Machine Learning for Predicting Population Attitudes towards Tuberculosis Patients

PDF (1626KB), PP.32-48

Views: 0 Downloads: 0

Author(s)

Amadou Diabagate 1 Yazid Hambally Yacouba 2,* Hafizatou Sani Yanoussa 3 Adama Coulibaly 4 Abdellah Azmani 5

1. Faculty of Mathematics and Computer Science, Félix Houphouet-Boigny University, Côte d’Ivoire

2. National High School of Architecture and Urban Planning, University of Bondoukou, Côte d’Ivoire

3. Emy Polyclinique, Côte d’Ivoire

4. Training and Research Unit for Mathematics and Computer Science, Félix Houphouet Boigny University, Côte d’Ivoire

5. Faculty of Sciences and Technologies, Department of Computer Science, Tangier, Morocco

* Corresponding author.

DOI: https://doi.org/10.5815/ijisa.2025.05.03

Received: 22 Apr. 2025 / Revised: 17 Jun. 2025 / Accepted: 6 Aug. 2025 / Published: 8 Oct. 2025

Index Terms

Health Education, Machine Learning, Tuberculosis, Artificial Intelligence, Attitudes, Decision Support

Abstract

Predicting attitudes towards people with tuberculosis is a solution for preserving public health and a means of strengthening social ties to improve resilience to health threats. The assessment of attitudes towards the sick in general is essential to understand the educational level of a given population and to measure its resilience in contributing to the health of all within the framework of community life. The case of tuberculosis is chosen in this study to highlight the need for a change in attitudes, particularly due to the preponderance of this disease in Africa. While it is clear that attitudes influence the organization of individuals and community life, it remains a challenge to put in place an effective mechanism for evaluating the metrics that contribute to determining the attitude towards people with tuberculosis. Knowledge of attitudes towards any disease is very important to understanding collective values on this disease, hence the need to predict attitudes in the case of tuberculosis in favor of health education for all social strata while targeting areas of training not yet explored or requiring capacity building among populations. Changing attitudes towards tuberculosis patients will contribute to preserving public health and will help reduce stigma, improve understanding of the disease and encourage supportive and preventive behaviors. Achieving these changes involves dismantling stereotypes, improving access to care, mobilizing the media and social networks, including people with TB in society and strengthening the commitment of public authorities. The approach adopted consists of assessing the state of attitude towards tuberculosis patients at a given time and in a specific space based on the characteristics of the different social strata living there. An analysis of several metrics provided by machine learning algorithms makes it possible to identify differences in attitudes and serve as a decision-making aid on the strategies to be implemented. This work also relies on the investigation and analysis of historical trends using machine learning algorithms to understand population attitudes towards tuberculosis patients.

Cite This Paper

Amadou Diabagaté, Yazid Hambally Yacouba, Hafizatou Sani Yanoussa, Adama Coulibaly, Abdellah Azmani, "Machine Learning for Predicting Population Attitudes towards Tuberculosis Patients", International Journal of Intelligent Systems and Applications(IJISA), Vol.17, No.5, pp.32-48, 2025. DOI:10.5815/ijisa.2025.05.03

