Multi-Dimensional Quantum Anharmonic Oscillators via Physics-Informed Transformer Networks: Extension to Non-Perturbative Regimes and Higher Dimensions

PDF (1189KB), PP.1-16

Views: 0 Downloads: 0

Author(s)

Koffa D. Jude 1,* Ogunjobi Olakunle 1 Odesanya Ituabhor 1 Eghaghe S. Osas 2 Ahmed-Ade Fatai 1 Olorunleke I. Esther 1

1. Department of Physics, Federal University Lokoja, Lokoja, 260101, Nigeria

2. Bingham University/Department of Physics, Karu, 961105, Nigeria

* Corresponding author.

DOI: https://doi.org/10.5815/ijmsc.2026.01.01

Received: 20 Jul. 2025 / Revised: 25 Aug. 2025 / Accepted: 13 Oct. 2025 / Published: 8 Feb. 2026

Index Terms

Physics-Informed Neural Networks, Transformer Networks, Anharmonic Oscillators, Non-Perturbative Methods, Machine Learning In Physics

Abstract

This study extends the one-dimensional anharmonic oscillators by implementing physics-informed transformer networks (PINNs) for multi-dimensional quantum systems. We develop a novel computational framework that combines transformer architecture with physics-informed neural networks to solve the Schrodinger equation for 2D and 3D anharmonic oscillators, addressing both perturbative and non-perturbative regimes. The methodology incorporates attention mechanisms to capture long-range quantum correlations, orthogonal loss functions for eigenfunction discovery, and adaptive training protocols for progressive dimensionality scaling. Our approach successfully computes eigenvalues and eigenfunctions for quartic anharmonic oscillators in multiple dimensions with coupling parameters ranging from weak (λ = 0.01) to strong (λ = 1000) regimes. Results demonstrate superior accuracy compared to traditional neural networks, with mean absolute errors below 10-6 for ground state energies and the successful capture of symmetry breaking in anisotropic systems. The transformer-based architecture requires 60% fewer trainable parameters than conventional feedforward networks while maintaining comparable accuracy. Applications to molecular vibrational systems and solid-state physics demonstrate the practical utility of this approach for realistic quantum mechanical problems beyond the scope of perturbative methods.

Cite This Paper

Koffa D. Jude, Ogunjobi Olakunle, Odesanya Ituabhor, Eghaghe S. Osas, Ahmed-Ade Fatai, Olorunleke I. Esther, "Multi-Dimensional Quantum Anharmonic Oscillators via Physics-Informed Transformer Networks: Extension to Non-Perturbative Regimes and Higher Dimensions", International Journal of Mathematical Sciences and Computing(IJMSC), Vol.12, No.1, pp. 1-16, 2026. DOI: 10.5815/ijmsc.2026.01.01

