IJITCS Vol. 18, No. 1, 8 Feb. 2026
Cover page and Table of Contents: PDF (size: 1642KB)
PDF (1642KB), PP.57-83
Views: 0 Downloads: 0
Malaria Detection, Deep Learning (DL), Convolutional Neural Networks (CNNs), Medical Imaging, Automated Diagnostics
Malaria remains a significant global health challenge that affects more than 200 million people each year and disproportionately burdens regions with limited resources. Precise and timely diagnosis is critical for effective treatment and control. Traditional diagnostic approaches, including microscopy and rapid diagnostic tests (RDTs), encounter significant limitations such as reliance on skilled personnel, high costs and slow processing times. Advances in deep learning (DL) have demonstrated remarkable potential. They achieve diagnostic accuracies of up to 97% in automated malaria detection by employing convolutional neural networks (CNNs) and similar architectures to analyze blood smear images. This survey comprehensively reviews deep learning approaches for malaria detection and focuses on datasets, architectures and performance metrics. Publicly available datasets, such as the NIH and Delgado Dataset B are evaluated for size, diversity and limitations. Deep learning models which include ResNet, VGG, YOLO and lightweight architectures like MobileNet are analyzed for their strengths, scalability and suitability across various diagnostic scenarios. Key performance metrics such as sensitivity and computational efficiency are compared with models achieving sensitivity rates as high as 96%. Emerging smartphone-based diagnostic systems and multimodal data integration trends demonstrate significant potential to enhance accessibility in resource-limited settings. This survey examines key challenges and includes bias in the data set, generalization of the model and interpretability to identify research gaps and propose future directions to develop robust, scalable and clinically applicable deep learning solutions for malaria detection.
Desire Guel, Kiswendsida Kisito Kabore, Flavien Herve Somda, "A Survey on Deep Learning Techniques for Malaria Detection: Datasets Architectures and Future Perspectives", International Journal of Information Technology and Computer Science(IJITCS), Vol.18, No.1, pp.57-83, 2026. DOI:10.5815/ijitcs.2026.01.04
[1]World Health Organization (WHO). Malaria - World Health Organization (WHO). https://www.who.int/ news-room/fact-sheets/detail/malaria. Accessed: 2023-12-04. Dec. 2023.
[2]Mahdieh Poostchi, Kamolrat Silamut, Richard J. Maude, Stefan Jaeger, and George Thoma. “Image analysis and machine learning for detecting malaria”. In: Translational Research 194 (Apr. 2018), pages 36–55. ISSN: 1931-5244. DOI: 10.1016/j.trsl.2017.12.004.
[3]Samson Chibuta and Aybar C. Acar. “Real-time Malaria Parasite Screening in Thick Blood Smears for Low-Resource Setting”. In: Journal of Digital Imaging 33.3 (Jan. 2020), pages 763–775. ISSN: 1618-727X. DOI: 10.1007/s10278-019-00284-2.
[4]Maria Delgado-Ortet, Angel Molina, Santiago Alfe´rez, Jose´ Rodellar, and Anna Merino. “A deep learning approach for segmentation of red blood cell images and malaria detection”. In: Entropy 22.6 (2020), page 657. DOI: 10.3390/e22060657.
[5]J. Cunningham and M. Gatton. “Malaria rapid diagnostic test performance: results of WHO product testing of malaria RDTs: round 5 (2013)”. In: (2018).
[6]Feng Yang, Hang Yu, Kamolrat Silamut, Richard J Maude, Stefan Jaeger, and Sameer Antani. “Smartphone-supported malaria diagnosis based on deep learning”. In: Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings 10. Springer. 2019, pages 73–80. DOI: 10.1007/978-3-030-32692-0_9.
[7]Rose Nakasi, Ernest Mwebaze, and Aminah Zawedde. “Mobile-Aware Deep Learning Algorithms for Malaria Parasites and White Blood Cells Localization in Thick Blood Smears”. In: Algorithms 14.1 (Jan. 2021), page 17. ISSN: 1999-4893. DOI: 10.3390/a14010017.
[8]Sivaramakrishnan Rajaraman, Stefan Jaeger, and Sameer K. Antani. “Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images”. In: PeerJ 7 (May 2019), e6977. ISSN: 2167-8359. DOI: 10.7717/peerj.6977.
[9]A Vijayalakshmi. “Deep learning approach to detect malaria from microscopic images”. In: Multimedia Tools and Applications 79.21 (Jan. 2020), pages 15297–15317. ISSN: 1573-7721. DOI: 10.1007/s11042-019-7162-y.
[10]Akanksha Chattopadhyay, Kathi Mun˜oz-Hofmann, Oscar Youngquist, and Yuqi Zhou. “Detecting Malaria Using Deep Learning”. In: (2019).
[11]Mihalj Bakator and Dragica Radosav. “Deep Learning and Medical Diagnosis: A Review of Literature”. In: Multimodal Technologies and Interaction 2.3 (Aug. 2018), page 47. ISSN: 2414-4088. DOI: 10 . 3390 / mti2030047.
[12]Feng Yang, Mahdieh Poostchi, Hang Yu, Zhou Zhou, Kamolrat Silamut, Jian Yu, Richard J. Maude, Stefan Jaeger, and Sameer Antani. “Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears”. In: IEEE Journal of Biomedical and Health Informatics 24.5 (May 2020), pages 1427–1438. ISSN: 2168-2208. DOI: 10.1109/jbhi.2019.2939121.
