IJIGSP Vol. 17, No. 6, 8 Dec. 2025
Cover page and Table of Contents: PDF (size: 1237KB)
PDF (1237KB), PP.60-76
Views: 0 Downloads: 0
Noninvasive, Bland-Altman method, NIR LED, Photodiode, Anemia, Polycythemia
A noninvasive blood hemoglobin monitoring device was designed specifically for monitoring anemia and polycythemia. Invasive techniques, which are painful and expensive, are commonly used to estimate blood hemoglobin concentrations. This paper presents a noninvasive method for monitoring blood hemoglobin values. A photodiode and a near-infrared (NIR) LED with a wavelength of 940 nm were used to construct a finger probe. At 940 nm wavelength shows distinct variation between oxygenated and deoxygenated hemoglobin and single-wavelength systems significantly reduce hardware complexity, cost, power consumption, and size. Use a continuous-wave NIR LED light through the finger to check the sensitivity of different hemoglobin concentrations. A total of 100 patients participated in our proposed device for evaluating noninvasive hemoglobin concentration. These participants collected both invasive and noninvasive hemoglobin concentration values. The correlation coefficient between the predicted (noninvasive) hemoglobin value and the reference (invasive) hemoglobin value was 0.9496, with a normalized root mean squared error (NRMSE) of 0.6504 and a mean absolute percentage error (MAPE) of 0.0505. The noninvasive blood hemoglobin level was classified using the k-nearest neighbour (kNN) classifier, and the proposed device accuracy was calculated at 90%. The Bland-Altman methodology evaluated differences between invasive and noninvasive blood hemoglobin concentrations. The absolute mean difference was 0.1124 (95% confidence interval [CI] -0.01535 to 0.2401), with an upper agreement limit of 1.374 (95% CI [1.153 - 1.595]) and a lower agreement limit of -1.149 (95% CI [-1.371 - 0.9282]).
Md. Altab Hossain, Sheikh Md. Rabiul Islam, "Noninvasive Hemoglobin Monitoring Device for Disease Detection", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.17, No.6, pp. 60-76, 2025. DOI:10.5815/ijigsp.2025.06.04
[1]Park, Y. H., Lim, S., Kang, H., Shin, H. Y., Baek, C. W., & Woo, Y. C. (2018). Comparison of the accuracy of noninvasive hemoglobin monitoring for preoperative evaluation between adult and pediatric patients: a retrospective study. Journal of Clinical Monitoring and Computing, 32(5). https://doi.org/10.1007/s10877-017-0098-8
[2]Jakacka, N., Snarski, E., & Mekuria, S. (2016). Prevention of iatrogenic anemia in critical and neonatal care. In Advances in Clinical and Experimental Medicine (Vol. 25, Issue 1). https://doi.org/10.17219/acem/32065
[3]Joseph, B., Pandit, V., Aziz, H., Kulvatunyou, N., Zangbar, B., Tang, A., O'Keeffe, T., Jehangir, Q., Snyder, K., & Rhee, P. (2015). Transforming hemoglobin measurement in trauma patients: Noninvasive spot check hemoglobin. Journal of the American College of Surgeons, 220(1). https://doi.org/10.1016/j.jamcollsurg.2014.09.022
[4]Hadar, E., Raban, O., Bouganim, T., Tenenbaum-Gavish, K., & Hod, M. (2012). Precision and accuracy of noninvasive hemoglobin measurements during pregnancy. Journal of Maternal-Fetal and Neonatal Medicine, 25(12). https://doi.org/10.3109/14767058.2012.704453
[5]Pinto, C., Parab, J., & Naik, G. (2020). Noninvasive hemoglobin measurement using embedded platform. Sensing and Bio-Sensing Research, 29. https://doi.org/10.1016/j.sbsr.2020.100370
[6]Elizabeth M. Staley, Joseph Schwartz, Huy P. Pham, Chapter 76 - Therapeutic Erythrocytapheresis and Red Cell Exchange, Editor(s): Beth H. Shaz, Christopher D. Hillyer, Morayma Reyes Gil, Transfusion Medicine and Hemostasis (Third Edition), Elsevier, 2019, Pages 477-479, ISBN 9780128137260, https://doi.org/10.1016/B978-0-12-813726-0.00076-3
[7]Chung, R. K., Wood, A. M., & Sweeting, M. J. (2019). Biases incurred from nonrandom repeat testing of haemoglobin levels in blood donors: Selective testing and its implications. Biometrical Journal, 61(2). https://doi.org/10.1002/bimj.201700268
[8]Halder, A., Sarkar, P. K., Pal, P., Chakrabarti, S., Chakrabarti, P., Bhattacharyya, D., Chakraborty, R., & Pal, S. K. (2017). Digital Camera-Based Spectrometry for the Development of Point-of-Care Anemia Detection on Ultra-Low Volume Whole Blood Sample. IEEE Sensors Journal, 17(21). https://doi.org/10.1109/JSEN.2017.2752371
[9]García-Soler, P., Camacho Alonso, J. M., González-Gómez, J. M., & Milano-Manso, G. (2017). Noninvasive hemoglobin monitoring in critically ill pediatric patients at risk of bleeding. Medicina Intensiva (English Edition), 41(4). https://doi.org/10.1016/j.medine.2016.06.005