Reference

[1]Glanz Karen, Barbara Rimer, Kasisomayajula Viswanath, "Health Behavior and Health Education: Theory, Research, and Practice", John Wiley & Sons, ISBN 978-0-7879-9614-7, 2008.
[2]Don Nutbeam, Elizabeth Harris, Marilyn Wise, "Theory in a nutshell: a practical guide to health promotion theories, Sydney", McGraw Hill, ISBN: 9780070278431, 2010.
[3]World Health Organization, "Global Tuberculosis Report 2020", Retrieved from WHO, ISBN: 978-92-4-001313-1, 2020.
[4]UNAIDS, "Global HIV & AIDS statistics — 2020 fact sheet", Retrieved from UNAIDS, 2020.
[5]Stop TB Partnership, "The Global Plan to End TB 2018-2022", Retrieved from Stop TB Partnership, 2018.
[6]Knut Lönnroth, Ernesto Jaramillo, Brian Williams, Christopher Dye, Mario Raviglione, "Drivers of tuberculosis epidemics: The role of risk factors and social determinants", Social Science & Medicine, Vol.68, No.12, pp.2240-2246, 2009. DOI:10.1016/j.socscimed.2009.03.041.
[7]Courtwright Andrew, Turner Abigail Norris, "Tuberculosis and stigmatization: Pathways and interventions", Public Health Reports, Vol.125, No.4, pp. 34-42. DOI: 10.1177/00333549101250s407.
[8]World Health Organization, "Ottawa Charter for Health Promotion", Retrieved from WHO, 1986.
[9]Irwin Rosenstock, "Historical Origins of the Health Belief Model", Health Education Monographs, Vol.2, No.4, pp.328-335. DOI:10.1177/109019817400200403.
[10]Ajzen Icek, "The theory of planned behavior", Organizational Behavior and Human Decision Processes, Vol.50, No.2, pp.179–211. DOI:10.1016/0749-5978(91)90020-T.
[11]Prochaska James, DiClemente Carlo, "Stages and processes of self-change of smoking: Toward an integrative model of change", Journal of Consulting and Clinical Psychology, Vol.51, No.3, pp.390-395, 1983. DOI:10.1037//0022-006x.51.3.390.
[12]McLeroy Kenneth, Bibeau Daniel, Steckler Allan, Glanz Karen, "An Ecological Perspective on Health Promotion Programs", Health Education Quarterly, Vol.15, No.4, pp.351-377, 1988. DOI:10.1177/109019818801500401.
[13]Edward Deci, Richard Ryan, "Intrinsic Motivation and Self-Determination in Human Behavior", Berlin: Springer Science & Business Media, 1985. DOI:10.1007/978-1-4899-2271-7.
[14]Wallerstein Nina, "Powerlessness, empowerment, and health: Implications for health promotion programs", American Journal of Health Promotion, Vol.6, No.3, pp. 197–205, 1992. DOI:10.4278/0890-1171-6.3.197.
[15]Alam Saquib, "From Waves to Wisdom: Harnessing AI For Tuberculosis Education Through Community Radio", Media and Al: Navigating The Future of Communication, p.205-219.
[16]Muhammad Faiz Mohd Hisham, Noor Aliza Lodz, Eida Nurhadzira Muhammad, Filza Noor Asari,  Mohd Ihsani Mahmood,  Zamzurina Abu Bakar, "Evaluation of 2 Artificial Intelligence Software for Chest X-Ray Screening and Pulmonary Tuberculosis Diagnosis: Protocol for a Retrospective Case-Control Study", JMIR Res Protoc, Vol.12, 2023. DOI: 10.2196/36121.
[17]Keutzer Lina, Wicha Sebastian, Simonsson Ulrik, "Mobile Health Apps for Improvement of Tuberculosis Treatment: Descriptive Review", JMIR Mhealth Uhealth, Vol.8, No.4, 2020. DOI: 10.2196/17246.
[18]Lee Yejin, Raviglione Mario, Flahault Antoine, "Use of Digital Technology to Enhance Tuberculosis Control: Scoping Review", J Med Internet Res, Vol.22, No2, 2020. DOI: 10.2196/15727.
[19]Sekandi Juliet Nabbuye, Shi Weili, Zhu Ronghang, Kaggwa Patrick, Mwebaze Ernest, Li Sheng, "Application of Artificial Intelligence to the Monitoring of Medication Adherence for Tuberculosis Treatment in Africa: Algorithm Development and Validation", Journal of Medical Internet Research, Vol.2, No.1, 2023. DOI: 10.2196/40167.
[20]Sukatemin Sukatemin, and Yuli Peristiowati, "Transformation Concept of Artificial Intelligencein the Early Identification of Tuberculosis Recovery Phase: A Systematic Literature Review: Early Identification of Tuberculosis Recovery", Indonesian Journal of Health Sciences Research and Development (IJHSRD), Vol.5, No.1, pp.30-41, 2023. DOI:10.36566/ijhsrd/Vol5.Iss1/144.
