ISSN: 2075-0161 (Print)
ISSN: 2075-017X (Online)
DOI: https://doi.org/10.5815/ijmecs
Website: https://www.mecs-press.org/ijmecs
Published By: MECS Press
Frequency: 6 issues per year
Number(s) Available: 140
IJMECS is committed to bridge the theory and practice of modern education and computer science. From innovative ideas to specific algorithms and full system implementations, IJMECS publishes original, peer-reviewed, and high quality articles in the areas of modern education and computer science. IJMECS is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of computer science, modern education and applications.
IJMECS has been abstracted or indexed by several world class databases: Scopus, SCImago, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..
IJMECS Vol. 18, No. 1, Feb. 2026
REGULAR PAPERS
Analyzing student performance in Introductory Programming courses in Higher Education is crucial for early intervention and improved academic outcomes. This study investigates the predictive potential of a Programming Cognitive Test in assessing student aptitude and forecasting success in an Introductory Programming course. Data was collected from 180 students, both freshmen and repeating students, enrolled in a Computer Engineering program. The dataset includes the Programming Cognitive test results, background variables, and final course outcomes. To identify latent patterns within the data, the K-means clustering algorithm was applied, focusing particularly on freshmen students to avoid bias from prior programming exposure. In parallel, six Machine Learning classification models were developed and evaluated to predict students’ likelihood of passing the Introductory Programming course: Decision Tree, K-Nearest Neighbor, Naïve Bayes, Random Forest, Support Vector Machine, and Deep Neural Network. Among these, the Deep Neural Network model demonstrated superior performance, achieving the highest values across key metrics—Accuracy, Recall, and F1-score—effectively identifying students at risk of underperformance. These findings underscore the potential of this model in educational settings, where timely and accurate detection of struggling students can enable proactive, targeted interventions.
This work contributes to the field by combining cognitive assessment with predictive modelling, offering a novel approach to forecasting programming performance. The models and methods described are adaptable for broader educational applications and may assist educators in refining teaching strategies and improving retention and success rates in programming education.
The Admission Point Score (APS) metric, commonly used to admit prospective students into academic programmes, may appear effective in predicting student success. In reality, almost 50% of students admitted to a science programme in a higher education institution failed to meet all the requirements necessary to complete the programme during the period of 2008 and 2015. This had a direct impact on the overall graduation throughput. This research therefore focuses on adopting a probabilistic-graphical approach as a viable alternative to the APS metric for determining student success trajectories in higher education. The purpose of this approach was to provide higher education institutions with a system to monitor students’ academic performance en-route to graduation from a probabilistic and graphical point of view. This research employed a probability distribution distance metric to ascertain how close the learned models were to the true model for varying sample sizes. The significance of these results addressed the need for knowledge discovery of dependencies that existed between the students’ module results in a higher education trajectory that spans three years.
[...] Read more.This study delves into the interface between Rhetoric and Artificial Intelligence, with a specific focus on ChatGPT's ability to engage in argumentative dialogues and its potential educational applications. Specifically, the study aims to investigate the feasibility of conducting argumentative dialogues in English between users and ChatGPT, identify suitable instructions that facilitate a flowing debate, and assess the tool's ability to judge and determine the debate's winner. The study's findings indicate that ChatGPT can effectively participate in rhetorical competitions with the provision of specific instructions. While the tool demonstrates proficiency in generating relevant and logical arguments and counterarguments, it faces challenges in sustaining the topic's relevance throughout extended debates unless it assumes a judging role. Moreover, despite occasional violations of the rules of debate, its potential in pedagogical argumentation competitions remains promising. The results of the present research show that ChatGPT can participate in debates with specific rules. This finding suggests that ChatGPT can be used during training sessions in rhetoric educational clubs.
[...] Read more.The article presents a formalized, mathematical model of software delivery speed (S-model) in a DevOps environment. It quantitatively describes the interaction between key parameters, including development speed, automation level, CI/CD maturity, resource provisioning, and architectural complexity. The study aims to develop a mathematical structure that can reproduce nonlinear dependencies. The model captures threshold effects and interactions among technical and organizational DevOps factors, demonstrating both practical and educational relevance. The research methodology involves analyzing modern DevOps frameworks, such as DORA, CALMS, SPACE, and Accelerate. We build a functional model using saturation functions and exponential damping. The study also applies scenario modeling and calibrates models using pseudo-real and training empirical data. The results demonstrate that the proposed S-model accurately reproduces the behavior of DevOps processes and describes the influence of technical and organizational factors. Automation and CI/CD have the most significant impact in the early stages of maturity. System complexity exponentially reduces delivery speed. Changes in development speed only affect productivity when the level of automation is sufficient. Model calibration revealed an average deviation of 14.3% between the empirical and model values, confirming the model's applicability even in small learning teams. The scientific novelty of this work lies in creating a formally defined mathematical model of delivery speed in DevOps. The model integrates technical, architectural, and process factors into a unified analytical framework. The model's practical value lies in its ability to perform sensitivity analyses, compare DevOps practices, predict the consequences of technical decisions, and support data-driven DevOps. Educational testing confirmed the model's effectiveness, showing that it promotes analytical thinking in students and fosters a systematic understanding of DevOps processes. Educators can integrate the model into courses on information system deployment, DevOps engineering, and software engineering.