[10]Patel, A. J., Wesley, R., Leitman, S. F., & Bryant, B. J. (2013). Capillary versus venous haemoglobin determination in the assessment of healthy blood donors. Vox Sanguinis, 104(4). https://doi.org/10.1111/vox.12006
[11]Gayat, E., Aulagnier, J., Matthieu, E., Boisson, M., & Fischler, M. (2012). Noninvasive measurement of hemoglobin: Assessment of two different point-of-care technologies. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0030065
[12]Feng, X., Li, G., Yu, H., Wang, S., Yi, X., & Lin, L. (2018). Wavelength selection for portable noninvasive blood component measurement system based on spectral difference coefficient and dynamic spectrum. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 193. https://doi.org/10.1016/j.saa.2017.10.063
[13]Joseph, B., Hadjizacharia, P., Aziz, H., Snyder, K., Wynne, J., Kulvatunyou, N., Tang, A., O'Keeffe, T., Latifi, R., Friese, R., & Rhee, P. (2013). Continuous noninvasive hemoglobin monitor from pulse Ox: Ready for prime time? World Journal of Surgery, 37(3). https://doi.org/10.1007/s00268-012-1871-y
[14]Sztefko, K., Beba, J., Mamica, K., & Tomasik, P. (2013). Blood loss from laboratory diagnostic tests in children. Clinical Chemistry and Laboratory Medicine, 51(8). https://doi.org/10.1515/cclm-2012-0672
[15]Slifer, K. J., Babbitt, R. L., & Cataldo, M. D. (1995). Simulation and Counterconditioning as Adjuncts to Pharmacotherapy for Invasive Pediatric Procedures. Journal of Developmental and Behavioral Pediatrics, 16(3). https://doi.org/10.1097/00004703-199506000-00001
[16]Slifer, K. J., Hankinson, J. C., Zettler, M. A., Frutchey, R. A., Hendricks, M. C., Ward, C. M., & Reesman, J. (2011). Distraction, exposure therapy, counterconditioning, and topical anesthetic for acute pain management during needle sticks in children with intellectual and developmental disabilities. Clinical Pediatrics, 50(8). https://doi.org/10.1177/0009922811398959
[17]Phillips, M. R., Khoury, A. L., Bortsov, A. v., Marzinsky, A., Short, K. A., Cairns, B. A., Charles, A. G., Joyner, B. L., & McLean, S. E. (2015). A noninvasive hemoglobin monitor in the pediatric intensive care unit. Journal of Surgical Research, 195(1). https://doi.org/10.1016/j.jss.2014.12.051
[18]Joseph B., Haider A., Rhee P.(2016). Noninvasive hemoglobin monitoring.International Journal of Surgery (2016), https://doi.org/10.1016/j.ijsu.2015.11.048
[19]Stassen, N. A., Bhullar, I., Cheng, J. D., Crandall, M. L., Friese, R. S., Guillamondegui, O. D., Jawa, R. S., Maung, A. A., Rohs, T. J., Sangosanya, A., Schuster, K. M., Seamon, M. J., Tchorz, K. M., Zarzuar, B. L., & Kerwin, A. J. (2012). Selective nonoperative management of blunt splenic injury: An eastern association for the surgery of trauma practice management guideline. In Journal of Trauma and Acute Care Surgery (Vol. 73, Issue 5 SUPPL.4). https://doi.org/10.1097/TA.0b013e3182702afc
[20]Dewhirst, E., Naguib, A., Winch, P., Rice, J., Galantowicz, M., McConnell, P., & Tobias, J. D. (2014). Accuracy of noninvasive and continuous hemoglobin measurement by pulse co-oximetry during preoperative phlebotomy. Journal of Intensive Care Medicine, 29(4). https://doi.org/10.1177/0885066613485355
[21]Wittenmeier, E., Bellosevich, S., Mauff, S., Schmidtmann, I., Eli, M., Pestel, G., & Noppens, R. R. (2015). Comparison of the gold standard of hemoglobin measurement with the clinical standard (BGA) and noninvasive hemoglobin measurement (SpHb) in small children: A prospective diagnostic observational study. Paediatric Anaesthesia, 25(10). https://doi.org/10.1111/pan.12683
[22]Timm, U., Lewis, E., McGrath, D., Kraitl, J., & Ewald, H. (2009). Sensor System Concept for Non-Invasive Blood Diagnosis. Procedia Chemistry, 1(1). https://doi.org/10.1016/j.proche.2009.07.123
[23]Pintavirooj, C., Ni, B., Chatkobkool, C., & Pinijkij, K. (2021). Noninvasive portable hemoglobin concentration monitoring system using optical sensor for anemia disease. Healthcare (Switzerland), 9(6). https://doi.org/10.3390/healthcare9060647
[24]Medicinenet.com, Hemoglobin: Normal, High, Low Levels and Causes, [Online]. Available: https://www.medicinenet.com/hemoglobin/article.htm
[25]JAMES H. GARVIN, 4 - Gender-Specific Aspects of Pediatric Hematology and Oncology, Editor(s): Marianne J. Legato, Principles of Gender-Specific Medicine, Academic Press, 2004, Pages 36-43, ISBN 9780124409057, https://doi.org/10.1016/B978-012440905-7/50268-1.
