Huang Xiaofang

Work place: Southwest University of Science and Technology/Department of Computer Science and Technology, Mianyang, 621010, China



Research Interests: Autonomic Computing, Information Security, Network Security, Mathematics of Computing


Huang Xiaofang received the Ph.D. degree from the Beijing University of Posts and Telecommunications in 2010. She is currently a professor with the school of computer science and technology, Southwest University of Science and Technology, Mianyang, China. Her main research interests include information security, cloud computing, and blockchain technology. She got the information security leading talent award of the district level in 2015.

Author Articles
Revamped Dual-key Stealth Address Protocol for IoT Using Encryption and Decentralized Storage

By Justice Odoom Huang Xiaofang Samuel Akwasi Danso Richlove Samuel Soglo Benedicta Nana Esi Nyarko

DOI:, Pub. Date: 8 Feb. 2023

Blockchain technology unarguably has over a decade gained widespread attention owing to its often-tagged disruptive nature and remarkable features of decentralization, immutability and transparency among others. However, the technology comes bundled with challenges. At center-stage of these challenges is privacy-preservation which has massively been researched with diverse solutions proposed geared towards privacy protection for transaction initiators, recipients and transaction data. Dual-key stealth address protocol for IoT (DkSAP-IoT) is one of such solutions aimed at privacy protection for transaction recipients. Induced by the need to reuse locally stored data, the current implementation of DkSAP-IoT is deficient in the realms of data confidentiality, integrity and availability consequently defeating the core essence of the protocol in the event of unauthorized access, disclosure or data tampering emanating from a hack and theft or loss of the device. Data unavailability and other security-related data breaches in effect render the existing protocol inoperable. In this paper, we propose and implement solutions to augment data confidentiality, integrity and availability in DkSAP-IoT in accordance with the tenets of information security using symmetric encryption and data storage leveraging decentralized storage architecture consequently providing data integrity. Experimental results show that our solution provides content confidentiality consequently strengthening privacy owing to the encryption utilized. We make the full code of our solution publicly available on GitHub.

[...] Read more.
Other Articles