[13]Rose Nakasi, Ernest Mwebaze, Aminah Zawedde, Jeremy Tusubira, Benjamin Akera, and Gilbert Maiga. “A new approach for microscopic diagnosis of malaria parasites in thick blood smears using pre-trained deep learning models”. In: SN Applied Sciences 2.7 (June 2020). ISSN: 2523-3971. DOI: 10.1007/s42452-020-3000-0.
[14]Cherry Khosla and Baljit Singh Saini. “Enhancing Performance of Deep Learning Models with different Data Augmentation Techniques: A Survey”. In: 2020 International Conference on Intelligent Engineering and Management (ICIEM). IEEE, June 2020. DOI: 10.1109/iciem48762.2020.9160048.
[15]Mehedi Masud, Hesham Alhumyani, Sultan S Alshamrani, Omar Cheikhrouhou, Saleh Ibrahim, Ghulam Muhammad, M Shamim Hossain, and Mohammad Shorfuzzaman. “Leveraging deep learning techniques for malaria parasite detection using mobile application”. In: Wireless Communications and Mobile Computing 2020.1 (2020), page 8895429. DOI: 10.1155/2020/8895429.
[16]Noppadon Tangpukdee, Chatnapa Duangdee, Polrat Wilairatana, and Srivicha Krudsood. “Malaria diagnosis: a brief review.” In: The Korean Journal of Parasitology 47.2 (2009), page 93. ISSN: 0023-4001. DOI: 10.3347/ kjp.2009.47.2.93.
[17]Nina Linder, Riku Turkki, Margarita Walliander, Andreas Ma˚rtensson, Vinod Diwan, Esa Rahtu, Matti Pietika¨inen, Mikael Lundin, and Johan Lundin. “A Malaria Diagnostic Tool Based on Computer Vision Screening and Visualization of Plasmodium falciparum Candidate Areas in Digitized Blood Smears”. In: PLoS ONE 9.8 (Aug. 2014). Edited by Michelle Louise Gatton, e104855. ISSN: 1932-6203. DOI: 10.1371/journal.pone. 0104855.
[18]Kenji O. Mfuh, Olivia A. Achonduh-Atijegbe, Obase N. Bekindaka, Livo F. Esemu, Calixt D. Mbakop, Krupa Gandhi, Rose G. F. Leke, Diane W. Taylor, and Vivek R. Nerurkar. “A comparison of thick-film microscopy, rapid diagnostic test, and polymerase chain reaction for accurate diagnosis of Plasmodium falciparum malaria”. In: Malaria Journal 18.1 (Mar. 2019). ISSN: 1475-2875. DOI: 10.1186/s12936-019-2711-4.
[19]Bokretsion Gidey et al. “Mentorship on malaria microscopy diagnostic service in Ethiopia: baseline competency of microscopists and performance of health facilities”. In: Malaria Journal 20.1 (Feb. 2020). ISSN: 1475-2875. DOI: 10.1186/s12936-021-03655-9.
[20]Alexander Tao and Boran Han. “Deep unsupervised learning for Microscopy-Based Malaria detection”. In: arXiv preprint arXiv:2009.00197 (2020).
[21]J. Quinn, Rose Nakasi, Pius K. B. Mugagga, P. Byanyima, W. Lubega, and A. Andama. “Deep Convolutional Neural Networks for Microscopy-Based Point of Care Diagnostics”. In: 2016. eprint: 1608.02989.
[22]J. Somasekar and B. Eswara Reddy. “Segmentation of erythrocytes infected with malaria parasites for the diagnosis using microscopy imaging”. In: Computers & Electrical Engineering 45 (July 2015), pages 336–351. ISSN: 0045-7906. DOI: 10.1016/j.compeleceng.2015.04.009.
[23]Chengqi Wang, Yibo Dong, Chang Li, Jenna Oberstaller, Min Zhang, Justin Gibbons, Camilla Valente Pires, Mianli Xiao, Lei Zhu, Rays HY Jiang, et al. “MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites”. In: Genome Biology 24.1 (2023), page 231. DOI: 10. 1186/s13059-023-03063-z.
[24]Sunil Jorwal, Ankit, Aman Tibrewal, Kumar Saurav, and Smriti Agarwal. “Malaria Parasite Detection Using Deep Learning”. In: International Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication. Springer. 2023, pages 387–397. DOI: 10.1007/978-3-031-47942-7_33.
[25]Noppadon Tangpukdee, Chatnapa Duangdee, Polrat Wilairatana, and Srivicha Krudsood. “Malaria diagnosis: a brief review.” In: The Korean Journal of Parasitology 47.2 (2009), page 93. ISSN: 0023-4001. DOI: 10.3347/ kjp.2009.47.2.93.
[26]Abraham G Taye, Sador Yemane, Eshetu Negash, Yared Minwuyelet, Moges Abebe, and Melkamu Hunegnaw Asmare. “Automated Web-Based Malaria Detection System with Machine Learning and Deep Learning Techniques”. In: arXiv preprint arXiv:2407.00120 (2024).