[26]Pintavirooj, C., Ni, B., Chatkobkool, C., & Pinijkij, K. (2021). Noninvasive portable hemoglobin concentration monitoring system using optical sensor for anemia disease. Healthcare (Switzerland), 9(6). https://doi.org/10.3390/healthcare9060647
[27]Hossain, S., Gupta, S. sen, Kwon, T. H., & Kim, K. D. (2021). Derivation and validation of gray-box models to estimate noninvasive in-vivo percentage glycated hemoglobin using digital volume pulse waveform. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-91527-2
[28]Pintavirooj, C., Ni, B., Chatkobkool, C., & Pinijkij, K. (2021). Noninvasive portable hemoglobin concentration monitoring system using optical sensor for anemia disease. Healthcare (Switzerland), 9(6). https://doi.org/10.3390/healthcare9060647
[29]Maikala, R. v. (2010). Modified Beer's Law - historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue. International Journal of Industrial Ergonomics, 40(2). https://doi.org/10.1016/j.ergon.2009.02.011
[30]Pascual-Guàrdia, S., Ferrer, A., Díaz, Ó., Caguana, A. O., Tejedor, E., Bellido-Calduch, S., Rodríguez-Chiaradia, D. A., & Gea, J. (2021). Absence of Relevant Clinical Effects of SARS-COV-2 on the Affinity of Hemoglobin for O2 in Patients with COVID-19. Archivos de Bronconeumologia, 57(12). https://doi.org/10.1016/j.arbres.2021.03.015
[31]J. Kraitl, D. Klinger, D. Fricke, U. Timm, and H. Ewald, Noninvasive Measurement of Blood Components Sensors for an In-Vivo Haemoglobin Measurement. Springer-Verlag Berlin Heidelberg 2013.
[32]Patil, D. P. J., Thakare, D. G. V., & Patil, D. S. P. (2013). Variability And Accuracy Of Sahli's Method In Estimation Of Haemoglobin Concentration: Variability And Accuracy Of Sahli's Method In Estimation. National Journal of Integrated Research in Medicine, 4(1), 39-45. Retrieved from http://nicpd.ac.in/ojs-/index.php/njirm/article/view/2125
[33]Estimation of hemoglobin [Online]. Available: https://nios.ac.in/media/documents/dmlt/hbbt/Lesson-03.pdf
[34]Chanal, D., Yousfi Steiner, N., Petrone, R., Chamagne, D., & Péra, M.-C. (2021). Online Diagnosis of PEM Fuel Cell by Fuzzy C-Means Clustering. In Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/b978-0-12-819723-3.00099-8
[35]Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3). https://doi.org/10.1007/s42979-021-00592-x
[36]Sayilgan, E., Yüce, Y. K., & İŞler, Y. (2021). Evaluation of mother wavelets on steady-state visually-evoked potentials for triple-command brain-computer interfaces. Turkish Journal of Electrical Engineering and Computer Sciences, 25(9). https://doi.org/10.3906/elk-2010-26
[37]Doğan, N. Ö. (2018). Bland-Altman analysis: A paradigm to understand correlation and agreement. In Turkish Journal of Emergency Medicine (Vol. 18, Issue 4). https://doi.org/10.1016/j.tjem.2018.09.001
[38]Knutson, T., Della-Giustina, D., Tomich, E., Wills, B., Luerssen, E., & Reynolds, P. (2013). Evaluation of a new nonnvasive device in determining hemoglobin levels in emergency department patients. Western Journal of Emergency Medicine, 14(3). https://doi.org/10.5811/westjem.2011.9.6733
[39]Giavarina, D. (2015). Understanding Bland Altman analysis. Biochemia Medica, 25(2). https://doi.org/10.11613/BM.2015.015
[40]Passing, H., & Bablok, W. (2009). A New Biometrical Procedure for Testing the Equality of Measurements from Two Different Analytical Methods. Application of linear regression procedures for method comparison studies in Clinical Chemistry, Part I. Clinical Chemistry and Laboratory Medicine, 21(11). https://doi.org/10.1515/cclm.1983.21.11.709
