Application of Python in Evaluating the Volume of 3D Shapes Using Monte Carlo Simulation

PDF (787KB), PP.50-59

Views: 0 Downloads: 0

Author(s)

Pankaj Dumka 1,* Rishika Chauhan 2 Dhananjay R. Mishra 1

1. Department of Mechanical Engineering, Jaypee University of Engineering and Technology, A.B. Road, Raghogarh-473226, Guna, Madhya Pradesh, India

2. Department of Electronics and Communication Engineering, Jaypee University of Engineering and Technology, A.B. Road, Raghogarh-473226, Guna, Madhya Pradesh, India

* Corresponding author.

DOI: https://doi.org/10.5815/ijem.2026.01.05

Received: 12 Aug. 2025 / Revised: 1 Oct. 2025 / Accepted: 4 Nov. 2025 / Published: 8 Feb. 2026

Index Terms

Monte Carlo Simulation, Volume Estimation, Python Programming, Computational Geometry, 3D Shape Analysis

Abstract

Volume estimation of three-dimensional (3D) objects is fundamental in various scientific and engineering fields. While analytical expressions exist for the simple geometric shapes, they become impractical for complex or irregular structures. Monte Carlo simulation is a statistical method which is based on the random sampling, which offers an efficient numerical alternative. This research explores the application of Monte Carlo integration method for the estimation of the volumes of three different 3D objects viz. sphere, cylinder, and cone. The paper elaborates on the mathematical background of the simulation by presenting detailed Python implementations, and analyzes the accuracy, convergence rates, and computational efficiency of the method. The study concludes that the simulation, despite their probabilistic nature, provide an effective and scalable technique for volume estimation, particularly for the shapes without closed-form volume expressions.

Cite This Paper

Pankaj Dumka, Rishika Chauhan, Dhananjay R. Mishra, "Application of Python in Evaluating the Volume of 3D Shapes Using Monte Carlo Simulation", International Journal of Engineering and Manufacturing (IJEM), Vol.16, No.1, pp. 50-59, 2026. DOI:10.5815/ijem.2026.01.05

Reference

[1]L.R. Taylor, W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, 1987. https://doi.org/10.2307/4830.
[2]R.L. Harrison, Introduction to Monte Carlo simulation, in: AIP Conf. Proc., 2009: pp. 17–21. https://doi.org/10.1063/1.3295638.
[3]P. Mishra, P. Tewari, D.R. Mishra, P. Dumka, Numerical modelling of double integration with different data spacing : A Python-based approach, 4 (2023) 46–54. https://doi.org/10.30511/MCS.2023.1990951.1115.
[4]P. Mishra, A. Sharma, D.R. Mishra, P. Dumka, Solving Double Integration With The Help of Monte Carlo Simulation : A Python Approach, Int. J. Sci. Res. Multidiscip. Stud. 9 (2023) 6–10.
[5]P. Mishra, P. Tewari, R. Mishra, Dhananjay, P. Dumka, Integration based on Monte Carlo Simulation, Int. J. Math. Sci. Comput. 9 (2023) 58–65. https://doi.org/10.5815/ijmsc.2023.03.05.
[6]E. Zio, E. Zio, Monte Carlo simulation: The method, Springer, 2013. https://doi.org/10.1007/978-1-4471-4588-2_3.
[7]F. Kalateh, M. Kheiry, A Review of Stochastic Analysis of the Seepage Through Earth Dams with a Focus on the Application of Monte Carlo Simulation, Arch. Comput. Methods Eng. 31 (2024) 47–72. https://doi.org/10.1007/s11831-023-09972-3.
[8]H. Díaz, A.P. Teixeira, C. Guedes Soares, Application of Monte Carlo and Fuzzy Analytic Hierarchy Processes for ranking floating wind farm locations, Ocean Eng. 245 (2022) 110453. https://doi.org/10.1016/j.oceaneng.2021.110453.
[9]D. Crevier, Volume estimation by monte carlo methods, J. Stat. Comput. Simul. 31 (1989) 223–235. https://doi.org/10.1080/00949658908811145.
[10]I. Hammel, D. Lagunoff, Determination of mean particle volume, a monte carlo simulation, Comput. Biol. Med. 27 (1997) 283–291. https://doi.org/https://doi.org/10.1016/S0010-4825(97)00005-X.
[11]J.C. Walter, G.T. Barkema, An introduction to Monte Carlo methods, Phys. A Stat. Mech. Its Appl. 418 (2015) 78–87. https://doi.org/10.1016/j.physa.2014.06.014.
[12]B. Csébfalvi, L. Szirmay-Kalos, Monte Carlo Volume Rendering, Proc. IEEE Vis. Conf. (2003) 449–456. https://doi.org/10.1109/visual.2003.1250406.
[13]D. Sarrut, M. Bała, M. Bardi s, J. Bert, M. Chauvin, K. Chatzipapas, M. Dupont, A. Etxebeste, L.M. Fanchon, S. Jan, G. Kayal, A.S. Kirov, P. Kowalski, W. Krzemien, J. Labour, M. Lenz, G. Loudos, B. Mehadji, L. Ménard, C. Morel, P. Papadimitroulas, M. Rafecas, J. Salvadori, D. Seiter, M. Stockhoff, E. Testa, C. Trigila, U. Pietrzyk, S. Vandenberghe, M.A. Verdier, D. Visvikis, K. Ziemons, M. Zvolský, E. Roncali, Advanced Monte Carlo simulations of emission tomography imaging systems with GATE, Phys. Med. Biol. 66 (2021). https://doi.org/10.1088/1361-6560/abf276.
[14]R.L. Harrison, Introduction to Monte Carlo simulation, AIP Conf. Proc. 1204 (2009) 17–21. https://doi.org/10.1063/1.3295638.
[15]S. Van Der Walt, S.C. Colbert, G. Varoquaux, The NumPy array: A structure for efficient numerical computation, Comput. Sci. Eng. 13 (2011) 22–30. https://doi.org/10.1109/MCSE.2011.37.