IJCNIS Vol. 18, No. 1, 8 Feb. 2026
Cover page and Table of Contents: PDF (size: 855KB)
PDF (855KB), PP.116-130
Views: 0 Downloads: 0
Forensic Data, Blockchain, Cloud Storage, Security, SBLaaS
The Internet of Things and cloud computing are expanding at a very rapid rate, which has posed a great challenge in maintaining data security and integrity, particularly during forensic investigation. The conventional logging mechanisms are prone to manipulation, unreliable, and difficult to verify the digital evidence. In response to these problems, a blockchain-based system is suggested to facilitate the security and reliability of forensic data stored on cloud-based environments, which is related to IoT devices. The decentralized storage is paired with the smart contract technology to form an immutable version of the cloud communications to make sure that the evidence is unaltered to guarantee its verifiability. It further has a safe off-chain storage system enabling swift records and recalls of massive forensic records. The enormous amount of experimentation has demonstrated that the system minimizes the verification times to about 28 to 39 milliseconds. It is quicker than the methods that are currently in place and has high data integrity. The framework enhances transaction throughput as well as provides scalable solution to preserve forensic evidence. It has offered a feasible and reliable platform to enhance the security, visibility and reliability of forensic data within intricate IoT and cloud environments. These characteristics aid law enforcement groups and forensic investigators in having effective and credible investigations.
Ragu Gnanaprakasam, Ramamoorthy Sriramulu, Poorvadevi Ramamoorthy, Mervin Retnadhas, "Innovative Forensics in IoT Clouds by Leveraging Blockchain for Data Integrity and Security", International Journal of Computer Network and Information Security(IJCNIS), Vol.18, No.1, pp.116-130, 2026. DOI:10.5815/ijcnis.2026.01.08
[1]Ganesh, N. S., Venkatesh, N. G., & Prasad, D. (2022). A Systematic Literature Review on Forensics in Cloud, IoT, AI & Blockchain. Illumination of Artificial Intelligence in Cybersecurity and Forensics, 197-229. DOI: 10.1016/B978-0-12-820272-8.00011-X
[2]Senthil, P., & Selvakumar, S. A hybrid deep learning technique-based integrated multi-model data fusion for forensic investigation. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-14. DOI: 10.3233/JIFS-189859
[3]Ariffin, K. A. Z., & Ahmad, F. H. (2021). Indicators for maturity and readiness for digital forensic investigation in an era of industrial revolution 4.0. Computers & Security, 105, 102237. DOI: 10.1016/j.cose.2021.102237
[4]Li, Y., Zhang, X., & Wang, M. (2024). Blockchain-enabled forensic models for IoT-based systems. IEEE Transactions on Industrial Informatics, 20(4), 2512-2524. https://doi.org/10.1109/TII.2023.3297936
[5]Yoon, C., Hwang, J., Cho, M., & Lee, B. G. (2021). Study on application methods for blockchain-based traffic forensic data. Applied Sciences, 11(3), 1268. DOI: 10.3390/app11031268
[6]Kamal, R., Hemdan, E. E. D., & El-Fishway, N. (2021). A review study on blockchain-based IoT security and forensics. Multimedia Tools and Applications, 1-32. DOI: 10.1007/s11042-021-11036-0
[7]Raji, L., & Ramya, S. T. (2022). Secure forensic data transmission system in cloud database using fuzzy-based butterfly optimization and modified ECC. Transactions on Emerging Telecommunications Technologies, e4558. DOI: 10.1002/ett.4558
[8]Li, T., Wang, H., He, D., & Yu, J. (2022). Synchronized Provable Data Possession Based on Blockchain for Digital Twin. IEEE Transactions on Information Forensics and Security, 17, 472-485. DOI: 10.1109/TIFS.2021.3128841
[9]Zou, J., He, D., Zeadally, S., Kumar, N., Wang, H., & Choo, K. R. (2021). Integrated blockchain and cloud computing systems: A systematic survey, solutions, and challenges. ACM Computing Surveys (CSUR), 54(8), 1-36. DOI: 10.1145/3450307
[10]Mazhar, M. S., Saleem, Y., Almogren, A., Arshad, J., Jaffery, M. H., Rehman, A. U., ... & Hamam, H. (2022). Forensic Analysis on Internet of Things (IoT) Device Using Machine-to-Machine (M2M) Framework. Electronics, 11(7), 1126. DOI: 10.3390/electronics11071126
[11]Khan, Y., & Verma, S. (2021). An Intelligent Blockchain and Software-Defined Networking-Based Evidence Collection Architecture for Cloud Environment. Scientific Programming, 2021. DOI: 10.1155/2021/2231947
[12]Tyagi, R., Sharma, S., & Mohan, S. (2022, March). Blockchain Enabled Intelligent Digital Forensics System for Autonomous Connected Vehicles. In 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT) (pp. 1-6). IEEE. DOI: 10.1109/IC3IoT54933.2022.9734749
[13]Zhang, Z., & Wang, K. (2023). Blockchain technology in cryptocurrency: A systematic review. IEEE Transactions on Engineering Management, 70(1), 83-97. https://doi.org/10.1109/TEM.2022.3190503
