Semantic Schema Matching Using DBpedia

Full Text (PDF, 433KB), PP.72-80

Views: 0 Downloads: 0


Saira Gillani 1,* Muhammad Naeem 2 Raja Habibullah 2 Amir Qayyum 1

1. Centre of Research in Networks & Telecom, M. A. Jinnah University Islamabad, Pakistan

2. Department of Computer Science, M. A. Jinnah University, Islamabad, Pakistan

* Corresponding author.


Received: 23 Jul. 2012 / Revised: 1 Oct. 2012 / Accepted: 25 Dec. 2012 / Published: 8 Mar. 2013

Index Terms

Data Component, Schema, Similarity Measure, DBpedia


In semantic computing, Match is an operator that takes as an input two graph-like structures; it can be database schemas or XML schemas and generates a mapping between the corresponding nodes of the two graphs. In semantic schema matching, we attempt to explore the mappings between the two schemas; based on their semantics by employing any semantic similarity measure. In this study, we have defined taxonomy of all possible semantic similarity measures; moreover we also proposed an approach that exploits semantic relations stored in the DBpedia dataset while utilizing a hybrid ranking system to dig out the similarity between nodes of the two graphs.

Cite This Paper

Saira Gillani, Muhammad Naeem, Raja Habibullah, Amir Qayyum, "Semantic Schema Matching Using DBpedia", International Journal of Intelligent Systems and Applications(IJISA), vol.5, no.4, pp.72-80, 2013. DOI:10.5815/ijisa.2013.04.07


[1]Batini, C., M. Lenzerini, and S.B. Navathe, "A Comparative Analysis of Methodologies for Database Schema Integration,” ACM Computing Surveys, Vol. 18, No. 4, 1986. 

[2]Vermeer, M. Semantic Interoperability for Legacy Databases. Ph.D. thesis, Department of Computer Science, University of Twente, Enschede, Netherlands, 1997. 

[3]H. H. Do and E. Rahm. COMA - a system for flexible combination of schema matching approaches. In Proceedings of the Very Large Data Bases Conference (VLDB), pages 610–621, 2001. 

[4]E. Rahn and P. A. Bernstein. A survey of approaches to automatic schema matching. Very Large Database J., 10(4):334–350, 2001. 

[5]P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal on Data Semantics, IV:146-171, 2005. 

[6]Buhwan Jeong, Daewon Lee, Hyunbo Cho, Jaewook Lee, A novel method for measuring semantic similarity for XML schema matching, Expert Systems with Applications, Vol. 34, Issue 3, 2008, pp. 1651-1658 

[7]S. Melnik, H. Garcia-Molina, E. Rahm, Similarity Flooding: A Versatile Graph Matching Algorithm and its Application to Schema Matching, Proceedings of the 18th International Conference on Data Engineering, 2002, pp. 117-128 

[8]Aminul Islam , Diana Inkpen , Iluju Kiringa (2008). Applications of corpus-based semantic similarity and word segmentation to database schema matching, The VLDB Journal - The International Journal on Very Large Data Bases, v.17 n.5, p.1293-1320, August 2008 

[9]Allison, L., Dix, T.: A bit-string longest-common-subsequence algorithm. Information Processing Letters 23 (1986) 305-310 

[10]Islam, A., Inkpen, D.: Second order co-occurrence pmi for determining the semantic similarity of words. In: Proceedings of the International Conference on Language Resources and Evaluation, Genoa, Italy (2006) 1033-1038 

[11]Duchateau F., Bellahsene Z., Roche M., “ A Context-based Measure for Discovering Approximate Semantic Matching between Schema Elements”, RCIS, p. 9-20, 2007. 

[12]F. Duchateau, Z. Bellahs`ene, M. Roantree, and M. Roche. An Indexing Structure for Automatic Schema Matching. SMDB-ICDE: International Workshop on Self-Managing Database Systems, 2007. 

[13]Bing Tian Dai, Nick Koudas, Divesh Srivastava, Anthony K. H. Tung, and Suresh Venkatasubramanian, "Validating Multi-column Schema Matchings by Type," 24th International Conference on Data Engineering (ICDE), 2008. 

[14]Jeffrey Partyka, Latifur Khan, Bhavani Thuraisingham, “Semantic Schema Matching Without Shared Instances,” IEEE International Conference on Semantic Computing, 2009. 

[15]F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “Semantic matching,” In 1st European semantic web symposium (ESWS’04), pages 61–75, Heraklion,Greece, 2004. 

[16]Roberto Mirizzi, Azzurra Ragone, Tommaso Di Noia, and Eugenio Di Sciascio1, Semantic tags generation and retrieval for online advertising. 

[17]L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:Bringing Order to the Web. Technical report, 1998. 

[18]L. Ding, T. Finin, A. Joshi, R. Pan, S. R. Cost, Y. Peng, P. Reddivari, V. Doshi, and J. Sachs. Swoogle: a search and metadata engine for the semantic web. In CIKM '04, pages 652{659, 2004. 

[19]A. Hogan, A. Harth, and S. Decker. ReConRank: A Scalable Ranking Method for Semantic Web Data with Context. 2006. 

[20]J. M. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 668{677, 1998

[21]A. Harth, S. Kinsella, and S. Decker. Using naming authority to rank data and ontologies for web search. In International Semantic Web Conference, 2009.

[22]Carmel domshlak, avigdor gal, and haggai roitman, “Rank Aggregation for Automatic Schema Matching,” IEEE transactions on knowledge and data engineering, vol. 19, no. 4, april 2007. 

[23]C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-mann. Dbpedia - a crystallization point for the web of data. Web Semantics:Science, Services and Agents on the World Wide Web, July 2009. 

[24]P. Chirita, W. Nejdl, R. Paiu, and C. Kohlschuetter. Using ODP metadata to personalize search. In Proceedings of ACM SIGIR ’05, 2005.