[27]Ibrahim C¸ etiner and Halit C¸ etiner. “A Novel Deep Learning Approach to Malaria Disease Detection on Two Malaria Datasets”. In: Bilecik S¸eyh Edebali U¨ niversitesi Fen Bilimleri Dergisi 10.2 (2023), pages 254–272. DOI: 10.35193/bseufbd.1064187.
[28]Aayush Kumar, Sanat B Singh, Suresh Chandra Satapathy, and Minakhi Rout. “MOSQUITO-NET: a deep learning based CADx system for malaria diagnosis along with model interpretation using GradCam and class activation maps”. In: Expert Systems 39.7 (2022), e12695.
[29]Milad Mirbabaie, Stefan Stieglitz, and Nicholas R. J. Frick. “Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction”. In: Health and Technology 11.4 (May 2021), pages 693–731. ISSN: 2190-7196. DOI: 10.1007/s12553-021-00555-5.
[30]Angel Molina, Jose´ Rodellar, Laura Boldu´, Andrea Acevedo, Santiago Alfe´rez, and Anna Merino. “Automatic identification of malaria and other red blood cell inclusions using convolutional neural networks”. In: Computers in Biology and Medicine 136 (Sept. 2021), page 104680. ISSN: 0010-4825. DOI: 10.1016/j.compbiomed. 2021.104680.
[31]Fetulhak Abdurahman, Kinde Fante Anlay, and Mohammed Aliy. “Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models”. In: (Sept. 2020). DOI: 10.21203/rs. 3.rs-74079/v1.
[32]Xinbei Jiang, Tianhan Gao, Zichen Zhu, and Yukang Zhao. “Real-Time Face Mask Detection Method Based on YOLOv3”. In: Electronics 10.7 (Apr. 2021), page 837. ISSN: 2079-9292. DOI: 10 . 3390 / electronics10070837.
[33]Tegegne Eshetu, Asefa Adimasu Taddese, Mebratu Tamir, Aberham Abere, Gebeyaw Getnet Mekonnen, Abebe Tesfaye Gessese, and Teshiwal Deress. “Systematic Review and Meta-Analysis of the Diagnostic Accuracy of Machine Learning and Deep Learning Models to Detect Malaria: A Protocol”. In: (2024). DOI: 10.21203/rs.3.rs-3626889/v1.
[34]M Raju, Y Naveen Reddy, M Keerthi, A Rishitha, and D Pavan. “Deep Learning-Based Detection of Malaria Infection Through Blood Sample Analysis for Malaria Diagnosis”. In: History of Medicine 10.2 (2024), pages 68–79.
[35]Sivaramakrishnan Rajaraman, Sameer K. Antani, Mahdieh Poostchi, Kamolrat Silamut, Md. A. Hossain, Richard J. Maude, Stefan Jaeger, and George R. Thoma. “Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images”. In: PeerJ 6 (Apr. 2018), e4568. ISSN: 2167-8359. DOI: 10.7717/peerj.4568.
[36]Yuhang Dong, W David Pan, and Dongsheng Wu. “Impact of misclassification rates on compression efficiency of red blood cell images of malaria infection using deep learning”. In: Entropy 21.11 (2019), page 1062. DOI: 10.3390/e21111062.
[37]KM Faizullah Fuhad, Jannat Ferdousey Tuba, Md Rabiul Ali Sarker, Sifat Momen, Nabeel Mohammed, and Tanzilur Rahman. “Deep learning based automatic malaria parasite detection from blood smear and its smartphone based application”. In: Diagnostics 10.5 (2020), page 329. DOI: 10.3390/diagnostics10050329.
[38]Dhanya Bibin, Madhu S. Nair, and P. Punitha. “Malaria Parasite Detection From Peripheral Blood Smear Images Using Deep Belief Networks”. In: IEEE Access 5 (2017), pages 9099–9108. ISSN: 2169-3536. DOI: 10.1109/ access.2017.2705642.
[39]Jiuxiang Gu et al. “Recent advances in convolutional neural networks”. In: Pattern Recognition 77 (May 2015), pages 354–377. ISSN: 0031-3203. DOI: 10.1016/j.patcog.2017.10.013.
[40]Deekshith Shetty, C.A. Harshavardhan, M Jayanth Varma, Shrishail Navi, and Mohammed Riyaz Ahmed. “Diving Deep into Deep Learning: History, Evolution, Types and Applications”. In: International Journal of Innovative Technology and Exploring Engineering 9.3 (Jan. 2020), pages 2835–2846. ISSN: 2278-3075. DOI: 10.35940/ ijitee.a4865.019320.
[41]Dhevisha Sukumarran, Ee Sam Loh, Anis Salwa Mohd Khairuddin, Romano Ngui, Wan Yusoff Wan Sulaiman, Indra Vythilingam, Paul Cliff Simon Divis, and Khairunnisa Hasikin. “Automated Identification of Malaria-infected Cells and Classification of Human Malaria Parasites using a Two-stage Deep Learning Technique”. In: IEEE Access (2024). DOI: 10.1109/access.2024.3459411.
[42]Juan Terven, Diana-Margarita Co´rdova-Esparza, and Julio-Alejandro Romero-Gonza´lez. “A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS”. In: Machine Learning and Knowledge Extraction 5.4 (Nov. 2023), pages 1680–1716. ISSN: 2504-4990. DOI: 10.3390/make5040083.
