Texture based Anisotropic Diffusion for Real Ultrasound Image Despeckling

Full Text (PDF, 432KB), PP.42-49

Views: 0 Downloads: 0


Jie Huang 1,* Xiaoping Yang 1

1. Department of Mathematics, Nanjing University of Science and Technology, Nanjing, P. R. China

* Corresponding author.

DOI: https://doi.org/10.5815/ijem.2011.03.07

Received: 16 Feb. 2011 / Revised: 24 Mar. 2011 / Accepted: 29 Apr. 2011 / Published: 5 Jun. 2011

Index Terms

Real ultrasound image, anisotropic diffusion, texture, despeckling


This paper presents a new texture based anisotropic diffusion method for real ultrasound image despeckling. Texture information is obtained by a real ultrasound image model. Unlike traditional anisotropic diffusion methods usually taking image gradient as a diffusion index, we take the image texture as a new diffusion index. The results comparing our new method with others on both simulated image and real ultrasound images are reported, and our method shows the superiority in keeping important features of real ultrasound images.

Cite This Paper

Jie Huang,Xiaoping Yang,"Texture based Anisotropic Diffusion for Real Ultrasound Image Despeckling", IJEM, vol.1, no.3, pp.42-49, 2011. DOI: 10.5815/ijem.2011.03.07


[1] J. S. Lee, "Digital image enhancement and noise filtering by use of local Statistics", IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-2, no. 2, pp. 165-168, Mar. 1980.

[2] V. S. Frost, J. A. Stiles, K. S. Sanmugan, and J. C. Holtzman, "A model for radar images and its application to adaptive digital filtering ofmultiplicative noise", IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-4, no. 2, pp. 157-166, Mar. 1982.

[3] Tuncer C. Aysal and K. E. Barner, "Rayleigh-Maximum-Likelihood filtering for speckle reduction of ultrasound images", IEEE Trans. Med. Imag., vol. 26, no. 5, pp. 712-727, Mar. 2007.

[4] L. Rudin, P. L. Lions and S. Osher, "Multiplicative Denoising and Deblurring:Theory and Algorithms", in: S.Osher, N.Paragios(Eds.), Geometric Level Sets in Imaging, Vision and Graphics, Springer, pp. 103- 119, 2003.

[5] G. Aubert, J. F. Aujol, "A variational approach to removing multiplicative noise", SIAM J. Appl. Math., vol. 68, pp.925-946, 2008.

[6] YongjianYu, Scott T.Acton, "Speckle reducing anisotropic Diffusion",IEEE Trans. Image Processing, vol. 11, no. 11, pp.1260-1270, 2002.

[7] Xiao Hao, Shangkai Gao and Xiaorong Gao, "A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing", IEEE Trans. Med. Imag., vol. 18, no. 9, pp.787-794, Sep. 1999.

[8] A. Achim, A. Bezerianos and P. Tsakalides, "Novel Bayesian multiscale method for speckle removal in medical ultrasound images", IEEE Trans. Med. Imag., vol. 20, no. 8, pp.772-783, Aug. 2001.

[9] T. Loupas, W. N. Mcdicken and P. L. Allan, "An adaptive weightedmedian filter for speckle suppression in medical ultrasonic images", IEEE Trans. Circuit and Systems, vol. 36, no. 1, pp.129-135, Jan. 1989.

[10] P. Perona, J. Malik, "Scale space and edge detection using anisotropic diffusion", IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 629-639, 1990.

[11] Antonin Chambolle, "An algorithm for total variation minimization and applications", J. Math. Imag. Vis., vol. 20, pp. 89-97, 2004.