A Comparative Study between X_Lets Family for Image Denoising

Full Text (PDF, 1269KB), PP.43-50

Views: 0 Downloads: 0


Beladgham Mohammed 1,* Habchi Yassine 1 Moulay Lakhdar Abdelmouneim 1 Bassou Abdesselam 1 Taleb-Ahmed Abdelmalik 2

1. University of Bechar, Algeria

2. Biomecanic Laboratory, Valencienne University, France

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2014.03.06

Received: 17 Sep. 2013 / Revised: 21 Nov. 2013 / Accepted: 7 Jan. 2014 / Published: 8 Feb. 2014

Index Terms

Bandelet transform, Contourlet transform, Curvelet transform, Ridgelet transform, Quadtree segmentation


Research good representation is a problem in image processing for this, our works are focused in developing and proposes some new transform which can represent the edge of image more efficiently, Among these transform we find the wavelet and ridgelet transform these both types transforms are not optimal for images with complex geometry, so we replace this two types classical transform with other effectiveness transform named bandelet transform, this transform is appropriate for the analysis of edges of the images and can preserve the detail information of high frequency of noisy image. De-noising is one of the most interesting and widely investigated topics in image processing area. In order to eliminate noise we exploit in this paper the geometrical advantages offered by the bandelet transform to solve the problem of image de-noising. To arrive to determine which type transform allows us high quality visual image, a comparison is made between bandelet, curvelet, ridgelet and wavelet transform, after determining the best transform, we going to determine which type of image is adapted to this transform. Numerically, we show that bandelet transform can significantly outperform and gives good performances for medical image type TOREX, and this is justified by a higher PSNR value for gray images.

Cite This Paper

Beladgham Mohamed, Habchi Yassine, Moulay Lakhdar Abdelmouneim, Abdesselam Bassou, Taleb-Ahmed Abdelmalik,"A Comparative Study between X_Lets Family for Image Denoising", IJIGSP, vol.6, no.3, pp.43-50, 2014. DOI: 10.5815/ijigsp.2014.03.06


[1]E.J.Candes and D. L.Donoho, "Ridgelets: A key to higherdimensional intermittency", Philosophical Trans of the Royal Society of London Series A, vol.357, pp.2495-2509, 1999. 

[2]Minh N. Do and Martin Vetterli, "Image Demising using Orthonormal Finite Ridgelet Transform PTOCS. PIE, Wavelet Applications in Signal and Image Processing VIII", Akrain hldroubi; Andrew F. Laine; Michael A. Unser; Eds. Vol. 41 19, p. 831-842, Dec. 2000. 

[3]E. Le Pennec et S. Mallat, "Représentation d’images par bandelettes et application à la compression", Dans GRETSI, Toulouse, Septembre 2001. 

[4]E. Le Pennec, "Bandelettes et représentation géométrique des images", Thèse de Doctorat, Ecole Polytechnique, 19 décembre 2002. 

[5]V. Chappelier, "Codage progressif d'images par ondelettes orientées", Thèse de Doctorat, Université Rennes 1, 15 décembre 2005. 

[6]Jian-Jiun Ding, "Time Frequency Analysis Tutorial", R99942057. 

[7]Xiaokai Wang, Jinghuai Gao, ―Image Denoising Method Based on Nonsubsampled Contourlet Transform and Bandelet Transform,‖ The 1st International Conference on Information Science and Engineering (ICISE), Institute of Wave and Information, Xi’an Jiaotong University, Xi’an, China, 2009.

[8]Hong Han,Xing Wu, "Research of Method in Human Detection Based on Bandelet Transform", Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Vol. 74951S, 2009.

[9]Ruihua Liang, Lizhi Cheng, Zhicheng Zhu, Bo Chen, "Image coding based on second generation bandelet transform", Modern electronics technique, 61-65 (2007). 

[10]E. Le Pennec, S. Mallat, "Bandelettes et représentation géométrique des images", CMAP / école Polytechnique 91128 PALAISEAU – France. 

[11]E. Le Pennec, S. Mallat, "Bandelet Representations For Image Compression", 0-7803-6725-1/01. IEEE. 2001. 

[12]W.S. Geisler, M.S. Banks, "Visual Performance, Handbook of Optics", Vol. 1, McGraw-Hill, NY, USA, 1995. [13] A.B. Watson, L.B. Kreslake, "Measurement of Visual Impairment Scales for Digital Video, Human Vision and Electronic Imaging", Conference, San Jose, CA, USA, SPIE Vol. 4299, Jan. 2001, 2001, pp. 79 – 89. 

[14]Eugene K. Yen and Roger G. Johnston, "The Ineffectiveness of the Correlation Coefficient for Image Comparisons", Vulnerability Assessment Team, Los Alamos National Laboratory, MS J565, Los Alamos, New Mexico 87545. 

[15]www.GE Medical System.com (database).