Parameter Optimisation of Type 1 and Interval Type 2 Fuzzy Logic Controllers for Performance Improvement of Industrial Control System

PDF (1319KB), PP.62-64

Views: 0 Downloads: 0

Author(s)

Desislava R. Stoitseva-Delicheva 1,* Snejana T. Yordanova 1

1. Technical University of Sofia, Faculty of Automatics, Sofia 1000, Bulgaria

* Corresponding author.

DOI: https://doi.org/10.5815/ijisa.2026.01.05

Received: 11 Jul. 2025 / Revised: 28 Aug. 2025 / Accepted: 7 Oct. 2025 / Published: 8 Feb. 2026

Index Terms

Fuzzy Logic Level Control, Design of Type 1 and Interval Type 2 FLC, Genetic Algorithms, Parameter Optimisation, Simulation

Abstract

The fuzzy logic controllers (FLC) gain popularity in ensuring stable and high-performance control of nonlinear industrial plants with no reliable model, where the traditional controllers fail. Their standard expert-based design and simple algorithms that meet the demands for fast execution and economical use of computational resources ease their implementation into programmable logic controllers for wide industrial real-time control applications. This research presents a novel approach to enhancing the performance of FLC systems by compensating for the subjectivity inherent in expert-based design through optimization of the parameters of type-1 (T1) and interval type-2 (IT2) PID FLC membership functions (MF) using genetic algorithms. The approach is demonstrated for controlling the solution level in a carbonization column for soda ash production. Simulations reveal that optimization improves the system performance, measured by a newly introduced overall performance indicator for dynamic accuracy, robustness, and control smoothness, by 48% for the T1 FLC system and 30% for the IT2 FLC system. No improvement is observed in the substitute of T1 MF by IT2 MF for both the empirically designed and the optimised FLC.

Cite This Paper

Desislava R. Stoitseva-Delicheva, Snejana T. Yordanova, "Parameter Optimisation of Type 1 and Interval Type 2 Fuzzy Logic Controllers for Performance Improvement of Industrial Control System", International Journal of Intelligent Systems and Applications(IJISA), Vol.18, No.1, pp.62-74, 2026. DOI:10.5815/ijisa.2026.01.05

Reference

[1]Ataşlar-Ayyıldız, B., O. Karahan, Design of a MAGLEV system with PID based fuzzy control using CS algorithm, Cybern. and Techn., 20(5), 5-19, 2020. 
[2]Chao, C.-T., N. Sutarna, J.-S. Chiou, C.-J. Wang, An optimal fuzzy PID controller design based on conventional PID control and nonlinear factors, Appl. Sci. 9(6) 1224, 1-18, 2019, https://doi.org/10.3390/app9061224.
[3]Jantzen, J. Foundations of Fuzzy Control. A Practical Approach, 2nd ed., John Wiley & Sons, Chichester, 2013.
[4]Nursoy, H., A. Başçic, Comparison of the performance of type-1 and interval type-2 fuzzy pi controllers for liquid level control in a coupled tank system, Journal of Sci and Techn 17(2), 523-542, 2024, doi: 10.18185/erzifbed.1508424.
[5]Saad, M., M. Alshara, K. Mustafa, Fuzzy PID controller design for a coupled tank liquid level control system, WSEAS Trans. on Syst. and Contr., 18, 401-408, 2023.
[6]Yordanova, S., Methods for Design of Fuzzy Logic Controllers for Robust Process Control, KING, Sofia, 2011. (in Bulgarian)
[7]Raj, R., B.M. Mohan, General structure of interval type-2 fuzzy PI/PD controller of Takagi–Sugeno type, Eng. Appl. of Artificial Intell. 87, 103273, 2020, https://doi.org/10.1016/j.engappai.2019.103273.
[8]Wu, D., J. M. Mendel, Recommendations on designing practical interval type-2 fuzzy systems, Eng. Appl. of Artificial Intell. 85, 182–193, 2019, https://doi.org/10.1016/j.engappai.2019.06.012.
[9]Sellitto, M.A., E. Balugani, R. Gamberini, B. Rimini, A Fuzzy logic control application to the cement industry, IFAC-Papers OnLine 51, 1542-1547, 2018.
[10]Vivekanandan, N., Dr. A.M. Fulambarkar, S. Waghmare, Experimental validation of fuzzy logic based anti-lock braking system used in quarter car model, Int. J. of Contr. & Autom.,13(2), 332 – 348, 2020.
[11]Yanti, N., T. Nur, R. Randis, Implementation of fuzzy logic in fish dryer design, ILKOM Jurnal Ilmiah 14(1), 39-51, 2022.
[12]Yazid, E., M. Garratt, F. Santoso, Position control of a quadcopter drone using evolutionary algorithms-based self-tuning for first-order Takagi–Sugeno–Kang fuzzy logic autopilots, Appl. Soft Comp., 78, 373-392, 2019.
[13]Yordanova, S., D. Merazchiev, L. Jain, A two-variable fuzzy control design with application to an air-conditioning system, IEEE Trans. on Fuzz. Syst. 23(2), 474-481, ISSN: 1063-6706, 2015, doi:10.1109/TFUZZ.2014.2312979.
[14]Ahmad, S., S. Ali, R. Tabasha, The design and implementation of a fuzzy gain-scheduled PID controller for the Festo MPS PA compact workstation liquid level control, Eng Sci and Techn 23, 307-315, 2020. 
[15]Aydogmus, Z. A real-time robust fuzzy-based level control using programmable logic controller, Elektronika ir Elektrotechnika 21 (1), 13-17, 2015. 
[16]Al-Mahturi, A., F. Santoso, M. A. Garratt, S. G. Anavatti, An intelligent control of an inverted pendulum based on an adaptive interval type-2 fuzzy inference system, Proc. 2019 IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA, pp. 1-6, 2019, doi: 10.1109/FUZZ-IEEE.2019.8858948.
[17]El-Nagar, A. M., M. El-Bardini, Practical implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller, Ain Shams Eng. Journal 5, 475–487, 2014.
[18]Haupt, R.L., S. El. Haupt, Practical Genetic Algorithms. 2nd ed., Hoboken, John Wiley and Sons, New Jersey, 2004. 
[19]Osama, I.H., A. A. Ayman, A. A-I. Ahmed, Parameter tuning via genetic algorithm of fuzzy controller for fire tube boiler, Int. J. of Intell. Syst. and Appl., 4 (9-18), 9-17, 2012.
[20]Yordanova, S. Industrial design of type-1 and interval type-2 fuzzy logic control, Jordan Journal of Electr. Eng. 11(1), 2025
[21]Yordanova S., B. Gueorguiev, M. Slavov, Design and industrial implementation of fuzzy logic control of level in soda production, Eng. Sci. and Techn., an International Journal 23(3):691—699, 2020.
[22]Fuzzy Logic Toolbox: User’s Guide for Use with MATLAB, The Math Works, Inc. Natick, MA, 1998.
[23]MATLAB – Genetic Algorithm and Direct Search Toolbox: User’s Guide. The MathWorks, Inc., Natick, MA, 2004.
[24]Neshkov, T., S. Yordanova, I. Topalova, Process Control and Production Automation, Technical University of Sofia, Sofia, 2007.