[41]Sordillo, L. A., Pratavieira, S., Pu, Y., Salas-Ramirez, K., Shi, L., Zhang, L., Budansky, Y., & Alfano, R. R. (2014). Third therapeutic spectral window for deep tissue imaging. Optical Biopsy XII, 8940. https://doi.org/10.1117/12.2040604
[42]Pu, Y., Shi, L., Pratavieira, S., & Alfano, R. R. (2013). Two-photon excitation microscopy using the second singlet state of fluorescent agents within the "tissue optical window." Journal of Applied Physics, 114(15). https://doi.org/10.1063/1.4825319
[43]Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J. M., Gamache, R. R., … Wagner, G. (2013). The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130. https://doi.org/10.1016/j.jqsrt.2013.07.002
[44]Kern, C. (2017). The difficulty of measuring the absorption of scattered sunlight by H2O and CO2 in volcanic plumes: A comment on pering et al. "A novel and inexpensive method for measuring volcanic plume water fluxes at high temporal resolution," Remote Sens. 2017, 9, 146. Remote Sensing, 9(6). https://doi.org/10.3390/rs9060534
[45]Kern, C. (2017). The difficulty of measuring the absorption of scattered sunlight by H2O and CO2 in volcanic plumes: A comment on pering et al. "A novel and inexpensive method for measuring volcanic plume water fluxes at high temporal resolution," Remote Sens. 2017, 9, 146. Remote Sensing, 9(6). https://doi.org/10.3390/rs9060534
[46]Kern, C., Masias, P., Apaza, F., Reath, K. A., & Platt, U. (2017). Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy. Journal of Geophysical Research: Solid Earth, 122(5). https://doi.org/10.1002/2017JB014020
[47]Kavsaoʇlu, A. R., Polat, K., & Hariharan, M. (2015). Noninvasive prediction of hemoglobin level using machine learning techniques with the PPG signal's characteristics features. Applied Soft Computing Journal, 37. https://doi.org/10.1016/j.asoc.2015.04.008
[48]Nirupa, J. L. A., & Kumar, V. J. (2014). Noninvasive measurement of hemoglobin content in blood. IEEE MeMeA 2014 - IEEE International Symposium on Medical Measurements and Applications, Proceedings. https://doi.org/10.1109/MeMeA.2014.6860140
[49]Jeon, K. J., Kim, S.-J., Park, K. K., Kim, J.-W., & Yoon, G. (2002). Noninvasive total hemoglobin measurement. Journal of Biomedical Optics, 7(1). https://doi.org/10.1117/1.1427047
[50]Nguyen, B. V., Vincent, J. L., Nowak, E., Coat, M., Paleiron, N., Gouny, P., Ould-Ahmed, M., Guillouet, M., Arvieux, C. C., & Gueret, G. (2011). The accuracy of noninvasive hemoglobin measurement by multiwavelength pulse oximetry after cardiac surgery. Anesthesia and Analgesia, 113(5). https://doi.org/10.1213/ANE.0b013e31822c9679
[51]Yi, X., Li, G., & Lin, L. (2017). Noninvasive hemoglobin measurement using dynamic spectrum. Review of Scientific Instruments, 88(8). https://doi.org/10.1063/1.4998978
[52]Timm, U., Gewiss, H., Kraitl, J., Stuepmann, K., Hinz, M., Koball, S., & Ewald, H. (2015). Novel multi wavelength sensor concept to detect total hemoglobin concentration, methemoglobin and oxygen saturation. Optical Diagnostics and Sensing XV: Toward Point-of-Care Diagnostics, 9332. https://doi.org/10.1117/12.2080144
[53]Ding, H., Lu, Q., Gao, H., & Peng, Z. (2014). Noninvasive prediction of hemoglobin levels by principal component and back propagation artificial neural network. Biomedical Optics Express, 5(4). https://doi.org/10.1364/boe.5.001145
[54] Wang, E. J., Li, W., Zhu, J., Rana, R., & Patel, S. N. (2017). Noninvasive hemoglobin measurement using unmodified smartphone camera and white flash. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. https://doi.org/10.1109/EMBC.2017.8037323