In-depth Study of Quantum Hadamard Gate Edge Detection: Complexity Analysis, Experiments, and Future Directions

PDF (1001KB), PP.14-25

Views: 0 Downloads: 0

Author(s)

Ridho Nur Rohman Wijaya 1 Budi Setiyono 1,* Dwi Ratna Sulistyaningrum 1

1. Department of Mathematics, Institute Teknologi Sepuluh Nopember, Surabaya, Indonesia

* Corresponding author.

DOI: https://doi.org/10.5815/ijigsp.2025.05.02

Received: 29 Apr. 2024 / Revised: 20 Jun. 2025 / Accepted: 10 Jul. 2025 / Published: 8 Oct. 2025

Index Terms

Image Processing, Quantum Computation, Quantum Image Processing, Quantum Edge Detection, Quantum Hadamard Edge Detection

Abstract

Quantum computing is a rapidly developing field with faster computational capabilities than classical computing. The popularity of quantum computing has reached the field of image processing, particularly with a breakthrough method known as Quantum Hadamard Edge Detection. This approach represents a significant advancement in edge detection techniques using quantum computing. Quantum Hadamard Edge Detection is a method that can detect image edges more quickly than classical methods with exponential acceleration. This paper explains the Quantum Hadamard Edge Detection method in detail, including how it is implemented, a time complexity explanation, some experiments, and future research directions. Our experiments utilize a quantum computer simulator and employ four measurement metrics: Structural Similarity Index, Figure of Merit, Entropy, and a Proposed Metric with radius-based features, to detect simple binary images, MNIST images, and the Berkeley Segmentation datasets. We recognize the potential of quantum computing and believe that image processing with quantum representation will make processing more efficient and significantly valuable in the future.

Cite This Paper

Ridho Nur Rohman Wijaya, Budi Setiyono, Dwi Ratna Sulistyaningrum, "In-depth Study of Quantum Hadamard Gate Edge Detection: Complexity Analysis, Experiments, and Future Directions", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.17, No.5, pp. 14-25, 2025. DOI:10.5815/ijigsp.2025.05.02

