Improved USCT of Paired Bones Using Wavelet-based Image Processing

Full Text (PDF, 915KB), PP.1-9

Views: 0 Downloads: 0


Marwa Fradi 1,* Wajih Elhadj Youssef 1 Philippe Lasaygues 1 Mohsen Machhout 1

1. Aix Marseille Univ, CNRS, Marseille Central Station, LMA, Marseille, France

* Corresponding author.


Received: 7 Jun. 2018 / Revised: 20 Jun. 2018 / Accepted: 3 Jul. 2018 / Published: 8 Sep. 2018

Index Terms

Ultrasonic computed tomography (USCT), children bones, wavelet transformation, edge extraction, diagnostic


Computed ultrasonic bone tomography (USCT) is a non-invasive and non-ionizing technique, which ensures the protection of child being against x-rays. The main objective of this article is to use an image processing algorithm to improve the signal-to-noise ratio of ultrasonic computed tomography (USCT) of children bones  for automatic detection of osteopathologies. For this fact, we construct an application of image processing with Microsoft Foundation Class Library (FMC) integrated in visual Studio using Haar wavelet algorithm to detect edges. Different methods of image processing for automatic detection are used. Hence, we make accessible the detection of distance between bones due to the application of wavelet transform. As a result, the quality of USCT image was improved and the detection of child osteopathologies became accessible.

Cite This Paper

Marwa Fradi, Wajih Elhadj Youssef, Philippe Lasaygues, Mohsen Machhout, " Improved USCT of Paired Bones Using Wavelet-based Image Processing", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.10, No.9, pp. 1-9, 2018. DOI: 10.5815/ijigsp.2018.09.01


[1]P. Lasaygues and J. Lefebvre, “Bone Imaging by Low Frequency Ultrasonic Reflection Tomography,” in Acoustical Imaging, vol. 25, M. Halliwell and P. N. T. Wells, Eds. Boston: Kluwer Academic Publishers, 2002.

[2]P. Lasaygues, “Assessing the cortical thickness of long bone shafts in children, using two-dimensional ultrasonic diffraction tomography,” Ultrasound Med. Biol., vol. 32, no. 8, pp. 1215–1227, Aug. 2006.

[3]Philippe Lasaygues Tomographie ultrasonore osseuse : Caractérisation de la diaphyse  des os par inversion d’un champ acoustique diffracté, Intérêt pour l’imagerie pédiatrique, 2006

[4]Philippe Lasaygues , Régine Guillermin , Khaled Metwally , Samantha Fernandez , Laure Balasse2,3, Philippe Petit, Cécile Baron, Contrast resolution enhancement of Ultrasonic Computed Tomography using a wavelet-based method – Preliminary results in bone imaging” , International Workshop on Medical Ultrasound Tomography, Nov 2017, Speyer, Germany modified , Avril 2018.

[5]Dimah Dera, Nidhal Bouaynaya & Hassan M. Fathallah-Shaykh automated, “Robust Image Segmentation: Level Set Method Using Nonnegative Matrix Factorization with Application to Brain MRI”, Society for Mathematic al Biology, Springer 2016.

[6]Hendrick RE. Image  contrast and noise. In Stark DD, Bradley WG, eds. Magnetic Resonance Imaging, 3rd Edition, St. Louis: Mosby Publishing Co., Vol 1, Ch. 4, p. 43–68. 1999.

[7]RE Hendrick - ‎2008Signal, Noise, Signal-to-Noise, and Contrast-to-Noise Ratio, Breast MRI, Springer, pp 93-111,2008

[8]H. Li , S. Wang , A new image denoising method using wavelet transform., in: International forum on information technology and applications, IFITA 09. In Chengdu, 2009, pp. 111–114 . 

[9]M.A . Mayer, A . Borsdorf , M. Wagner , J. Hornegger , C.Y. Mardin , R.P. Tornow , Wavelet denoising of multiframe optical coherence tomography data, Biomed. Open. Express 3 (3) (2012) 572–589 . 

[10]B.K. Shreyamsha Kumar, “Image denoising based on gaussian/bilateral filter and its method noise thresholding”. Signal, Image and video processing,  Springer- Verlag London Limited 2012.

[11]O. R. Vincent, Abeokuta, “A Descriptive Algorithm for Sobel Image Edge Detection”, Proceedings of Informing Science & IT Education Conference (InSITE) 2009.

[12]Yin-Yin Liao, Jui-Chen WU, Chia-Hui Li and Chih Kuang Yeh, “Texture Feature Analysis for Breast Ultrasound Image Enhancement”, Ultrasonic Imaging 33, 264- 278 (2011).

[13]Philippe Lasaygues, Jean Pierre Lefbvre, Regine Guillermin, Valene Kaftandjian, Jean Philippe Berteau, Martine Pithroux and Philippe Petit,  “Advanced Ultrasonic tomograph of children’s bones”, Acoustical Imaging 31 Springer Science + media B.V 2012

[14]S.U. Yan g , X.U. Zhijie , Parallel implementation of wavelet-based image de-  noising on programmable PC-grade graphics hardware., Signal Process. 90 (8)  (2010) 2396–2411 

[15]Sonia Dahdouh, Filtrage , segmentation et suivi d’images échographiques applications cliniques, thèse université Paris Sud , 2011.