IJCNIS Vol. 18, No. 1, 8 Feb. 2026
Cover page and Table of Contents: PDF (size: 815KB)
PDF (815KB), PP.99-115
Views: 0 Downloads: 0
VANETs, Mamdani Fuzzy Inference System, Bacterial Foraging Optimization, Dynamic Routing, Route Maintenance
In this research, we propose an integrated routing protocol termed Bacterial Foraging inspired Mamdani Fuzzy Inference based AODV (BF-MFI-AODV) for Vehicular Ad-hoc Networks (VANETs), which combines Mamdani Fuzzy Inference System (MFIS) and Bacterial Foraging Optimization (BFO) techniques. The protocol aims to address the challenges of dynamic and unpredictable network conditions in VANETs by leveraging fuzzy logic and bio-inspired optimization principles. BF-MFI-AODV enhances route discovery, maintenance, and optimization mechanisms, resulting in improved adaptability, reliability, and efficiency of communication. Through extensive simulations and real-world experiments, the performance of BF-MFI-AODV is evaluated in terms of packet delivery ratio, end-to-end delay, routing overhead, and network lifetime. Our results demonstrate the effectiveness of BF-MFI-AODV in enhancing the overall performance of VANETs compared to existing routing protocols. The proposed protocol shows promise in providing robust and efficient communication solutions for dynamic vehicular environments, thus contributing to the advancement of intelligent transportation systems.
R. Jasmine Immaculate Shelly, M. Milton Joe, B. Ramakrishnan, "Bacterial Foraging Inspired Mamdani Fuzzy Inference based AODV (BF-MFI-AODV) for VANET Route Management Optimization", International Journal of Computer Network and Information Security(IJCNIS), Vol.18, No.1, pp.99-115, 2026. DOI:10.5815/ijcnis.2026.01.07
[1]H. Abualola, H. Otrok, H. Barada, M. Al-Qutayri, and Y. Al-Hammadi, “Matching game theoretical model for stable relay selection in a UAV-assisted internet of vehicles,” Veh. Commun., vol. 27, p. 100290, 2021, doi: https://doi.org/10.1016/j.vehcom.2020.100290.
[2]R. K. Soundarayaa and C. Balasubramanian, “Komodo Mlipir Algorithm-based optimal route determination mechanism for improving Quality of Service in Vehicular ad hoc network,” Sustain. Comput. Informatics Syst., vol. 42, p. 100956, 2024, doi: ttps://doi.org/10.1016/j.suscom.2024.100956.
[3]T. S. Gomides, R. E. De Grande, R. I. Meneguette, F. S. H. de Souza, and D. L. Guidoni, “Predictive Congestion Control based on Collaborative Information Sharing for Vehicular Ad hoc Networks,” Comput. Networks, vol. 211, p. 108955, 2022, doi: https://doi.org/10.1016/j.comnet.2022.108955.
[4]R. Karthikeyan and R. Vadivel, “Proficient Dazzling Crow Optimization Routing Protocol (PDCORP) for Effective Energy Administration in Wireless Sensor Networks,” in 2023 International Conference on Electrical, Electronics, Communication and Computers (ELEXCOM), 2023, pp. 1–6. doi: 10.1109/ELEXCOM58812.2023.10370559.
[5]R. S., M. K. B., and A. Appathurai, “Energy aware Clustered blockchain data for IoT: An end-to-end lightweight secure & Enroute filtering approach,” Comput. Commun., vol. 202, pp. 166–182, 2023, doi: https://doi.org/10.1016/j.comcom.2023.02.010.
[6]M. Li, S. Zhang, Y. Cao, and S. Xu, “NMSFRA: Heterogeneous routing protocol for balanced energy consumption in mobile wireless sensor network,” Ad Hoc Networks, vol. 145, p. 103176, 2023, doi: https://doi.org/10.1016/j.adhoc.2023.103176.
[7]F. Alrowais, H. G. Mohamed, F. N. Al-Wesabi, M. Al Duhayyim, A. M. Hilal, and A. Motwakel, “Cyber attack detection in healthcare data using cyber-physical system with optimized algorithm,” Comput. Electr. Eng., vol. 108, p. 108636, 2023, doi: https://doi.org/10.1016/j.compeleceng.2023.108636.
[8]M. Sharma, P. Kumar, and R. S. Tomar, “Vehicular connectivity algorithm for cooperative transportation systems,” Comput. Electr. Eng., vol. 102, p. 108199, 2022, doi: https://doi.org/10.1016/j.compeleceng.2022.108199.
[9]Q. Pan, J. Wu, J. Nebhen, A. K. Bashir, Y. Su, and J. Li, “Artificial Intelligence-Based Energy Efficient Communication System for Intelligent Reflecting Surface-Driven VANETs,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 19714–19726, 2022, doi: 10.1109/TITS.2022.3152677.
[10]S. Chen, Y. Liu, J. Ning, and X. Zhu, “BASRAC: An efficient batch authentication scheme with rule-based access control for VANETs,” Veh. Commun., vol. 40, p. 100575, 2023, doi: https://doi.org/10.1016/j.vehcom.2023.100575.
[11]P. Garrad and S. Unnikrishnan, “Reinforcement learning in VANET penetration testing,” Results Eng., vol. 17, p. 100970, 2023, doi: https://doi.org/10.1016/j.rineng.2023.100970.