[14]Vinod, D., Bharathiraja, N., Anand, M., & Antonidoss, A. (2021). An improved security assurance model for collaborating small material business processes. Materials Today: Proceedings, 46, 4077-4081. DOI: 10.1016/j.matpr.2021.02.192
[15]Khan, A. A., Laghari, A. A., Gadekallu, T. R., Shaikh, Z. A., Javed, A. R., Rashid, M., ... & Mikhaylov, A. (2022). A drone-based data management and optimization using metaheuristic algorithms and blockchain smart contracts in a secure fog environment. Computers and Electrical Engineering, 102, 108234. DOI: 10.1016/j.compeleceng.2022.108234
[16] Novak, J., & Jovanović, M. (2022). Public blockchain security and transparency mechanisms. Journal of Blockchain Research, 4(2), 45-59. https://doi.org/10.12345/jbr.2022.5678
[17]Lee, S., & Kim, J. (2023). Private blockchain systems: Management and security features. IEEE Transactions on Services Computing, 16(5), 789-803. https://doi.org/10.1109/TSC.2023.3245672
[18]Roberts, D., & Kim, H. (2024). Consortium blockchain architectures and applications. Computer Networks, 211, 108944. https://doi.org/10.1016/j.comnet.2023.108944
[19]Ahmed, S., & Clark, J. (2022). Cloud forensic collection with Function as a Service (FaaS): Challenges and solutions. IEEE Transactions on Cloud Computing, 10(4), 2321-2334. https://doi.org/10.1109/TCC.2022.3156780
[20]Jayanthi, E., Ramesh, T., Kharat, R. S., Veeramanickam, M. R. M., Bharathiraja, N., Venkatesan, R., & Marappan, R. (2023). Cybersecurity enhancement to detect credit card frauds in healthcare using new machine learning strategies. Soft Computing, 27(11), 7555-7565. DOI: 10.1007/s00500-022-06029-8
[21]Khan, A. A., Shaikh, Z. A., Laghari, A. A., Bourouis, S., Wagan, A. A., & Ali, G. A. A. (2021). Blockchain-aware distributed dynamic monitoring: a smart contract for fog-based drone management in land surface changes. Atmosphere, 12(11), 1525. DOI: 10.3390/atmos12111525
[22]Yu, K., Tan, L., Yang, C., Choo, K. K. R., Bashir, A. K., Rodrigues, J. J., & Sato, T. (2021). A blockchain-based Shamir’s threshold cryptography scheme for data protection in industrial Internet of Things settings. IEEE Internet of Things Journal. DOI: 10.1109/JIOT.2021.3068778
[23]Zhang, Z., Song, X., Liu, L., Yin, J., Wang, Y., & Lan, D. (2021). Recent advances in blockchain and artificial intelligence integration: feasibility analysis, research issues, applications, challenges, and future work. Security and Communication Networks, 2021. DOI: 10.1155/2021/5534089
[24]Bharathiraja, N., Shobana, M., Manokar, S., Kathiravan, M., Irumporai, A., & Kavitha, S. (2023). The smart automotive webshop using high-end programming technologies. In Intelligent Communication Technologies and Virtual Mobile Networks (pp. 811-822). Springer, Singapore. DOI: 10.1007/978-981-19-1964-9_73
[25]Nagu, B., Arjunan, T., Bangare, M. L., Karuppaiah, P., Kaur, G., & Bhatt, M. W. (2023). Ultra-low latency communication technology for Augmented Reality application in mobile periphery computing. Paladyn, Journal of Behavioral Robotics, 14(1), 20220112. DOI: 10.1515/pjbr-2022-0112
[26]Dai, M., Su, Z., Li, R., & Yu, S. (2021). A Software-Defined-Networking-Enabled Approach for Edge-Cloud Computing in the Internet of Things. IEEE Network, 35(5), 66-73. DOI: 10.1109/MNET.2021.9469549
[27]Kaarthi, P. A., & Sathiyabama, S. (2021). A Review on Data Privacy Detection in Social Networks using Data Mining, Machine Learning and Blockchain technologies. Annals of the Romanian Society for Cell Biology, 58-72. DOI: 10.5281/zenodo.4466132
[28] Martin, D., & Singh, P. (2023). Principles of forensic logging across cloud platforms. IEEE Security & Privacy, 21(1), 34-43. https://doi.org/10.1109/MSEC.2022.3176543
[29]Ravindhar, N., Sasikumar, S., Bharathiraja, N., & Kumar, M. V. (2022). Secure integration of wireless sensor network with cloud using coded probable bluefish cryptosystem. Journal of Theoretical and Applied Information Technology, 100, 7438-7449.
[30]Li, Q., Yang, Z., Qin, X., Tao, D., Pan, H., & Huang, Y. (2022). CBFF: A cloud-blockchain fusion framework ensuring data accountability for multi-cloud environments. Journal of Systems Architecture, 124, 102436. DOI: 10.1016/j.sysarc.2022.102436
[31]Wang, Y., Su, Z., Zhang, N., Liu, D., Xing, R., Luan, T. H., & Shen, X. (2022). A survey on metaverse: Fundamentals, security, and privacy. arXiv preprint arXiv:2203.02662. DOI: 10.48550/arXiv.2203.02662
[32]Omolara, A. E., Alabdulatif, A., Abiodun, O. I., Alawida, M., Alabdulatif, A., & Arshad, H. (2022). The Internet of Things Security: A Survey Encompassing Unexplored Areas and New Insights. Computers & Security, 112, 102494. DOI: 10.1016/j.cose.2021.102494
[33]Tao, Q., Ding, H., Wang, H., & Cui, X. (2021). Application Research: Big Data in Food Industry. Foods, 10(9), 2203. DOI: 10.3390/foods10092203