IJCNIS Vol. 18, No. 1, 8 Feb. 2026
Cover page and Table of Contents: PDF (size: 1194KB)
PDF (1194KB), PP.80-98
Views: 0 Downloads: 0
Wireless Sensor Networks (WSNs), Precision Agriculture, Multi-Objective Clustering, Cluster Head (CH), Osprey Optimization Algorithm (OOA)
Precision agriculture relies on wireless sensor networks (WSNs) to support informed decision-making, thereby enhancing crop yields and resource management. A critical challenge in such networks is minimizing the energy consumption of sensor nodes while ensuring reliable data transmission. Sensor nodes are grouped using an optimal multi-objective clustering approach, which also chooses appropriate cluster heads (CH) for effective communication. By combining the exploration power of the Osprey Optimization Algorithm with the exploitation power of the Parrot Optimizer, a hybrid optimization approach improves CH selection. A hybrid deep learning framework, combining a convolutional autoencoder with a dual-key transformer network, is designed to monitor energy utilization and detect constraints affecting consumption. Training and testing performance of this framework is further improved using a metaheuristic based on the cooperative feeding and locomotion behavior of gooseneck barnacles. Experimental evaluation demonstrates superior performance, achieving 99.2% accuracy, 68 kbps throughput, 98% packet delivery ratio, and a network lifetime of 85 ms. With an average delay of 0.23 seconds, energy consumption is decreased to 39 J, demonstrating the effectiveness of the suggested strategy for dependable and sustainable precision agriculture applications.
M. Sudha, Abha Kiran Rajpoot, K. Narasimha Raju, Elangovan Muniyandy, "Multi-objective Clustering Framework for Energy-efficient Precision Agriculture in WSNs using Optimized Convolutional Autoencoder with Dual-key Transformer Network", International Journal of Computer Network and Information Security(IJCNIS), Vol.18, No.1, pp.80-98, 2026. DOI:10.5815/ijcnis.2026.01.06
[1]A. F. Raslan, A. F. Ali, A. Darwish, and H. M. El-Sherbiny, “An improved sunflower optimization algorithm for cluster head selection in the internet of things,” IEEE Access, vol. 9,156171–156186, 2021. DOI: 10.1109/ACCESS.2021.3126537
[2]A. García-Nájera, S. Zapotecas-Martínez, and K. Miranda, “Analysis of the multi-objective cluster head selection problem in WSNs,” Appl. Soft Comput., vol. 112, p. 107853, 2021. DOI: 10.1016/j.asoc.2021.107853
[3]B. Zhang and L. Meng, “Energy efficiency analysis of wireless sensor networks in precision agriculture economy,” Sci. Program., vol. 2021, no. 1, p. 8346708, 2021. DOI: 10.1155/2021/8346708
[4]M. Gheisari, M. S. Yaraziz, J. A. Alzubi, C. Fernández-Campusano, M. R. Feylizadeh, S. Pirasteh, et al., “An efficient cluster head selection for wireless sensor network-based smart agriculture systems,” Comput. Electron. Agric., vol. 198, p. 107105, 2022. DOI: 10.1016/j.compag.2022.107105
[5]Q. W. Ahmed, S. Garg, A. Rai, M. Ramachandran, N. Z. Jhanjhi, M. Masud, et al., “Ai-based resource allocation techniques in wireless sensor internet of things networks in energy efficiency with data optimization,” Electronics (Basel), vol. 11, no. 13, p. 2071, 2022. DOI: 10.3390/electronics11132071