[43]Luca Zedda, Andrea Loddo, and Cecilia Di Ruberto. “A deep learning based framework for malaria diagnosis on high variation data set”. In: International Conference on Image Analysis and Processing. Springer. 2022, pages 358–370. DOI: 10.1007/978-3-031-06430-2_30.
[44]Padmini Krishnadas, Krishnaraj Chadaga, Niranjana Sampathila, Santhosha Rao, Swathi K. S., and Srikanth Prabhu. “Classification of Malaria Using Object Detection Models”. In: Informatics 9.4 (Sept. 2022), page 76. ISSN: 2227-9709. DOI: 10.3390/informatics9040076.
[45]Peiyuan Jiang, Daji Ergu, Fangyao Liu, Ying Cai, and Bo Ma. “A Review of Yolo Algorithm Developments”. In: Procedia Computer Science 199 (2021), pages 1066–1073. ISSN: 1877-0509. DOI: 10.1016/j.procs.2022.01.135.
[46]Rishika Kapoor. “Malaria Detection Using Deep Convolution Neural Network”. Master’s thesis. University of Cincinnati, 2020.
[47]Kenia Hoyos and William Hoyos. “Supporting Malaria Diagnosis Using Deep Learning and Data Augmentation”. In: Diagnostics 14.7 (2024), page 690. DOI: 10.3390/diagnostics14070690.
[48]Sohaib Asif, Saif Ur Rehman Khan, Xiaolong Zheng, and Ming Zhao. “MozzieNet: A deep learning approach to efficiently detect malaria parasites in blood smear images”. In: International Journal of Imaging Systems and Technology 34.1 (2024), e22953.
[49]Muhammad Mujahid, Furqan Rustam, Rahman Shafique, Elizabeth Caro Montero, Eduardo Silva Alvarado, Isabel de la Torre Diez, and Imran Ashraf. “Efficient deep learning-based approach for malaria detection using red blood cell smears”. In: Scientific Reports 14.1 (2024), page 13249. DOI: 10.1038/s41598-024-63831-0.
[50]Yuri Pamungkas, Edwin Nugroho Njoto, Dwinka Syafira Eljatin, Intan Fitri Hardyanti, Tazkiya Umamah, and Kartika Jilan Putri. “Implementation of EfficientNet-B0 Architecture in Malaria Detection System Based on Patient Red Blood Cell (RBC) Images”. In: 2024 International Conference on Information Technology Research and Innovation (ICITRI). Volume 5. IEEE, Sept. 2024, pages 123–128. DOI: 10.1109/icitri62858.2024. 10699220.
[51]Imen Jdey, Ghazala Hcini, and Hela Ltifi. “Deep learning and machine learning for Malaria detection: overview, challenges and future directions”. In: International Journal of Information Technology & Decision Making (2023), pages 1–32. DOI: 10.1142/s0219622023300045.
[52]Md Saifur Rahman, Nafiz Rifat, Mostofa Ahsan, Sabrina Islam, Md Chowdhury, and Rahul Gomes. “Deep learning application for detection of malaria”. In: 2023 IEEE International Conference on Electro Information Technology (eIT). IEEE. 2023, pages 1–5. DOI: 10.1109/eit57321.2023.10187342.
[53]Wojciech Siłka, Michał Wieczorek, J. Siłka, and M. Woz´niak. “Malaria Detection Using Advanced Deep Learning Architecture”. In: Sensors 23.3 (2023), page 1501. DOI: 10.3390/s23031501.
[54]Tayyaba Jameela, Kavitha Athota, Ninni Singh, Vinit Kumar Gunjan, and Sayan Kahali. “Deep learning and transfer learning for malaria detection”. In: Computational intelligence and neuroscience 2022.1 (2022), page 2221728. DOI: 10.1155/2022/2221728.
[55]Nahid Islam, Omar Sadat, Tazwar Prodhan Shaer, and Md Adnan Islam. “Deep learning in Malaria and Covid19 detection”. PhD thesis. Brac University, 2021.
[56]Shikha Prasher, Leema Nelson, and S Gomathi. “Inception Model for Malaria Detection Using Malaria Cell Images Dataset”. In: 2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT). IEEE. IEEE, Jan. 2024, pages 1170–1175. DOI: 10 . 1109 / idciot59759 . 2024.10467370.
[57]Shruti Sinha, Udit Srivastava, Vikas Dhiman, PS Akhilan, and Sashikala Mishra. “Performance assessment of Deep Learning procedures on Malaria dataset”. In: Journal of Robotics and Control (JRC) 2.1 (2021), pages 12–18.
[58]Peter U Eze and Clement O Asogwa. “Deep machine learning model trade-offs for malaria elimination in resource-constrained locations”. In: Bioengineering 8.11 (2021), page 150. DOI: 10.3390/bioengineering8110150.
[59]Aliyu Abubakar, Mohammed Ajuji, and Ibrahim Usman Yahya. “DeepFMD: computational analysis for malaria detection in blood-smear images using deep-learning features”. In: Applied System Innovation 4.4 (2021), page 82. DOI: 10.3390/asi4040082.
[60]Pranav Rajpurkar, Vinaya Polamreddi, and Anusha Balakrishnan. “Malaria likelihood prediction by effectively surveying households using deep reinforcement learning”. In: arXiv preprint arXiv:1711.09223 (2017).
