Bishir Usman

Work place: Department of Pure and Industrial Chemistry, Bayero University, P.M.B.3011, BUK, Kano-Nigeria



Research Interests: Chemistry & Materials Science, Materials Science


Bishir Usman obtained PhD (Physical and Theoretical Chemistry) in 2015 from the Universiti Teknologi Malaysia. His research focusses on the development of theoretical and computational methods and models to study chemical processes that are related to material science, corrosion studies, Quantitative Structure Activity Relationship, Molecular Mechanics and Molecular Docking. He also conducted research in Kinetics of Biogas production, Biodiesel, Bioethanol and Bio-Hydrogen for energy production. He has many publications in ISI and Scopus index.

Author Articles
Adsorptive Removal of Basic Dyes and Hexavalent Chromium from Synthetic Industrial Effluent: Adsorbent Screening, Kinetic and Thermodynamic Studies

By Umar Yunusa Bishir Usman Muhammad Bashir Ibrahim

DOI:, Pub. Date: 8 Aug. 2020

The feasibility of utilizing an abundant agricultural waste (desert date seed shell) as an alternative low-cost adsorbent for the removal of hazardous basic dyes [crystal violet (CV) and malachite green (MG)] and hexavalent chromium [Cr(VI)] from synthetic industrial effluent was investigated. Five different adsorbents including the raw, carbonized and chemically activated carbons were prepared and screened with respect to adsorption efficiency of the chosen adsorbates. The prepared adsorbents were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and pH of zero point charge (pHzpc) analyses. The effects of operational variables such as solution pH, contact time and temperature on adsorption have been investigated. The removal of the adsorbates was found to be highly pH-dependent and the optimum pH was determined as 8.0 for the dyes and 2.0 for hexavalent chromium. The screening results revealed that the NaOH activated carbon (NAC) has the best adsorption characteristics with removal efficiencies of 91.10, 99.15 and 91.5 % for CV, MG and Cr(VI), respectively. The process dynamics was evaluated by pseudo-first-order and pseudo-second-order kinetic models. Experimental data have been found to be well in line with the pseudo-second-order model, suggesting therefore, a chemically-based sorption process. Negative Gibbs free energy change (∆G) values obtained from thermodynamic analysis indicated that the adsorption process was spontaneous and had a high feasibility. Positive values for enthalpy change (∆H) showed that the removal process was endothermic, implying that the amount of adsorbate adsorbed increased with increasing reaction temperatures. Additionally, positive values of entropy change (∆S) reflect the high affinity of the adsorbent material to the adsorbates. On the basis of results and their analyses, it has been established that adsorbent derived from desert date seed shell has a promising potential in environmental applications such as removing hazardous substances from industrial effluents. Through this work, it is believed that contributions are provided to the scientific investigations about the decontamination of precious water resources.

[...] Read more.
Other Articles