[6]P. K. Singh and A. Sharma, “An intelligent WSN-UAV-based IoT framework for precision agriculture application,” Comput. Electr. Eng., vol. 100, p. 107912, 2022. DOI: 10.1016/j.compeleceng.2022.107912
[7]B. M. Sahoo, H. M. Pandey, and T. Amgoth, “A genetic algorithm inspired optimized cluster head selection method in wireless sensor networks,” Swarm Evol. Comput., vol. 75, p. 101151, 2022. DOI: 10.1016/j.swevo.2022.101151
[8]L. Holtorf, I. Titov, F. Daschner, and M. Gerken, “UAV-based Wireless data collection from underground sensor nodes for precision agriculture,” AgriEngineering., vol. 5, no. 1, pp. 338–354, 2023. DOI: 10.3390/agriengineering5010022
[9]A. Kumar, B. S. Dhaliwal, and D. Singh, “CL‐HPWSR: Cross‐layer‐based energy efficient cluster head selection using hybrid particle swarm wild horse optimizer and stable routing in IoT‐enabled smart farming applications,” Trans. Emerg. Telecommun. Technol., vol. 34, no. 3, p. e4725, 2023. DOI: 10.1002/ett.4725
[10]H. Benyezza, M. Bouhedda, R. Kara, and S. Rebouh, “Smart platform based on IoT and WSN for monitoring and control of a greenhouse in the context of precision agriculture,” Internet Things (Amst.), vol. 23, p. 100830, 2023. DOI: 10.1016/j.iot.2023.100830
[11]J. Vellaichamy, S. Basheer, P. S. Bai, M. Khan, S. Kumar Mathivanan, P. Jayagopal, et al., “Wireless sensor networks based on multi-criteria clustering and optimal bio-inspired algorithm for energy-efficient routing,” Appl. Sci. (Basel), vol. 13, no. 5, p. 2801, 2023. DOI: 10.3390/app13052801
[12]V. Križanović, K. Grgić, J. Spišić, and D. Žagar, “An advanced energy-efficient environmental monitoring in precision agriculture using lora-based wireless sensor networks,” Sensors (Basel), vol. 23, no. 14, p. 6332, Jul. 12 2023. DOI: 10.3390/s23146332
[13]S. Ahmed, “Energy Aware Software Defined Network Model for Communication of Sensors Deployed in Precision Agriculture,” Sensors (Basel), vol. 23, no. 11, p. 5177, May 29 2023. DOI: 10.3390/s23115177
[14]S. Sennan, S. Ramasubbareddy, R. K. Dhanaraj, A. Nayyar, and B. Balusamy, “Energy-efficient cluster head selection in wireless sensor networks-based internet of things (IoT) using fuzzy-based Harris hawks optimization,” Telecomm. Syst., vol. 87, no. 1, pp. 1–7, 2024. DOI: 10.1007/s11235-024-01176-9
[15]R. Dey, P. K. Thakurta, and S. Kar, “Energy Aware Routing in Wireless Sensor Networks for Agricultural Monitoring: A Deep Q-Network Based Framework,” SN Comput. Sci., vol. 5, no. 7, pp. 1–21, 2024. DOI: 10.1007/s42979-024-03183-8
[16]V. Pandiyaraju, S. Ganapathy, N. Mohith, and A. Kannan, “An optimal energy utilization model for precision agriculture in WSNs using multi-objective clustering and deep learning,” J. King Saud Univ. Comput. Inf. Sci., vol. 35, no. 10, p. 101803, 2023. DOI: 10.1016/j.jksuci.2023.101803
[17]R. Dey, P. K. Thakurta, and S. Kar, “Energy Aware Routing in Wireless Sensor Networks for Agricultural Monitoring: A Deep Q-Network Based Framework,” SN Comput. Sci., vol. 5, no. 7, pp. 1–21, 2024. DOI: 10.1007/s42979-024-03183-8
[18]A. Asha, R. Arunachalam, I. Poonguzhali, S. Urooj, and S. Alelyani, “Optimized RNN-based performance prediction of IoT and WSN-oriented smart city application using improved honey badger algorithm,” Measurement, vol. 210, p. 112505, 2023. DOI: 10.1016/j.measurement.2023.112505