Reference

[1]C. M. Bender and T. T. Wu, “Anharmonic oscillator,” Phys. Rev., vol. 184, pp. 1231-1260, 1969. B. Simon, ”Coupling constant analyticity for the anharmonic oscillator,” Ann. Phys., vol. 58, pp. 76- 136, 1970.
[2]C. M. Bender and T. T. Wu, “Anharmonic oscillator,” Phys. Rev., vol. 184, pp. 1231-1260, 1969. B. Simon, ”Coupling constant analyticity for the anharmonic oscillator,” Ann. Phys., vol. 58, pp. 76-  136, 1970.
[3]C. M. Bender and T. T. Wu, “Large-order behavior of perturbation theory,” Phys. Rev. Lett., vol. 27, pp. 461-465, 1973.
[4]S. Graffi, V. Grecchi, and H. J. Silverstone, “Borel summability: Application to the anharmonic oscillator,” Phys. Rev. Lett., vol. 25, pp. 1429-1432, 1970.
[5]G. Carleo and M. Troyer, “Solving the quantum many-body problem with artificial neural networks,” Science, vol. 355, pp. 602-606, 2017, https://doi.org10.1126/science.aag2302.
[6]J. Hermann, Z. Schatzle, and F. No¨e, “Deep-neural-network solution of the electronic´ Schrodinger equation,”¨Nat. Chem., vol. 12, pp. 891-897, 2020, doi: 10.1038/s41557-0200544-y.
[7]M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys., vol. 378, pp. 686-707, 2019, https://doi.org10.1016/j.jcp.2017.11.039.
[8]G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physicsinformed machine learning,” Nat. Rev. Phys., vol. 3, pp. 422-440, 2021, doi: 10.1038/s42254021-00314-5.
[9]L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “DeepXDE: A deep learning library for solving differential equations,” SIAM Rev., vol. 63, pp. 208-228, 2021, https://doi.org/10.1137/19M1274067.
[10]S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-informed neural networks PINNs) for fluid mechanics: A review,” Acta Mech. Sin., vol. 37, pp. 1727-1738, 2021, https://doi.org/10.1007/s10409-021-01148-1.
[11]H. Mutuk, “Energy levels of one-dimensional anharmonic oscillator via neural networks,” Mod. Phys. Lett. A, vol. 34, article 1950088, 2019, https://doi.org/10.1142/S0217732319500883
[12]H. Mutuk, Energy levels of one-dimensional anharmonic oscillator via neural networks, Mod. Phys. Lett. A, vol. 34, article 1950088, 2019, https://doi.org/10.1142/S0217732319500883.
[13]A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information ProcessingSystems, vol. 30, 2017, pp. 5998-6008.
[14]L. L. Viteritti, R. Rende, and F. Becca, “Transformer variational wave functions for frustrated quantum spin systems,” Phys. Rev. Lett., vol. 130, article 236401, 2023, https://doi.org/10.1103/PhysRevLett.130.236401.
[15]H. Lange et al., “Transformer neural networks and quantum simulators: a hybrid approach for simulating strongly correlated systems,” Quantum, vol. 9, article 1675, 2025 https://doi.org/10.22331/q-2025-03-26-1675.
[16]S. Wang, S. Sankaran, and P. Perdikaris, “Respecting causality for training physics-informed neural networks,” Comput. Methods Appl. Mech. Eng., vol. 421, article 116813, 2024, https://doi.org/10.1016/j.cma.2024.116813.
[17]C. Chen et al., “Continuous symmetry breaking in a two-dimensional Rydberg array,” Nature, vol. 616, pp. 691-695, 2023, https://doi.org/10.1038/s41586-023-05859-2.
[18]H. Ma, H. Shang, and J. Yang, “Quantum embedding method with transformer neural network quantum states for strongly correlated materials,” npj Comput. Mater., vol. 10, article 220, 2024, https://doi.org/10.1038/s41524-024-01406-3.
[19]S. Cuomo et al., “Scientific machine learning through physics-informed neural networks: Where we are and what’s next,” J. Sci. Comput., vol. 92, article 88, 2022, https://doi.org/10.1007/s10915-022-01939-z.
[20]S. Mishra and R. Molinaro, “Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning,” Acta Numer., vol. 34, pp. 1-125, 2025, https://doi.org/10.1017/S0962492924000085.
[21]H. Jin, M. Mattheakis, and P. Protopapas, “Physics-informed neural networks for quantum eigenvalue problems,” arXiv preprint, arXiv:2203.00451, 2022.
[22]M. Fernandez-Pend´ as et al., “Physics-informed neural networks for quantum control,”´  Phys. Rev. Lett., vol. 132, article 010801, 2024, https://doi.org/10.1103/PhysRevLett.132.010801.
[23]C. J. Trahan, J. Wu, S. Bremner, R. Galvez, and K. A. Britt, “Quantum physics informed neural networks,” Entropy, vol. 26, article 649, 2024, https://doi.org/10.3390/e26080649.
