kinds of rate-compatible base graphs has been examined for the QAM-OFDM (Quadrature Amplitude Modulation-Orthogonal Frequency Division Multiplexing) system and compared to the uncoded QAM-OFDM system. The BER performance obtained via Monte Carlo simulation demonstrates that the LDPC works efficiently with two different kinds of channel models: those that do not fade and those that fade and achieves significant BER improvements with high coding gain. It makes sense to use LDPC codes in 5G because they are more efficient for long data transmissions, and the key to a good code is an effective decoding algorithm. The results demonstrated a coding gain improvement of up to 15 dB at 10-3 BER.

[...] Read more.
Optimal Route Based Advanced Algorithm using Hot Link Split Multi-Path Routing Algorithm

By Akhilesh A. Waoo Sanjay Sharma Manjhari Jain

DOI: https://doi.org/10.5815/ijcnis.2014.08.07, Pub. Date: 8 Jul. 2014

Present research work describes advancement in standard routing protocol AODV for mobile ad-hoc networks. Our mechanism sets up multiple optimal paths with the criteria of bandwidth and delay to store multiple optimal paths in the network. At time of link failure, it will switch to next available path. We have used the information that we get in the RREQ packet and also send RREP packet to more than one path, to set up multiple paths, It reduces overhead of local route discovery at the time of link failure and because of this End to End Delay and Drop Ratio decreases. The main feature of our mechanism is its simplicity and improved efficiency. This evaluates through simulations the performance of the AODV routing protocol including our scheme and we compare it with HLSMPRA (Hot Link Split Multi-Path Routing Algorithm) Algorithm. Indeed, our scheme reduces routing load of network, end to end delay, packet drop ratio, and route error sent. The simulations have been performed using network simulator OPNET. The network simulator OPNET is discrete event simulation software for network simulations which means it simulates events not only sending and receiving packets but also forwarding and dropping packets. This modified algorithm has improved efficiency, with more reliability than Previous Algorithm.

[...] Read more.
Machine Learning-based Intrusion Detection Technique for IoT: Simulation with Cooja

By Ali H. Farea Kerem Kucuk

DOI: https://doi.org/10.5815/ijcnis.2024.01.01, Pub. Date: 8 Feb. 2024

The Internet of Things (IoT) is one of the promising technologies of the future. It offers many attractive features that we depend on nowadays with less effort and faster in real-time. However, it is still vulnerable to various threats and attacks due to the obstacles of its heterogeneous ecosystem, adaptive protocols, and self-configurations. In this paper, three different 6LoWPAN attacks are implemented in the IoT via Contiki OS to generate the proposed dataset that reflects the 6LoWPAN features in IoT. For analyzed attacks, six scenarios have been implemented. Three of these are free of malicious nodes, and the others scenarios include malicious nodes. The typical scenarios are a benchmark for the malicious scenarios for comparison, extraction, and exploration of the features that are affected by attackers. These features are used as criteria input to train and test our proposed hybrid Intrusion Detection and Prevention System (IDPS) to detect and prevent 6LoWPAN attacks in the IoT ecosystem. The proposed hybrid IDPS has been trained and tested with improved accuracy on both KoU-6LoWPAN-IoT and Edge IIoT datasets. In the proposed hybrid IDPS for the detention phase, the Artificial Neural Network (ANN) classifier achieved the highest accuracy among the models in both the 2-class and N-class. Before the accuracy improved in our proposed dataset with the 4-class and 2-class mode, the ANN classifier achieved 95.65% and 99.95%, respectively, while after the accuracy optimization reached 99.84% and 99.97%, respectively. For the Edge IIoT dataset, before the accuracy improved with the 15-class and 2-class modes, the ANN classifier achieved 95.14% and 99.86%, respectively, while after the accuracy optimized up to 97.64% and 99.94%, respectively. Also, the decision tree-based models achieved lightweight models due to their lower computational complexity, so these have an appropriate edge computing deployment. Whereas other ML models reach heavyweight models and are required more computational complexity, these models have an appropriate deployment in cloud or fog computing in IoT networks.

[...] Read more.
Classification of HHO-based Machine Learning Techniques for Clone Attack Detection in WSN

By Ramesh Vatambeti Vijay Kumar Damera Karthikeyan H. Manohar M. Sharon Roji Priya C. M. S. Mekala

DOI: https://doi.org/10.5815/ijcnis.2023.06.01, Pub. Date: 8 Dec. 2023

Thanks to recent technological advancements, low-cost sensors with dispensation and communication capabilities are now feasible. As an example, a Wireless Sensor Network (WSN) is a network in which the nodes are mobile computers that exchange data with one another over wireless connections rather than relying on a central server. These inexpensive sensor nodes are particularly vulnerable to a clone node or replication assault because of their limited processing power, memory, battery life, and absence of tamper-resistant hardware. Once an attacker compromises a sensor node, they can create many copies of it elsewhere in the network that share the same ID. This would give the attacker complete internal control of the network, allowing them to mimic the genuine nodes' behavior. This is why scientists are so intent on developing better clone assault detection procedures. This research proposes a machine learning based clone node detection (ML-CND) technique to identify clone nodes in wireless networks. The goal is to identify clones effectively enough to prevent cloning attacks from happening in the first place. Use a low-cost identity verification process to identify clones in specific locations as well as around the globe. Using the Optimized Extreme Learning Machine (OELM), with kernels of ELM ideally determined through the Horse Herd Metaheuristic Optimization Algorithm (HHO), this technique safeguards the network from node identity replicas. Using the node identity replicas, the most reliable transmission path may be selected. The procedure is meant to be used to retrieve data from a network node. The simulation result demonstrates the performance analysis of several factors, including sensitivity, specificity, recall, and detection.