[12]U. Arul, R. Gnanajeyaraman, A. Selvakumar, S. Ramesh, T. Manikandan, and G. Michael, “Integration of IoT and edge cloud computing for smart microgrid energy management in VANET using machine learning,” Comput. Electr. Eng., vol. 110, p. 108905, 2023, doi: https://doi.org/10.1016/j.compeleceng.2023.108905.
[13]W. U. I. Zafar, M. A. U. Rehman, F. Jabeen, R. Ullah, G. Abbas, and A. Khan, “Decentralized Receiver-based Link Stability-aware Forwarding Scheme for NDN-based VANETs,” Comput. Networks, vol. 236, p. 109996, 2023, doi: https://doi.org/10.1016/j.comnet.2023.109996.
[14]H. Yang, C. Pu, J. Wu, Y. Wu, and Y. Xia, “Enhancing OLSR protocol in VANETs with multi-objective particle swarm optimization,” Phys. A Stat. Mech. its Appl., vol. 614, p. 128570, 2023, doi: https://doi.org/10.1016/j.physa.2023.128570.
[15]G. Kaur and D. Kakkar, “Fr-Aro: Secure interference aware fuzzy based clustering and hybrid optimization driven data routing in VANETs,” Ad Hoc Networks, vol. 151, p. 103298, 2023, doi: https://doi.org/10.1016/j.adhoc.2023.103298.
[16]K. Nova, U. A, S. S. Jacob, G. Banu, M. S. P. Balaji, and S. S, “Floyd–Warshalls algorithm and modified advanced encryption standard for secured communication in VANET,” Meas. Sensors, vol. 27, p. 100796, 2023, doi: https://doi.org/10.1016/j.measen.2023.100796.
[17]A. Srivastava, A. Prakash, and R. Tripathi, “A cross layer based cooperative broadcast protocol for multichannel VANET,” Ad Hoc Networks, vol. 131, p. 102840, 2022, doi: https://doi.org/10.1016/j.adhoc.2022.102840.
[18]S. A. Chaudhry, “Comments on ‘A Secure, Privacy-Preserving, and Lightweight Authentication Scheme for VANETs,’” IEEE Sens. J., vol. 22, no. 13, pp. 13763–13766, 2022, doi: 10.1109/JSEN.2022.3168512.
[19]Z. Bi, G. Meng, A. Hawbani, S. K. Goudos, S. Wan, and L. Zhao, “TRUE: A Correlation Analysis Approach for Conducting Optimal Routing Metrics in VANETs,” IEEE Netw. Lett., vol. 5, no. 1, pp. 55–58, 2023, doi: 10.1109/LNET.2022.3225297.
[20]G. D. Singh, M. Prateek, S. Kumar, M. Verma, D. Singh, and H.-N. Lee, “Hybrid Genetic Firefly Algorithm-Based Routing Protocol for VANETs,” IEEE Access, vol. 10, pp. 9142–9151, 2022, doi: 10.1109/ACCESS.2022.3142811.
[21]H. Yu, R. Liu, Z. Li, Y. Ren, and H. Jiang, “An RSU Deployment Strategy Based on Traffic Demand in Vehicular Ad Hoc Networks (VANETs),” IEEE Internet Things J., vol. 9, no. 9, pp. 6496–6505, 2022, doi: 10.1109/JIOT.2021.3111048.
[22]K. Gu, X. Dong, and W. Jia, “Malicious Node Detection Scheme Based on Correlation of Data and Network Topology in Fog Computing-Based VANETs,” IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 1215–1232, 2022, doi: 10.1109/TCC.2020.2985050.
[23]Z. Wei, Q. Chen, H. Yang, H. Wu, Z. Feng, and F. Ning, “Neighbor Discovery for VANET With Gossip Mechanism and Multipacket Reception,” IEEE Internet Things J., vol. 9, no. 13, pp. 10502–10515, 2022, doi: 10.1109/JIOT.2021.3122023.
[24]A. K. Singh, J. Grover, and S. Mishra, “Integration of Blockchain in VANET Using gRPC for Privacy Preservation of Vehicles,” SN Comput. Sci., vol. 5, no. 1, p. 110, 2023, doi: 10.1007/s42979-023-02438-0.
[25]A. M. C. Blessy and S. Brindha, “Energy-efficient fuzzy management system using tri-parametric methodology in vanet,” Wirel. Networks, vol. 30, no. 2, pp. 617–635, 2024, doi: 10.1007/s11276-023-03505-3.
[26]M. Wang et al., “Smart City Transportation: A VANET Edge Computing Model to Minimize Latency and Delay Utilizing 5G Network,” J. Grid Comput., vol. 22, no. 1, p. 25, 2024, doi: 10.1007/s10723-024-09747-5.
[27]A. Raza, Z. Iqbal, and F. Aadil, “UAV-assisted ubiquitous communication architecture for urban VANET environment,” J. Supercomput., vol. 79, no. 13, pp. 14602–14632, 2023, doi: 10.1007/s11227-023-05223-1.
[28]F. Safari, H. Kunze, J. Ernst, and D. Gillis, “A Novel Cross-Layer Adaptive Fuzzy-Based Ad Hoc On-Demand Distance Vector Routing Protocol for MANETs,” IEEE Access, vol. 11, pp. 50805–50822, 2023, doi: 10.1109/ACCESS.2023.3277817.
[29]M. C. Blessy A and B. S, “Maximizing VANET performance in cluster head selection using Intelligent Fuzzy Bald Eagle optimization,” Veh. Commun., vol. 45, p. 100660, 2024, doi: https://doi.org/10.1016/j.vehcom.2023.100660.