[61]Vijayalakshmi A and Rajesh Kanna B. “Deep learning approach to detect malaria from microscopic images”. In: Multimedia Tools and Applications 79.21–22 (Jan. 2019), pages 15297–15317. ISSN: 1573-7721. DOI: 10. 1007/s11042-019-7162-y.
[62]Mousami Turuk, R Sreemathy, Sadhvika Kadiyala, Sakshi Kotecha, and Vaishnavi Kulkarni. “CNN based deep learning approach for automatic malaria parasite detection”. In: IAENG Int. J. Comput. Sci 49.3 (2022).
[63]Muqdad Hanoon Dawood Alnussairi and A. Ibrahim. “Malaria parasite detection using deep learning algorithms based on (CNNs) technique”. In: Computers and Electrical Engineering 103 (2022), page 108316. DOI: 10. 1016/j.compeleceng.2022.108316.
[64]De Rong Loh, Wen Xin Yong, Jullian Yapeter, Karupppasamy Subburaj, and Rajesh Chandramohanadas. “A deep learning approach to the screening of malaria infection: Automated and rapid cell counting, object detection and instance segmentation using Mask R-CNN”. In: Computerized Medical Imaging and Graphics 88 (Mar. 2021), page 101845. ISSN: 0895-6111. DOI: 10.1016/j.compmedimag.2020.101845.
[65]De Rong Loh, Wen Xin Yong, Jullian Yapeter, Karupppasamy Subburaj, and Rajesh Chandramohanadas. “A deep learning approach to the screening of malaria infection: Automated and rapid cell counting, object detection and instance segmentation using Mask R-CNN”. In: Computerized Medical Imaging and Graphics 88 (Mar. 2021), page 101845. ISSN: 0895-6111. DOI: 10.1016/j.compmedimag.2020.101845.
[66]Muhammad Umer, Saima Sadiq, Muhammad Ahmad, Saleem Ullah, Gyu Sang Choi, and Arif Mehmood. “A Novel Stacked CNN for Malarial Parasite Detection in Thin Blood Smear Images”. In: IEEE Access 8 (2020), pages 93782–93792. ISSN: 2169-3536. DOI: 10.1109/access.2020.2994810.
[67]Feng Yang, Mahdieh Poostchi, Hang Yu, Zhou Zhou, Kamolrat Silamut, Jian Yu, Richard J Maude, Stefan Jaeger, and Sameer Antani. “Deep learning for smartphone-based malaria parasite detection in thick blood smears”. In: IEEE journal of biomedical and health informatics 24.5 (2019), pages 1427–1438. DOI: 10 . 1109/ jbhi . 2019.2939121.
[68]Negi Alok, Kumar Krishan, and Prachi Chauhan. “Deep learning-based image classifier for malaria cell detection”. In: Machine learning for healthcare applications (2021), pages 187–197. DOI: 10 . 1002 / 9781119792611.ch12.
[69]Aimon Rahman, H. Zunair, Tamanna Rahman Reme, M Sohel Rahman, and M.R.C. Mahdy. “A comparative analysis of deep learning architectures on high variation malaria parasite classification dataset”. In: Tissue and Cell 69 (2021), page 101473. DOI: 10.1016/j.tice.2020.101473.
[70]Barath Narayanan Narayanan, Redha Ali, and Russell C Hardie. “Performance analysis of machine learning and deep learning architectures for malaria detection on cell images”. In: Applications of Machine Learning. Volume 11139. SPIE. 2019, pages 240–247. DOI: 10.1117/12.2524681.
[71]Rose Nakasi, Ernest Mwebaze, Aminah Zawedde, Jeremy Tusubira, Benjamin Akera, and Gilbert Maiga. “A new approach for microscopic diagnosis of malaria parasites in thick blood smears using pre-trained deep learning models”. In: SN Applied Sciences 2 (2020), pages 1–7. DOI: 10.1007/s42452-020-3000-0.
[72]Eman Anwer and Nada Osama. “Classification of Malaria Cell Images with Deep Learning Architectures”. In: ().
[73]CG Shrinithi and T Rajasenbagam. “Automated Malaria Parasite Detection Using Deep Learning Techniques”. In: ().
[74]Matheus Fe´lix Xavier Barboza, Kayo Henrique de Carvalho Monteiro, Iago Richard Rodrigues, Guto Leoni Santos, Wuelton Marcelo Monteiro, Elder Augusto Guimaraes Figueira, Vanderson de Souza Sampaio, Theo Lynn, and Patricia Takako Endo. “Prediction of malaria using deep learning models: A case study on city clusters in the state of Amazonas, Brazil, from 2003 to 2018”. In: Revista da Sociedade Brasileira de Medicina Tropical 55 (2022), e0420–2021. DOI: 10.1590/0037-8682-0420-2021.
[75]Hanung Adi Nugroho and Rizki Nurfauzi. “A combination of optimized threshold and deep learning-based approach to improve malaria detection and segmentation on PlasmoID dataset”. In: FACETS 8 (2023), pages 1–12. DOI: 10.1139/facets-2022-0206.
[76]Micheal T Pillay, Noboru Minakawa, Yoonhee Kim, Nyakallo Kgalane, Jayanthi V Ratnam, Swadhin K Behera, Masahiro Hashizume, and Neville Sweijd. “Utilizing a novel high-resolution malaria dataset for climate-informed predictions with a deep learning transformer model”. In: Scientific Reports 13.1 (2023), page 23091. DOI: 10. 1038/s41598-023-50176-3.