[...] Read more.
D2D Communication Using Distributive Deep Learning with Coot Bird Optimization Algorithm

By Nethravathi H. M. Akhila S. Vinayakumar Ravi

DOI: https://doi.org/10.5815/ijcnis.2023.05.01, Pub. Date: 8 Oct. 2023

D2D (Device-to-device) communication has a major role in communication technology with resource and power allocation being a major attribute of the network. The existing method for D2D communication has several problems like slow convergence, low accuracy, etc. To overcome these, a D2D communication using distributed deep learning with a coot bird optimization algorithm has been proposed. In this work, D2D communication is combined with the Coot Bird Optimization algorithm to enhance the performance of distributed deep learning. Reducing the interference of eNB with the use of deep learning can achieve near-optimal throughput. Distributed deep learning trains the devices as a group and it works independently to reduce the training time of the devices. This model confirms the independent resource allocation with optimized power value and the least Bit Error Rate for D2D communication while sustaining the quality of services. The model is finally trained and tested successfully and is found to work for power allocation with an accuracy of 99.34%, giving the best fitness of 80%, the worst fitness value of 46%, mean value of 6.76 and 0.55 STD value showing better performance compared to the existing works.

[...] Read more.
A Critical appraisal on Password based Authentication

By Amanpreet A. Kaur Khurram K. Mustafa

DOI: https://doi.org/10.5815/ijcnis.2019.01.05, Pub. Date: 8 Jan. 2019

There is no doubt that, even after the development of many other authentication schemes, passwords remain one of the most popular means of authentication. A review in the field of password based authentication is addressed, by introducing and analyzing different schemes of authentication, respective advantages and disadvantages, and probable causes of the ‘very disconnect’ between user and password mechanisms. The evolution of passwords and how they have deep-rooted in our life is remarkable. This paper addresses the gap between the user and industry perspectives of password authentication, the state of art of password authentication and how the most investigated topic in password authentication changed over time. The author’s tries to distinguish password based authentication into two levels ‘User Centric Design Level’ and the ‘Machine Centric Protocol Level’ under one framework. The paper concludes with the special section covering the ways in which password based authentication system can be strengthened on the issues which are currently holding-in the password based authentication.

[...] Read more.
Public vs Private vs Hybrid vs Community - Cloud Computing: A Critical Review

By Sumit Goyal

DOI: https://doi.org/10.5815/ijcnis.2014.03.03, Pub. Date: 8 Feb. 2014

These days cloud computing is booming like no other technology. Every organization whether it’s small, mid-sized or big, wants to adapt this cutting edge technology for its business. As cloud technology becomes immensely popular among these businesses, the question arises: Which cloud model to consider for your business? There are four types of cloud models available in the market: Public, Private, Hybrid and Community. This review paper answers the question, which model would be most beneficial for your business. All the four models are defined, discussed and compared with the benefits and pitfalls, thus giving you a clear idea, which model to adopt for your organization.

[...] Read more.
Detecting Remote Access Network Attacks Using Supervised Machine Learning Methods

By Samuel Ndichu Sylvester McOyowo Henry Okoyo Cyrus Wekesa

DOI: https://doi.org/10.5815/ijcnis.2023.02.04, Pub. Date: 8 Apr. 2023

Remote access technologies encrypt data to enforce policies and ensure protection. Attackers leverage such techniques to launch carefully crafted evasion attacks introducing malware and other unwanted traffic to the internal network. Traditional security controls such as anti-virus software, firewall, and intrusion detection systems (IDS) decrypt network traffic and employ signature and heuristic-based approaches for malware inspection. In the past, machine learning (ML) approaches have been proposed for specific malware detection and traffic type characterization. However, decryption introduces computational overheads and dilutes the privacy goal of encryption. The ML approaches employ limited features and are not objectively developed for remote access security. This paper presents a novel ML-based approach to encrypted remote access attack detection using a weighted random forest (W-RF) algorithm. Key features are determined using feature importance scores. Class weighing is used to address the imbalanced data distribution problem common in remote access network traffic where attacks comprise only a small proportion of network traffic. Results obtained during the evaluation of the approach on benign virtual private network (VPN) and attack network traffic datasets that comprise verified normal hosts and common attacks in real-world network traffic are presented. With recall and precision of 100%, the approach demonstrates effective performance. The results for k-fold cross-validation and receiver operating characteristic (ROC) mean area under the curve (AUC) demonstrate that the approach effectively detects attacks in encrypted remote access network traffic, successfully averting attackers and network intrusions.

