Padmavati Shrivastava

Work place: Dr. C.V. Raman University, Bilaspur, 495113, Chhattisgarh, India



Research Interests: Multimedia Information System, Information Retrieval, Data Mining, Information Security, Pattern Recognition, Computer Vision


Mrs. Padmavati Shrivastava received her M.Tech. degree from Chhattisgarh Swami Vivekanand Technical University, Bhilai , Chhattisgarh , India , in 2011. She is presently a Ph.D. scholar in Dr. C.V. Raman University, Bilaspur , Chhattisgarh, India. Her main research interests are in the area of Multimedia Data Mining, Information Retrieval, Computer Vision and Pattern Recognition

Author Articles
Image Classification Using Fusion of Holistic Visual Descriptions

By Padmavati Shrivastava K. K. Bhoyar A.S. Zadgaonkar

DOI:, Pub. Date: 8 Aug. 2016

An efficient approach for scene classification is necessary for automatically labeling an image as well as for retrieval of desired images from large scale repositories. In this paper machine learning and computer vision techniques have been applied for scene classification. The system is based on feature fusion method with holistic visual color, texture and edge descriptors. Color moments, Color Coherence Vector, Color Auto Correlogram, GLCM, Daubechies Wavelets, Gabor filters and MPEG-7 Edge Direction Histogram have been used in the proposed system to find the best combination of features for this problem. Two state-of-the-art soft computing machine learning techniques: Support vector machine (SVM) and Artificial Neural Networks have been used to classify scene images into meaningful categories. The benchmarked Oliva-Torralba dataset has been used in this research. We report satisfactory categorization performances on a large data set of eight categories of 2688 complex, natural and urban scenes. Using a set of exhaustive experiments our proposed system has achieved classification accuracy as high as 92.5% for natural scenes (OT4) and as high as 86.4% for mixed scene categories (OT8). We also evaluate the system performance by predictive accuracy measures namely sensitivity, specificity, F-score and kappa statistic.

[...] Read more.
Other Articles