Hamid bagherieh

Work place: Department of computer, Islamic Azad University Hamedan branch, Iran

E-mail: h.bagheri@iauh.ac.ir


Research Interests: Data Structures and Algorithms, Image Processing, Neural Networks, Artificial Intelligence


Hamid bagherieh was born in Hamedan, Iran on Mar 17, 1978. He received the B.Sc. degrees from Islamic Azad University of lahijan (Iran), in 2003. In 2011, he joined the Islamic Azad University, Department of Computer Engineering, in Malayer, Iran as a student. His interesting areas are image processing, Fuzzy Inference System (FIS), artificial neural network and Genetic Algorithms.

Author Articles
Mass Detection in Lung CT Images using Region Growing Segmentation and Decision Making based on Fuzzy Systems

By Hamid bagherieh Atiyeh Hashemi Abdol Hamid Pilevar

DOI: https://doi.org/10.5815/ijigsp.2014.01.01, Pub. Date: 8 Nov. 2013

Lung cancer is distinguished by presenting one of the highest incidences and one of the highest rates of mortality among all other types of cancers. Detecting and curing the disease in the early stages provides the patients with a high chance of survival. In order to help specialists in the search and recognition of the lung nodules in tomography images, a good number of research centers have been developed in computer-aided detection (CAD) systems for automating the procedures. This work aims at detecting lung nodules automatically through computerized tomography images. Accordingly, this article aim at presenting a method to improve the efficiency of the lung cancer diagnosis system, through proposing a region growing segmentation method to segment CT scan lung images and, then, cancer recognition by FIS (Fuzzy Inference System). 
The proposed method consists of three steps. The first step was pre-processing for enhancing contrast, removing noise, and pictures less corrupted by Linear-Filtering. In second step, the region growing segmentation method was used to segment the CT images. In third step, we have developed an expert system for decision making which differentiates between normal, benign, malignant or advanced abnormality findings. The FIS can be of great help in diagnosing any abnormality in the medical images.  This step was done by extracting the features such as area and color (gray values) and given to the FIS as input. This system utilizes fuzzy membership functions which can be stated in the form of if-then rules for finding the type of the abnormality. Finally, the analysis step will be discussed and the accuracy of the method will be determined. Our experiments show that the average sensitivity of the proposed method is more than 95%.

[...] Read more.
Other Articles