[77]Tuan Tran, Banafsheh Rekabdar, and Chinwe Ekenna. “Deep learning methods in predicting gene expression levels for the malaria parasite”. In: Frontiers in genetics 12 (2021), page 721068. DOI: 10.3389/fgene. 2021.721068.
[78]B Uma Maheswari. “Malaria cell detection using deep learning techniques and Investigation on efficacy and safety of carcia papaya leaf extract on malaria”. In: Journal of Pharmaceutical Negative Results 13.1 (2022), pages 50–57.
[79]Aniss Acherar, Ilhame Tantaoui, M. Thellier, A. Lampros, R. Piarroux, and X. Tannier. “Real-life evaluation of deep learning models trained on two datasets for Plasmodium falciparum detection with thin blood smear images at 500x magnification”. In: Informatics in Medicine Unlocked 35 (2022), page 101132. ISSN: 2352-9148. DOI: 10.1016/j.imu.2022.101132.
[80]Wojciech Siłka, Michał Wieczorek, J. Siłka, and M. Woz´niak. “Malaria Detection Using Advanced Deep Learning Architecture”. In: Sensors 23.3 (Jan. 2023), page 1501. ISSN: 1424-8220. DOI: 10.3390/s23031501.
[81]R Breesha and S Alagu. “A DEEP LEARNING APPROACH FOR DETECTION OF MALARIA INFECTED CELLS IN SMARTPHONE MICROSCOPIC IMAGES”. In: ().
[82]Anand Koirala, Meena Jha, Srinivas Bodapati, Animesh Mishra, Girija Chetty, Praveen Kishore Sahu, Sanjib Mohanty, Timir Kanta Padhan, Jyoti Mattoo, and Ajat Hukkoo. “Deep learning for real-time malaria parasite detection and counting using YOLO-mp”. In: IEEE Access 10 (2022), pages 102157–102172. DOI: 10.1109/ access.2022.3208270.
[83]Aman Sharma, Chaitanya Vaishampayan, Kishan Santlani, Megha Sunhare, Mohini Arya, and Siddharth Gupta. “Malaria parasite detection using deep learning”. In: International Journal for Research in Applied Science and Engineering Technology 8.5 (2020), pages 163–168. DOI: 10.22214/ijraset.2020.5028.
[84]Shivani Dagadkhair, Anjali Swamy, Shrutika Bansode, Ayesha Kazi, and Ashwini Dhoke. “Survey of malaria detection using deep learning”. In: (2021).
[85]Divyansh Shah, Khushbu Kawale, Masumi Shah, Santosh Randive, and Rahul Mapari. “Malaria parasite detection using deep learning:(Beneficial to humankind)”. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE. 2020, pages 984–988. DOI: 10 . 1109 / iciccs48265 . 2020 . 9121073.
[86]Mahendra Kumar Gourisaria, Sujay Das, Ritesh Sharma, Siddharth Swarup Rautaray, and Manjusha Pandey. “A deep learning model for malaria disease detection and analysis using deep convolutional neural networks”. In: International Journal of Emerging Technologies 11.2 (2020), pages 699–704.
[87]Gautham Shekar, S Revathy, and Ediga Karthick Goud. “Malaria detection using deep learning”. In: 2020 4th international conference on trends in electronics and informatics (ICOEI)(48184). IEEE. 2020, pages 746–750. DOI: 10.1109/icoei48184.2020.9143023.
[88]Kaustubh Chakradeo, Michael Delves, and Sofya Titarenko. “Malaria parasite detection using deep learning methods”. In: International Journal of Computer and Information Engineering 15.2 (2021), pages 175–182.
[89]Ziheng Yang, Halim Benhabiles, Karim Hammoudi, Feryal Windal, Ruiwen He, and Dominique Collard. “A generalized deep learning-based framework for assistance to the human malaria diagnosis from microscopic images”. In: Neural Computing and Applications (2022), pages 1–16.
[90]Tong Xu, Nipon Theera-Umpon, and Sansanee Auephanwiriyakul. “Staining-Independent Malaria Parasite Detection and Life Stage Classification in Blood Smear Images”. In: Applied Sciences 14.18 (Sept. 2024), page 8402. ISSN: 2076-3417. DOI: 10.3390/app14188402.
[91]Kayo Henrique de Carvalho Monteiro, Elisson da Silva Rocha, Sebastia˜o Rogerio da Silva Neto, Leonardo de Carvalho Maia, Ca´ssio Peterka, Raphael Augusto Dourado, Vanderson Souza Sampaio, and Patricia Takako Endo. “Malaria Notifications in Legal Amazon, Brazil (2003-2022): A Comprehensive Dataset for Research & Surveillance”. In: (2023).
[92]Shafina Charania and Ninad Mehendale. “MalariaSD: Malaria-Infected Cell Images dataset”. In: Authorea Preprints (2023). DOI: 10.36227/techrxiv.23260262.
[93]Aisyah Aisyah and Siska Anraeni. “Analisis penerapan metode K-Nearest Neighbor (K-NN) pada dataset citra penyakit malaria”. In: Indonesian Journal of Data and Science 3.1 (2022), pages 17–29. DOI: 10 . 56705 / ijodas.v3i1.22.