[24]W. He et al., “Multi-level physics informed deep learning for solving partial differential equations in computational structural mechanics,” Commun. Eng., vol. 3, article 303, 2024, https://doi.org/10.1038/s44172-024-00303-3.
[25]A. Chen and M. Heyl, “Empowering deep neural quantum states through efficient optimization,” Nat. Phys., vol. 20, pp. 1476-1481, 2024, doi: 10.1038/s41567-024-02566-1.
[26]Y.-H. Zhang and M. Di Ventra, “Transformer quantum state: A multi-purpose model for quantum many-body problems,” Phys. Rev. B, vol. 107, article 075147, 2023, https://doi.org/10.1103/PhysRevB.107.075147.
[27]K. Sprague and S. Czischek, “Variational Monte Carlo with large patched transformers,” Commun. Phys., vol. 7, article 84, 2024, https://doi.org/10.1038/s42005-024-01584-y.
[28]E. A. Cherrat et al., “Quantum vision transformers,” Quantum, vol. 8, article 1265, 2024, https://doi.org/10.22331/q-2024-02-22-1265.
[29]H. Lange, A. Van de Walle, A. Abedinnia, and A. Bohrdt, “From architectures to applications: a review of neural quantum states,” Quantum Sci. Technol., vol. 9, article 040501, 2024, https://doi.org/10.1088/2058-9565/ad7168.
[30]JL. Fu, Y. Wu, H. Shang, and J. Yang, “Transformer-based neural-network quantum state method for electronic band structures of real solids,” J. Chem. Theory Comput., vol. 20, pp. 6218-6226, 2024, https://doi.org/10.1021/acs.jctc.4c00567.
[31]T. Zhao, J. Stokes, and S. Veerapaneni, “Scalable neural quantum states architecture for quantum chemistry,” Mach. Learn.: Sci. Technol., vol. 4, article 025034, 2023, https://doi.org/10.1088/2632-2153/acdb2f.
[32]Y. Wu, W. Cao, J. Zhao, and H. Shang, “Fast and scalable neural network quantum states method for molecular potential energy surfaces,” IEEE Trans. Parallel Distrib. Syst., vol. 36, pp. 1431-1443, 2025, https://doi.org/10.1109/TPDS.2025.3568360.
[33]I. Lopez Guti´ errez and C. B. Mendl, “Real time evolution with neural-network quantum´states,” Quantum, vol. 6, article 627, 2022, https://doi.org/10.22331/q-2022-01-20-627.
[34]D. Fitzek et al., „RydbergGPT: Autoregressive transformer for quantum state preparation,” arXiv preprint, arXiv:2405.21052, 2024.
[35]M. Bukov, M. Schmitt, and M. Dupont, “Learning the ground state of a non-stoquastic quantum Hamiltonian in a rugged neural network landscape,” SciPost Phys., vol. 10, article 147, 2021, doi: 10.21468/SciPostPhys.10.6.147.
[36]B. Zhang et al., ”Dynamical transition in controllable quantum neural networks with large depth,” Nat. Commun., vol. 15, article 9354, 2024, https://doi.org/10.1038/s41467-024-53769-2.
[37]L. Brevi, A. Mauri, and M. Silvestri, “Addressing the non-perturbative regime of the quantum anharmonic oscillator by physics-informed neural networks, “arXiv preprint, arXiv:2405.13442, 2024.
[38]O. T. Unke et al., “The potential of neural network potentials,” JACS Au, vol. 4, pp. 1720-1729, 2024, https://doi.org/10.1021/jacsau.4c00189
[39]B. Kan et al., “Bridging the gap between transformer-based neural networks and tensor networks for quantum chemistry,” J. Chem. Theory Comput., vol. 21, pp. 3426-3439, 2025, https://doi.org/10.1021/acs.jctc.4c01703
[40]A. Abbasi, P. N. Kambali, P. Shahidi, and C. Nataraj, “Physics-informed machine learning for modeling multidimensional dynamics,” Nonlinear Dyn., vol. 112, pp. 2156521585, 2024, https://doi.org/10.1007/s11071-024-10163-3
[41]R. Rende, L. L. Viteritti, L. Bardone, F. Becca, and S. Goldt, “A simple linear algebra identity to optimize large-scale neural network quantum states,” Commun. Phys., vol. 7, article 260, 2024, https://doi.org/10.1038/s42005-024-01732-4
[42]S. Wang, X. Yu, and P. Perdikaris, “When and why PINNs fail to train: A neural tangent kernel perspective,” J. Comput. Phys., vol. 449, article 110768, 2022, https://doi.org/10.1016/j.jcp.2021.110768
[43]H. C¸iftc¸i, “Asymptotic iteration method for eigenvalue problems,” Mod. Phys. Lett. A, vol. 23, pp. 261-269, 2008, https://doi.org/10.1142/S0217732308026170
[44]T. Shimanouchi, "Tables of Molecular Vibrational Frequencies Consolidated Volume I," National Bureau of Standards NSRDS-NBS 39, pp. 1-160, 1972.
[45]F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, "Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors," Phys. Rev. B, vol. 5, pp. 580-593, 1972, https://doi.org/10.1103/PhysRevB.5.580.