[21]Mayidili Nijiati, Ziqi Zhang, Abudoukeyoumujiang Abulizi, Hengyuan Miao, Aikebaierjiang Tuluhong, Shenwen Quan, Lin   Guo, Tao Xu and Xiaoguang Zou, "Deep learning assistance for tuberculosis diagnosis with chest radiography in low-resource settings", Journal of X-Ray Science and Technology, Vol.29, No.5, pp.785-796, 2021. DOI:10.3233/XST-210894.
[22]Ntwali Placide Nsengiyumva, Hamidah Hussain, Olivia Oxlade, Arman Majidulla, Ahsana Nazish, Aamir Khan, Dick Menzies, Faiz Ahmad Khan, Kevin Schwartzman, "Triage of Persons With Tuberculosis Symptoms Using Artificial Intelligence-Based Chest Radiograph Interpretation: A Cost-Effectiveness Analysis", Open Forum Infect Dis, Vol.8, No.12, 2021. DOI: 10.1093/ofid/ofab567.
[23]Tamilselvi Saravanakumar, Saravana Kumar, Lavanya Selvaraj, Bindhu Jayaprakash, Kaviyavarshini Naagarrajan, "Artificial intelligence for a bio-sensored detection of tuberculosis", Network Modeling Analysis in Health Informatics and Bioinformatics, Vol.11, No.51, 2022. DOI:10.1007/s13721-022-00396-w.
[24]Calden George, "A method for evaluating the attitudes of tuberculous patients", American Review of Tuberculosis, Vol.67, No.6, pp. 722-731, 1953. DOI: 10.1016/s0041-3879(54)80016-x.   
[25]Jang Kwang Sim, Jeon Gyeong Suk, "Prediction Model for Health-Related Quality of Life in Hospitalized Patients with Pulmonary Tuberculosis", Journal of Korean Academy of Nursing, Vol.47, No.1, pp.60-70, 2017. DOI: 10.4040/jkan.2017.47.1.60.
[26]Jaramillo Ernesto, "Tuberculosis and Stigma: Predictors of Prejudice Against People with Tuberculosis", Journal of Health Psychology, Vol.4, No.1, pp.71-79, 1999. DOI:10.1177/135910539900400101.
[27]Loh Shin Yee, Zakaria Rosmani, Mohamad Noraini, "Knowledge, Attitude, and Stigma on Tuberculosis and the Associated Factors for Attitude Among Tuberculosis Contacts in Malaysia", Medeniyet Medical Journal, Vol.38, No.1, pp.45-53, 2023. DOI: 10.4274/MMJ.galenos.2023.14478.
[28]Elizabeth West, Gadkowski Lara Beth, Truls Ostbye, Carla Piedrahita, Jason Stout, "Tuberculosis knowledge, attitudes, and beliefs among North Carolinians at increased risk of infection", North Carolina Medical Journal, Vol.69, No.1, pp.14-20, 2008. DOI:10.18043/ncm.69.1.14.
[29]Abiel Yehdego Kidanemariam, Betiel Yihdego Kidanemariam, Eyasu Tesfamariam, Mengisteab Embaye Gulbetu, "Community knowledge, attitude and practice towards tuberculosis in Nakfa subzone: cross-sectional study 2021", Journal of Environmental Science and Public Health, Vol.7, No.2, pp.44-56, 2023. DOI: 10.26502/jesph.96120186.
[30]Yahui Fan, Shaoru Zhang, Yan Li, Yuelu Li, Tianhua Zhang, Weiping Liu, Hualin Jiang, "Development and psychometric testing of the Knowledge, Attitudes and Practices (KAP) questionnaire among student Tuberculosis (TB) Patients (STBP-KAPQ) in China", BioMed Central Infectious Diseases, Vol.18, No.1, pp.213, 2018. DOI:10.1186/s12879-018-3122-9.
[31]Kelemework Adane, Mark Spigt, Laturnus Johanna, Dorscheidt Noortje, Semaw Ferede Abera, Geert-Jan Dinant, "Tuberculosis knowledge, attitudes, and practices among northern Ethiopian prisoners: Implications for TB control efforts", PLoS One, Vol.12, No.3, 2017. DOI: 10.1371/journal.pone.0174692.
[32]Leo Breiman, Jerome Friedman, Richard Olshen, Charles Stone, "Classification and Regression Trees", Chapman and Hall/CRC, 1984. DOI:10.1201/9781315139470.
[33]Quinlan Ross, "Induction of Decision Trees", Machine Learning, Vol.1, No.1, pp.81-106, 1986. DOI:10.1007/BF00116251.
[34]Salzberg Steven, "Book Review: C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993", Machine Learning, Vol.16, pp.235-240, 1994. DOI:10.1023/A:1022645310020.
[35]Breiman Leo, "Random Forests", Machine Learning, Vol.45, pp.5-32, 2001. DOI:10.1023/A:1010933404324.
[36]Malekipirbazari Milad, Aksakalli Vural, "Risk Assessment in Social Lending via Random Forests", Expert Systems with Applications, Vol.42, pp.4621-4631, 2015. DOI:10.1016/j.eswa.2015.02.001.
[37]James Gareth., Witten Daniela., Hastie Trevor, Tibshirani Robert, "An Introduction to Statistical Learning", Springer, New York, Vol.112, pp.3-7, 2013. DOI:10.1007/978-1-4614-7138-7.