[94]Hanung Adi Nugroho, Rizki Nurfauzi, E Murhandarwati, and Purwono Purwono. “PlasmoID: A dataset for Indonesian malaria parasite detection and segmentation in thin blood smear”. In: arXiv preprint arXiv:2211.15105 (2022).
[95]Angel Molina, Jose´ Rodellar, Laura Boldu´, Andrea Acevedo, Santiago Alfe´rez, and Anna Merino. “Automatic identification of malaria and other red blood cell inclusions using convolutional neural networks”. In: Computers in Biology and Medicine 136 (Sept. 2021), page 104680. ISSN: 0010-4825. DOI: 10.1016/j.compbiomed.2021.104680.
[96]Qazi Ammar Arshad, Mohsen Ali, Saeed-ul Hassan, Chen Chen, Ayisha Imran, Ghulam Rasul, and Waqas Sultani. “A dataset and benchmark for malaria life-cycle classification in thin blood smear images”. In: Neural Computing and Applications 34.6 (Nov. 2021), pages 4473–4485. ISSN: 1433-3058. DOI: 10 . 1007 / s00521 - 021 -06602-6.
[97]Lais Baroni, Marcel Pedroso, Christovam Barcellos, Rebecca Salles, Samella Salles, Balthazar Paixa˜o, Alvaro Chrispino, Gustavo Guedes, and Eduardo Ogasawara. “An integrated dataset of malaria notifications in the Legal Amazon”. In: BMC Research Notes 13 (2020), pages 1–3. DOI: 10.1186/s13104-020-05109-y.
[98]Oliver S. Zhao et al. “Convolutional neural networks to automate the screening of malaria in low-resource countries”. In: PeerJ 8 (Aug. 2020), e9674. ISSN: 2167-8359. DOI: 10.7717/peerj.9674.
[99]Quan Quan, Jianxin Wang, and Liangliang Liu. “An Effective Convolutional Neural Network for Classifying Red Blood Cells in Malaria Diseases”. In: Interdisciplinary Sciences: Computational Life Sciences 12.2 (May 2020), pages 217–225. ISSN: 1867-1462. DOI: 10.1007/s12539-020-00367-7.
[100]Yuming Zhong, Ying Dan, Yin Cai, Jiamin Lin, Xiaoyao Huang, Omnia Mahmoud, Eric S. Hald, Akshay Kumar, Qiang Fang, and Seedahmed S. Mahmoud. “Efficient Malaria Parasite Detection From Diverse Images of Thick Blood Smears for Cross-Regional Model Accuracy”. In: IEEE Open Journal of Engineering in Medicine and Biology 4 (2023), pages 226–233. ISSN: 2644-1276. DOI: 10.1109/ojemb.2023.3328435.
[101]Dilber Uzun Ozsahin, Mubarak Taiwo Mustapha, Basil Bartholomew Duwa, and Ilker Ozsahin. “Evaluating the performance of deep learning frameworks for malaria parasite detection using microscopic images of peripheral blood smears”. In: Diagnostics 12.11 (2022), page 2702. DOI: 10.3390/diagnostics12112702.
[102]Uzair Hussain, Ahmad Ali, Kashif Sultan, Asim Alvi, and Muhammad Waleed Khan. “Malaria Detection using Microscopic Image Analysis: A Convolution Neural Network Based Approach”. In: Pakistan Journal of Engineering and Technology 5.2 (Sept. 2022), pages 188–192. ISSN: 2664-2042. DOI: 10 . 51846 / vol5iss2pp188-192.
[103]Mosabbir Bhuiyan and Md Saiful Islam. “A new ensemble learning approach to detect malaria from microscopic red blood cell images”. In: Sensors International 4 (2022), page 100209. ISSN: 2666-3511. DOI: 10.1016/j. sintl.2022.100209.
[104]Sen Li, Zeyu Du, Xiangjie Meng, and Yang Zhang. “Multi-stage malaria parasite recognition by deep learning”. In: GigaScience 10.6 (2021), giab040. DOI: 10.1093/gigascience/giab040.
[105]Padmini Krishnadas and Niranjana Sampathila. “Automated detection of malaria implemented by deep learning in PyTorch”. In: 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). IEEE. 2021, pages 01–05. DOI: 10.1109/conecct52877.2021.9622608.
[106]Mohammed Azam Sayeed, Sakeena Fiza, Noor Ayesha, and Mohammed Akram Sayeed. “Detecting Malaria from Segmented Cell Images of Thin Blood Smear Dataset using Keras from Tensorflow”. In: International Journal for Research in Applied Science and Engineering Technology 8.1 (2020), pages 597–607. DOI: 10.22214/ ijraset.2020.1109.
[107]Krit Sriporn, Cheng-Fa Tsai, Chia-En Tsai, and Paohsi Wang. “Analyzing malaria disease using effective deep learning approach”. In: Diagnostics 10.10 (2020), page 744. DOI: 10.3390/diagnostics10100744.
[108]Jiaqi Fan, Tianjiao Huo, and Xin Li. “A Review of One-Stage Detection Algorithms in Autonomous Driving”. In: 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI). IEEE, Dec. 2020. DOI: 10.1109/cvci51460.2020.9338663.
[109]Samson Chibuta and Aybar C. Acar. “Real-time Malaria Parasite Screening in Thick Blood Smears for Low-Resource Setting”. In: Journal of Digital Imaging 33.3 (Jan. 2020), pages 763–775. ISSN: 1618-727X. DOI: 10.1007/s10278-019-00284-2.