[...] Read more.
Synthesis of the Structure of a Computer System Functioning in Residual Classes

By Victor Krasnobayev Alexandr Kuznetsov Kateryna Kuznetsova

DOI: https://doi.org/10.5815/ijcnis.2023.01.01, Pub. Date: 8 Feb. 2023

An important task of designing complex computer systems is to ensure high reliability. Many authors investigate this problem and solve it in various ways. Most known methods are based on the use of natural or artificially introduced redundancy. This redundancy can be used passively and/or actively with (or without) restructuring of the computer system. This article explores new technologies for improving fault tolerance through the use of natural and artificially introduced redundancy of the applied number system. We consider a non-positional number system in residual classes and use the following properties: independence, equality, and small capacity of residues that define a non-positional code structure. This allows you to: parallelize arithmetic calculations at the level of decomposition of the remainders of numbers; implement spatial spacing of data elements with the possibility of their subsequent asynchronous independent processing; perform tabular execution of arithmetic operations of the base set and polynomial functions with single-cycle sampling of the result of a modular operation. Using specific examples, we present the calculation and comparative analysis of the reliability of computer systems. The conducted studies have shown that the use of non-positional code structures in the system of residual classes provides high reliability. In addition, with an increase in the bit grid of computing devices, the efficiency of using the system of residual classes increases. Our studies show that in order to increase reliability, it is advisable to reserve small nodes and blocks of a complex system, since the failure rate of individual elements is always less than the failure rate of the entire computer system.

[...] Read more.
Information Technology Risk Management Using ISO 31000 Based on ISSAF Framework Penetration Testing (Case Study: Election Commission of X City)

By I Gede Ary Suta Sanjaya Gusti Made Arya Sasmita Dewa Made Sri Arsa

DOI: https://doi.org/10.5815/ijcnis.2020.04.03, Pub. Date: 8 Aug. 2020

Election Commission of X City is an institution that serves as the organizer of elections in the X City, which has a website as a medium in the delivery of information to the public and as a medium for the management and structuring of voter data in the domicile of X City. As a website that stores sensitive data, it is necessary to have risk management aimed at improving the security aspects of the website of Election Commission of X City. The Information System Security Assessment Framework (ISSAF) is a penetration testing standard used to test website resilience, with nine stages of attack testing which has several advantages over existing security controls against threats and security gaps, and serves as a bridge between technical and managerial views of penetration testing by applying the necessary controls on both aspects. Penetration testing is carried out to find security holes on the website, which can then be used for assessment on ISO 31000 risk management which includes the stages of risk identification, risk analysis, and risk evaluation. The main findings of this study are testing a combination of penetration testing using the ISSAF framework and ISO 31000 risk management to obtain the security risks posed by a website. Based on this research, obtained the results that there are 18 security gaps from penetration testing, which based on ISO 31000 risk management assessment there are two types of security risks with high level, eight risks of medium level security vulnerabilities, and eight risks of security vulnerability with low levels. Some recommendations are given to overcome the risk of gaps found on the website.

[...] Read more.
Evaluation of GAN-based Models for Phishing URL Classifiers

By Thi Thanh Thuy Pham Tuan Dung Pham Viet Cuong Ta

DOI: https://doi.org/10.5815/ijcnis.2023.02.01, Pub. Date: 8 Apr. 2023

Phishing attacks by malicious URL/web links are common nowadays. The user data, such as login credentials and credit card numbers can be stolen by their careless clicking on these links. Moreover, this can lead to installation of malware on the target systems to freeze their activities, perform ransomware attack or reveal sensitive information. Recently, GAN-based models have been attractive for anti-phishing URLs. The general motivation is using Generator network (G) to generate fake URL strings and Discriminator network (D) to distinguish the real and the fake URL samples. This is operated in adversarial way between G and D so that the synthesized URL samples by G become more and more similar to the real ones. From the perspective of cybersecurity defense, GAN-based motivation can be exploited for D as a phishing URL detector or classifier. This means after training GAN on both malign and benign URL strings, a strong classifier/detector D can be achieved. From the perspective of cyberattack, the attackers would like to to create fake URLs that are as close to the real ones as possible to perform phishing attacks. This makes them easier to fool users and detectors. In the related proposals, GAN-based models are mainly exploited for anti-phishing URLs. There have been no evaluations specific for GAN-generated fake URLs. The attacker can make use of these URL strings for phishing attacks. In this work, we propose to use TLD (Top-level Domain) and SSIM (Structural Similarity Index Score) scores for evaluation the GAN-synthesized URL strings in terms of the structural similariy with the real ones. The more similar in the structure of the GAN-generated URLs are to the real ones, the more likely they are to fool the classifiers. Different GAN models from basic GAN to others GAN extensions of DCGAN, WGAN, SEQGAN are explored in this work. We show from the intensive experiments that D classifier of basic GAN and DCGAN surpasses other GAN models of WGAN and SegGAN. The effectiveness of the fake URL patterns generated from SeqGAN is the best compared to other GAN models in both structural similarity and the ability in deceiving the phishing URL classifiers of LSTM (Long Short Term Memory) and RF (Random Forest).

[...] Read more.