[38]Robin Genuer, "Forêts aléatoires : aspects théoriques, sélection de variables et applications", Université Paris Sud - Paris XI, 2010.
[39]Freund Yoav, Robert Schapire, "Experiments with a New Boosting Algorithm", International Conference on Machine Learning, pp.148-156, 1996.
[40]Jean-Marc Fellous, Guillermo Sapiro, Andrew Rossi, Helen Mayberg, Michele Ferrante, "Explainable Artificial Intelligence for Neuroscience: Behavioral Neurostimulation", Front Neurosci, pp.13-1346, 2019. DOI: 10.3389/fnins.2019.01346.
[41]Alessandro Bissacco, Ming-Hsuan Yang, Stefano Soatto, "Fast human pose estimation using appearance and motion via multi-dimensional boosting regression", IEEE conference on computer vision and pattern recognition, pp.1-8, 2007.
[42]Daniiel McKenney, Michael Hutchiinson, Pia Papadopol, Keviin Lawrence, John Pedlar, Kathy Campbell, Ewa Milewska, Ron Hopkinson, David Price, Tim Owen, "Customized spatial climate models for North America", Bulletin of the American Meteorological Society, Vol.92, No.12, pp.1611-1622, 2011. DOI: 10.1175/2011BAMS3132.1.
[43]Simon Pittman, Kerry Brown, "Multi-scale approach for predicting fish species distributions across coral reef seascapes", PloS one, Vol.6, No.5, 2011. DOI:10.1371/journal.pone.0020583.
[44]Johnson Rie, Zhang Tong, "Learning nonlinear functions using regularized greedy forest", IEEE transactions on pattern analysis and machine intelligence, Vol.36, No.5, pp.942-954, 2014. DOI:10.1109/TPAMI.2013.159.
[45]Chen Tianqi, Guestrin Carlos, "XGBoost: A Scalable Tree Boosting System”, Proceedings of the 22nd ACM International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, pp.785-794, 2016. DOI:10.1145/2939672.2939785.
[46]Mahmoud Shehadeh, Nader Ebrahimi, Abel Ochigbo, "Predicting the Type of Nanostructure Using Data Mining Techniques and Multinomial Logistic Regression", Procedia Computer Science, Vol.12, pp.392-397, 2012. DOI:10.1016/j.procs.2012.09.092.
[47]Menard Scott, "Applied Logistic Regression Analysis, 2nd ed", SAGE Publications Inc, 2002. DOI:10.4135/9781412983433.
[48]Shenglei Chen, Geoffrey Webb, Linyuan Liu, Xin Ma, "A novel selective naïve Bayes algorithm", Knowledge-Based Systems, Vol.192, 2020. DOI: 10.1016/j.knosys.2019.105361.
[49]Cortes Corinna, Vapnik Vladimir, "Support-vector networks", Machine Learning, Vol.20, pp.273–297, 1995. DOI:10.1007/BF00994018.
[50]Bernhard Chölkopf, Alexander Smola, "Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond", ISBN electronic:9780262256933, 2001. DOI:10.7551/mitpress/4175.001.0001.
[51]Thenmozhi Ma’am, "Forecasting stock index returns using neural networks", Delhi Business Review, Vol.7, No.2, pp.59-69, 2006.
[52]Shuaihu Ni, Gang Chen, Jia Wang, Yuhong Li, Hui Zhang, Yan Qu, Yanlin Zhao, Xiaofeng Luo, "Assessment of public literacy in TB prevention and control in the National 13th Five-Year plan for Tuberculosis Prevention and Control (2016–2020) in China", BMC Health Services Research, Vol.25, No.1, pp.50-60, 2025. DOI:10.1186/s12913-024-12155-w.  
[53]Yemin Yuan, Jin Jin, Xiuli Bi, Hong Geng, Shixue Li, Chengchao Zhou, "Gender-Specific Association Between Perceived Stigma Toward Tuberculosis and Acceptance of Preventive Treatment Among College Students With Latent Tuberculosis Infection: Cross-Sectional Analysis", Journal of Medical Internet Research, 2023. DOI: 10.2196/43972.
[54]Fentabil Getnet, Tom Forzy, Latera Tesfaye, Awoke Misganaw, Solomon Tessema Memirie, Shewayiref Geremew, Tezera Moshago Berheto, Naod Wendrad, Bantalem Yeshanew Yihun, Mizan Kiros Mirutse, Fasil Tsegaye, Mesay Hailu Dangisso, Stéphane Verguet, "Inequalities in tuberculosis control in Ethiopia: A district-level distributional modelling analysis", Tropical Medicine and Health, Vol.30, No.1, pp.31-42, 2025. DOI:10.1111/tmi.14066.
[55]Goutam Kumar Dutta, Mostafizur Rahman, Dipika Shankar Bhattacharyya, Kazi Robiul Alom, "Social Stigmatisation among Tuberculosis Patients and Community People in Bangladesh: An Exploratory Study", Preventive Medicine: Research & Reviews, 2024. DOI:10.4103/PMRR.PMRR_196_24.