[110]Rashke Jahan and Shahzad Alam. “Improving Classification Accuracy Using Hybrid Machine Learning Algorithms on Malaria Dataset”. In: Engineering Proceedings 56.1 (2023), page 232. DOI: 10 . 3390 / asec2023-15924.
[111]Adriana Mo´nica Renjifo Herrera. “Deep learning networks with adaptive attention mechanisms for malaria detection in thick smear blood samples”. B.S. thesis. Universitat Polite`cnica de Catalunya, 2022.
[112]Anne de Souza Oliveira, Marly Guimara˜es Fernandes Costa, Maria das Grac¸as Vale Barbosa, and Cicero Ferreira Fernandes Costa Filho. “A new approach for malaria diagnosis in thick blood smear images”. In: Biomedical Signal Processing and Control 78 (Sept. 2022), page 103931. ISSN: 1746-8094. DOI: 10.1016/j.bspc.2022.103931.
[113]Biswajit Jena, Pulkit Thakar, Vedanta Nayak, Gopal Krishna Nayak, and Sanjay Saxena. “Malaria parasites detection using deep neural network”. In: Deep Learning Applications in Medical Imaging. IGI Global, 2021, pages 209–222. DOI: 10.4018/978-1-7998-5071-7.ch009.
[114]Wouter Deelder, Ernest Diez Benavente, Jody Phelan, Emilia Manko, Susana Campino, Luigi Palla, and Taane G Clark. “Using deep learning to identify recent positive selection in malaria parasite sequence data”. In: Malaria journal 20.1 (2021), page 270. DOI: 10.1186/s12936-021-03788-x.
[115]Akshaya Annapragada. “Deep Detection: Statistical Modeling and Deep Learning to Predict and Address Malaria and Anemia in Madagascar”. PhD thesis. 2020.
[116]Hafiz M Asif, Saddam Hussain Khan, Tahani Jaser Alahmadi, Tariq Alsahfi, and Amena Mahmoud. “Malaria parasitic detection using a new Deep Boosted and Ensemble Learning framework”. In: Complex & Intelligent Systems (2024), pages 1–17. DOI: 10.1007/s40747-024-01406-2.
[117]Xin Guo, Muhammad Arslan Khalid, Ivo Domingos, Anna Lito Michala, Moses Adriko, Candia Rowel, Diana Ajambo, Alice Garrett, Shantimoy Kar, Xiaoxiang Yan, et al. “Smartphone-based DNA diagnostics for malaria detection using deep learning for local decision support and blockchain technology for security”. In: Nature Electronics 4.8 (2021), pages 615–624. DOI: 10.1038/s41928-021-00612-x.
[118]Neeru Singla and Vishal Srivastava. “Deep learning enabled multi-wavelength spatial coherence microscope for the classification of malaria-infected stages with limited labelled data size”. In: Optics & Laser Technology 130 (2020), page 106335. DOI: 10.1016/j.optlastec.2020.106335.
[119]Maria Delgado-Ortet, Angel Molina, Santiago Alfe´rez, Jose´ Rodellar, and Anna Merino. “A Deep Learning Approach for Segmentation of Red Blood Cell Images and Malaria Detection”. In: Entropy 22.6 (2020), page 657. DOI: 10.3390/e22060657.
[120]Syed Saiden Abbas and Tjeerd M. H. Dijkstra. Malaria-Detection-2019. Version 1. Nov. 2019. DOI: 10.17632/ 5bf2kmwvfn.1.
[121]Leonardo Yunda, Andre´s Alarco´n, and Jorge Milla´n. “Automated image analysis method for p-vivax malaria parasite detection in thick film blood images”. In: Sistemas y Telema´tica 10.20 (Mar. 2012), page 9. ISSN: 1692-5238. DOI: 10.18046/syt.v10i20.1151.
[122]Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit Greenspan. “GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification”. In: Neurocomputing 321 (2018), pages 321–331.
[123]Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. “A study of the behavior of several methods for balancing machine learning training data”. In: ACM SIGKDD. 2004, pages 20–29.
[124]Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dolla´r. “Focal Loss for Dense Object Detection”. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017, pages 2980–2988.
[125]Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. arXiv:1704.04861. 2017.
[126]Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and ¡1MB model size”. In: arXiv preprint arXiv:1602.07360 (2017).
[127]Petru Manescu et al. “Expert-level automated malaria diagnosis on routine blood films with deep neural networks”. In: American Journal of Hematology 95.8 (Apr. 2020), pages 883–891. ISSN: 1096-8652. DOI: 10.1002/ajh.25827.
[128]Muhammad Khan and Abdullah Alahmadi. “Deep Boosted and Ensemble Learning (DBEL) Framework for Residual CNN-based Classification”. In: IEEE Access 11 (2023), pages 123456–123468. DOI: 10 . 1109 / ACCESS.2023.000000.
[129]Petru Manescu, Christopher Bendkowski, Remy Claveau, Muna Elmi, Biobele J Brown, Vijay Pawar, Mike J Shaw, and Delmiro Fernandez-Reyes. “A weakly supervised deep learning approach for detecting malaria and sickle cells in blood films”. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23. Springer. 2020, pages 226–235. DOI: 10.1007/978-3-030-59722-1_22.