Reference

[1]Mihai Andronie, George Lăzăroiu, Mariana Iatagan, Iulian Hurloiu, Roxana Ştefănescu, Adrian Dijmărescu, and Irina Dijmărescu. “Big data management algorithms, deep learning-based object detection technologies, and geospatial simulation and sensor fusion tools in the internet of robotic things”. ISPRS International Journal of Geo- Information, 12(2):35, 2023. 
[2]Mihai Andronie, George Lăzăroiu, Oana Ludmila Karabolevski, Roxana Ştefănescu, Iulian Hurloiu, Adrian Dijmărescu, and Irina Dijmărescu. “Remote big data management tools, sensing and computing technologies, and visual perception and environment mapping algorithms in the internet of robotic things”. Electronics, 12(1):22, 2022. 
[3]Sjoukje A Osinga, Dilli Paudel, Spiros A Mouzakitis, and Ioannis N Athanasiadis. “Big data in agriculture: Between opportunity and solution”. Agricultural Systems, 195:103298, 2022. 
[4]Gui-Long Jiang,Wen-Qiang Liu, and Hai-RuiWei. “Optimal synthesis of general multi-qutrit quantum computation”. arXiv preprint arXiv:2310.11996, 2023. 
[5]Xiaozhou Pan, Pengtao Song, and Yvonne Y Gao. “Continuous-variable quantum computation in circuit qed”. Chinese Physics Letters, 2023. 
[6]Warit Asavanant, Akito Kawasaki, Ryuhoh Ide, Takumi Suzuki, Hector Brunel, Baramee Charoensombutamon, Atsushi Sakaguchi, Kosuke Fukui, Takahiro Kashiwazaki, Asuka Inoue, et al. “Continuous-variable quantum computation with optical quantum entanglement and quantum teleportation in time domain”. In Quantum Communications and Quantum Imaging XXI, volume 12692, page 1269202. SPIE, 2023. 
[7]Raquel Pérez-Antón, Alberto Corbi, José Ignacio López-Sánchez, and Daniel Burgos. “Reliability of ibm’s public quantum computers”. 2023. 
[8]Raquel Pérez-Antón, José Ignacio López-Sánchez, and Alberto Corbi. “The game theory in quantum computers: A review”. 2023. 
[9]Salvatore M Giampaolo, Gerardo Adesso, and Fabrizio Illuminati. “Theory of ground state factorization in quantum cooperative systems”. Physical review letters, 100(19):197201, 2008. 
[10]Adam M Kaufman and Kang-Kuen Ni. “Quantum science with optical tweezer arrays of ultracold atoms and molecules”. Nature Physics, 17(12):1324–1333, 2021. 
[11]Lov K Grover. “A fast quantum mechanical algorithm for database search”. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996. 
[12]Salvador E Venegas-Andraca and Sougato Bose. “Storing, processing, and retrieving an image using quantum mechanics”. In Quantum information and computation, volume 5105, pages 137–147. SPIE, 2003. 
[13]Phuc Q Le, Fangyan Dong, and Kaoru Hirota. “A flexible representation of quantum images for polynomial preparation, image compression, and processing operations”. Quantum Information Processing, 10:63–84, 2011. 
[14]Yu-Guang Yang, Ju Tian, He Lei, Yi-Hua Zhou, and Wei-Min Shi. “Novel quantum image encryption using onedimensional quantum cellular automata”. Information Sciences, 345:257–270, 2016. 
[15]Xi-Wei Yao, Hengyan Wang, Zeyang Liao, Ming-Cheng Chen, Jian Pan, Jun Li, Kechao Zhang, Xingcheng Lin, Zhehui Wang, Zhihuang Luo, et al. “Quantum image processing and its application to edge detection: theory and experiment”. Physical Review X, 7(3):031041, 2017. 
[16]Meina Yu, Mohsin Hassan Saeed, Shuaifeng Zhang, Huiyun Wei, Yanzi Gao, Cheng Zou, Lanying Zhang, and Huai Yang. “Luminescence enhancement, encapsulation, and patterning of quantum dots toward display applications”. Advanced Functional Materials, 32(13):2109472, 2022. 
[17]Randy Kuang and Maria Perepechaenko. “Quantum encryption with quantum permutation pad in ibmq systems”. EPJ Quantum Technology, 9(1):26, 2022. 
[18]Lu Wang, Zhiliang Deng, and Wenjie Liu. “An improved two-threshold quantum segmentation algorithm for neqr image”. Quantum Information Processing, 21(8):302, 2022. 
[19]Sreetama Das, Jingfu Zhang, Stefano Martina, Dieter Suter, and Filippo Caruso. “Quantum pattern recognition on real quantum processing units”. Quantum Machine Intelligence, 5(1):16, 2023. 
[20]Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. “Quantum support vector machine for big data classification”. Physical review letters, 113(13):130503, 2014. 
[21]Iris Cong, Soonwon Choi, and Mikhail D Lukin. “Quantum convolutional neural networks”. Nature Physics, 15(12):1273–1278, 2019. 
[22]Afrad Basheer, A Afham, and Sandeep K Goyal. “Quantum k-nearest neighbors algorithm”. arXiv preprint arXiv:2003.09187, 2020. 
[23]Yi Zhang, Kai Lu, and YingHui Gao. “Qsobel: a novel quantum image edge extraction algorithm”. Science China Information Sciences, 58:1–13, 2015. 
[24]Suzhen Yuan, Salvador E Venegas-Andraca, Yuchan Wang, Yuan Luo, and Xuefeng Mao. “Quantum image edge detection algorithm”. International Journal of Theoretical Physics, 58:2823–2833, 2019. 
[25]Chenyi Wu, Fei Huang, Jingyi Dai, and Nanrun Zhou. “Quantum susan edge detection based on double chains quantum genetic algorithm”. Physica A: Statistical Mechanics and its Applications, 605:128017, 2022. 
[26]Sanjay Chakraborty, Soharab Hossain Shaikh, Amlan Chakrabarti, and Ranjan Ghosh. “Quantum image edge extraction based on classical robinson operator”. Multimedia Tools and Applications, 81(23):33459–33481, 2022.
[27]Panchi Li, Tong Shi, Aiping Lu, and BingWang. “Quantum implementation of classical marr–hildreth edge detection”. Quantum Information Processing, 19:1–26, 2020. 
[28]Giacomo Cavalieri and Dario Maio. “A quantum edge detection algorithm”. arXiv preprint arXiv:2012.11036, 2020. 
[29]Li Deng. “The mnist database of handwritten digit images for machine learning research”. IEEE Signal Processing Magazine, 29(6):141–142, 2012. 
[30]Ridho Nur Rohman Wijaya, Budi Setiyono, Mahmud Yunus, and Dwi Ratna Sulistyaningrum. “Operator-n layer construction for optimizing capsule network methods in image classification problems”. Journal of Information Hiding and Multimedia Signal Processing, 14(3):90–101, 2023. 
[31]D. Martin, C. Fowlkes, D. Tal, and J. Malik. “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics”. In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001. 
[32]Nazish Tariq, Rostam Affendi Hamzah, Theam Foo Ng, Shir Li Wang, and Haidi Ibrahim. “Quality assessment methods to evaluate the performance of edge detection algorithms for digital image: A systematic literature review”. IEEE Access, 9:87763–87776, 2021. 
[33]Ziwen Zhang, Yijun Liu, Tie Liu, Yang Li, and Wujian Ye. “Edge detection algorithm of a symmetric difference kernel sar image based on the gan network model”. Symmetry, 11(4):557, 2019. 
[34]Xiao-Ming Zhang, Man-Hong Yung, and Xiao Yuan. “Low-depth quantum state preparation”. Physical Review Research, 3(4):043200, 2021. 
[35]Amir Fijany and Colin P Williams. “Quantum wavelet transforms: Fast algorithms and complete circuits”. In Quantum Computing and Quantum Communications: First NASA International Conference, QCQC’98 Palm Springs, California, USA February 17–20, 1998 Selected Papers, pages 10–33. Springer, 1999.