IJISA Vol. 18, No. 1, 8 Feb. 2026
Cover page and Table of Contents: PDF (size: 1319KB)
PDF (1319KB), PP.62-64
Views: 0 Downloads: 0
Fuzzy Logic Level Control, Design of Type 1 and Interval Type 2 FLC, Genetic Algorithms, Parameter Optimisation, Simulation
The fuzzy logic controllers (FLC) gain popularity in ensuring stable and high-performance control of nonlinear industrial plants with no reliable model, where the traditional controllers fail. Their standard expert-based design and simple algorithms that meet the demands for fast execution and economical use of computational resources ease their implementation into programmable logic controllers for wide industrial real-time control applications. This research presents a novel approach to enhancing the performance of FLC systems by compensating for the subjectivity inherent in expert-based design through optimization of the parameters of type-1 (T1) and interval type-2 (IT2) PID FLC membership functions (MF) using genetic algorithms. The approach is demonstrated for controlling the solution level in a carbonization column for soda ash production. Simulations reveal that optimization improves the system performance, measured by a newly introduced overall performance indicator for dynamic accuracy, robustness, and control smoothness, by 48% for the T1 FLC system and 30% for the IT2 FLC system. No improvement is observed in the substitute of T1 MF by IT2 MF for both the empirically designed and the optimised FLC.
Desislava R. Stoitseva-Delicheva, Snejana T. Yordanova, "Parameter Optimisation of Type 1 and Interval Type 2 Fuzzy Logic Controllers for Performance Improvement of Industrial Control System", International Journal of Intelligent Systems and Applications(IJISA), Vol.18, No.1, pp.62-74, 2026. DOI:10.5815/ijisa.2026.01.05
[1]Ataşlar-Ayyıldız, B., O. Karahan, Design of a MAGLEV system with PID based fuzzy control using CS algorithm, Cybern. and Techn., 20(5), 5-19, 2020.
[2]Chao, C.-T., N. Sutarna, J.-S. Chiou, C.-J. Wang, An optimal fuzzy PID controller design based on conventional PID control and nonlinear factors, Appl. Sci. 9(6) 1224, 1-18, 2019, https://doi.org/10.3390/app9061224.
[3]Jantzen, J. Foundations of Fuzzy Control. A Practical Approach, 2nd ed., John Wiley & Sons, Chichester, 2013.
[4]Nursoy, H., A. Başçic, Comparison of the performance of type-1 and interval type-2 fuzzy pi controllers for liquid level control in a coupled tank system, Journal of Sci and Techn 17(2), 523-542, 2024, doi: 10.18185/erzifbed.1508424.
[5]Saad, M., M. Alshara, K. Mustafa, Fuzzy PID controller design for a coupled tank liquid level control system, WSEAS Trans. on Syst. and Contr., 18, 401-408, 2023.
[6]Yordanova, S., Methods for Design of Fuzzy Logic Controllers for Robust Process Control, KING, Sofia, 2011. (in Bulgarian)
[7]Raj, R., B.M. Mohan, General structure of interval type-2 fuzzy PI/PD controller of Takagi–Sugeno type, Eng. Appl. of Artificial Intell. 87, 103273, 2020, https://doi.org/10.1016/j.engappai.2019.103273.
[8]Wu, D., J. M. Mendel, Recommendations on designing practical interval type-2 fuzzy systems, Eng. Appl. of Artificial Intell. 85, 182–193, 2019, https://doi.org/10.1016/j.engappai.2019.06.012.
[9]Sellitto, M.A., E. Balugani, R. Gamberini, B. Rimini, A Fuzzy logic control application to the cement industry, IFAC-Papers OnLine 51, 1542-1547, 2018.
[10]Vivekanandan, N., Dr. A.M. Fulambarkar, S. Waghmare, Experimental validation of fuzzy logic based anti-lock braking system used in quarter car model, Int. J. of Contr. & Autom.,13(2), 332 – 348, 2020.
[11]Yanti, N., T. Nur, R. Randis, Implementation of fuzzy logic in fish dryer design, ILKOM Jurnal Ilmiah 14(1), 39-51, 2022.
[12]Yazid, E., M. Garratt, F. Santoso, Position control of a quadcopter drone using evolutionary algorithms-based self-tuning for first-order Takagi–Sugeno–Kang fuzzy logic autopilots, Appl. Soft Comp., 78, 373-392, 2019.
[13]Yordanova, S., D. Merazchiev, L. Jain, A two-variable fuzzy control design with application to an air-conditioning system, IEEE Trans. on Fuzz. Syst. 23(2), 474-481, ISSN: 1063-6706, 2015, doi:10.1109/TFUZZ.2014.2312979.
[14]Ahmad, S., S. Ali, R. Tabasha, The design and implementation of a fuzzy gain-scheduled PID controller for the Festo MPS PA compact workstation liquid level control, Eng Sci and Techn 23, 307-315, 2020.
[15]Aydogmus, Z. A real-time robust fuzzy-based level control using programmable logic controller, Elektronika ir Elektrotechnika 21 (1), 13-17, 2015.
[16]Al-Mahturi, A., F. Santoso, M. A. Garratt, S. G. Anavatti, An intelligent control of an inverted pendulum based on an adaptive interval type-2 fuzzy inference system, Proc. 2019 IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA, pp. 1-6, 2019, doi: 10.1109/FUZZ-IEEE.2019.8858948.
[17]El-Nagar, A. M., M. El-Bardini, Practical implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller, Ain Shams Eng. Journal 5, 475–487, 2014.
[18]Haupt, R.L., S. El. Haupt, Practical Genetic Algorithms. 2nd ed., Hoboken, John Wiley and Sons, New Jersey, 2004.
[19]Osama, I.H., A. A. Ayman, A. A-I. Ahmed, Parameter tuning via genetic algorithm of fuzzy controller for fire tube boiler, Int. J. of Intell. Syst. and Appl., 4 (9-18), 9-17, 2012.
[20]Yordanova, S. Industrial design of type-1 and interval type-2 fuzzy logic control, Jordan Journal of Electr. Eng. 11(1), 2025
[21]Yordanova S., B. Gueorguiev, M. Slavov, Design and industrial implementation of fuzzy logic control of level in soda production, Eng. Sci. and Techn., an International Journal 23(3):691—699, 2020.
[22]Fuzzy Logic Toolbox: User’s Guide for Use with MATLAB, The Math Works, Inc. Natick, MA, 1998.
[23]MATLAB – Genetic Algorithm and Direct Search Toolbox: User’s Guide. The MathWorks, Inc., Natick, MA, 2004.
[24]Neshkov, T., S. Yordanova, I. Topalova, Process Control and Production Automation, Technical University of Sofia, Sofia, 2007.