[19]K. Debasis, L. D. Sharma, V. Bohat, and R. S. Bhadoria, “An energy-efficient clustering algorithm for maximizing lifetime of wireless sensor networks using machine learning,” Mob. Netw. Appl., vol. 28, no. 2, pp. 853–867, 2023. DOI: 10.1007/s11036-023-02109-7
[20]P. Kumar, A. Udayakumar, A. Anbarasa Kumar, K. Senthamarai Kannan, and N. Krishnan, “Multiparameter optimization system with DCNN in precision agriculture for advanced irrigation planning and scheduling based on soil moisture estimation,” Environ. Monit. Assess., vol. 195, no. 1, p. 13, Oct. 22 2022. DOI: 10.1007/s10661-022-10529-3
[21]A. Kumar, B. S. Dhaliwal, and D. Singh, “CL‐HPWSR: Cross‐layer‐based energy efficient cluster head selection using hybrid particle swarm wild horse optimizer and stable routing in IoT‐enabled smart farming applications,” Trans. Emerg. Telecommun. Technol., vol. 34, no. 3, p. e4725, 2023. DOI: 10.1002/ett.4725
[22]W. K. Ghamry and S. Shukry, “Multi-objective intelligent clustering routing schema for internet of things enabled wireless sensor networks using deep reinforcement learning,” Cluster Comput., vol. 27, no. 4, pp. 1–21, 2024. DOI: 10.1007/s10586-023-04218-0
[23]M. Dehghani and P. Trojovský, “Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems,” Front. Mech. Eng., vol. 8, p. 1126450, 2023. DOI: 10.3389/fmech.2022.1126450
[24]J. Lian, G. Hui, L. Ma, T. Zhu, X. Wu, A. A. Heidari, et al., “Parrot optimizer: Algorithm and applications to medical problems,” Comput. Biol. Med., vol. 172, p. 108064, Apr. 2024. DOI: 10.1016/j.compbiomed.2024.108064
[25]P. Khetarpal, N. Nagpal, M. S. Al-Numay, P. Siano, Y. Arya, and N. Kassarwani, “Power quality disturbances detection and classification based on deep convolution auto-encoder networks,” IEEE Access, vol. 11, pp. 46026–46038, 2023. DOI: 10.1109/ACCESS.2023.3274732
[26]S. Xu, J. Gu, Y. Hua, and Y. Liu, “Dktnet: Dual-key transformer network for small object detection,” Neurocomputing, vol. 525, pp. 29–41, 2023. DOI: 10.1016/j.neucom.2023.01.055
[27]M. Ahmed, M. H. Sulaiman, A. J. Mohamad, and M. Rahman, “Gooseneck barnacle optimization algorithm: A novel nature inspired optimization theory and application,” Math. Comput. Simul., vol. 218, pp. 248–265, 2024. DOI: 10.1016/j.matcom.2023.10.006
[28]W. M. Zheng, L. D. Xu, J. S. Pan, and Q. W. Chai, “Cluster head selection strategy of WSN based on binary multi-objective adaptive fish migration optimization algorithm,” Appl. Soft Comput., vol. 148, p. 110826, 2023. DOI: 10.1016/j.asoc.2023.110826
[29]P. Xing, H. Zhang, M. E. Ghoneim, and M. Shutaywi, “UAV flight path design using multi-objective grasshopper with harmony search for cluster head selection in wireless sensor networks,” Wirel. Netw., vol. 29, no. 2, pp. 955–967, 2023. DOI: 10.1007/s11276-022-03160-0
[30]A. Janarthanan and V. Srinivasan, “Multi‐objective cluster head‐based energy aware routing using optimized auto‐metric graph neural network for secured data aggregation in Wireless Sensor Network,” Int. J. Commun. Syst., vol. 37, no. 3, p. e5664, 2024. DOI: 10.1002/dac.5664
[31]M. Sindhuja, S. Vidhya, B. S. Jayasri, and F. H. Shajin, “Multi-objective cluster head using self-attention based progressive generative adversarial network for secured data aggregation,” Ad Hoc Netw., vol. 140, p. 103037, 2023. DOI: 10.1016/j.adhoc.2022.103037