[...] Read more.Increased focus on personalized learning has highlighted the need for real-time monitoring of student engagement. Understanding attention levels during instruction helps improve teaching effectiveness and learning outcomes. However, existing methods rely on manual observation or periodic assessments, which are subjective and lack consistency. These approaches fail to capture moment-to-moment variations in engagement. Conventional systems using basic video tracking or facial detection lack robustness in variable lighting, head pose changes, and classroom dynamics. They are also limited in providing timely, actionable insights. This study presents FocusTrack, a real-time engagement monitoring system that utilizes facial cues and behavioral indicators for accurate classification. The system processes video frames locally and provides continuous engagement feedback. Two annotated datasets—EngageFace (150 hours, classroom-based) and StudyFocus (90 hours, home-based)—were developed to capture diverse learning scenarios. Each dataset includes labels for gaze direction, drowsiness, and facial cues. Experimental results show accuracy levels of 97.0% and 95.5% across the two datasets, outperforming conventional models. The system also maintains latency under 60 ms on CPU- based setups. FocusTrack offers a scalable, privacy-aware solution for continuous engagement monitoring in real-world educational environments. It provides instructors with objective feedback to adapt teaching strategies dynamically.
[...] Read more.Learning is a lifelong process. The saying 'You learn as long as you live' exists for a reason. Acquiring new and unfamiliar knowledge, preparing for exams, completing assignments, and writing research papers can be challenging and time-consuming. As educators, we always aim to give our best, simplifying complex concepts, providing clear visual aids, and even offering simulations where possible. Our main goal is to engage students effectively and maintain their attention throughout the learning journey. This is why the teaching materials provided by professors and the way they communicate to students are of great significance. In this paper, we will explore students' perspectives on teaching materials through a brief discussion, and we will draw conclusions to guide the future direction of the learning process.
[...] Read more.In recent days, we have largely adopted Advanced Large Language Models (LLMs) in educational settings, where we use them as content creators, teaching assistants, and interactive conversation agents. However, the responses generated by these models are often monotonous, verbose, and ambiguous, which can hinder their effectiveness in educational contexts. Addressing these shortcomings, we introduce EduAgent, a multimodal chatbot framework specifically designed to enhance interactive learning in Electrical and Electronics Engineering (EEE) education. EduAgent can respond with pedagogically enhanced answers to electronics-related queries, complemented by relevant images and detailed explanations. It is designed to provide complete, concise, step-by-step responses, ensuring that foundational knowledge is clearly mentioned before diving deep. To develop EduAgent, we constructed a dataset comprising 596 four-turn conversations and a collection of 118 images covering a wide range of EEE concepts. The conversation dataset was used to fine-tune the open-source LLMs and facilitate in-context learning. Both images and their corresponding explanations were integrated into a knowledge base for efficient retrieval. Finally, we evaluated multiple text generation and image retrieval methods using both automatic metrics and human assessments, demonstrating the effectiveness and engagement of our approach.
[...] Read more.Cooperative training plays a pivotal role in the educational process, particularly at the university level, where students dedicate a certain period to work within governmental or private organizations. In this context, cooperative training enables students to acquire practical experience in their fields of specialization and to meet distinguished professional standards. In this study, the foundations and standards for organizing cooperative training will be presented to enhance the cooperative training efficiency. Given that the organization of cooperative training is closely tied to students' academic disciplines, particular focus will be placed on computer engineering and science fields. However, the proposed model can be adapted to suit other engineering and scientific fields. Organizing cooperative training in the domains of computer engineering and science is, to some extent, more complex than it is in other disciplines. This complexity arises due to the multiplicity and geographical distribution of training entities, the diversity of activities carried out during the training period, and the increasing number of participating students. To ensure the effective management of cooperative training and overcome the difficulties facing higher education institutions, such as ineffective supervision, management procedures, and the lack of databases, it is necessary to develop an electronic platform that facilitates interaction among the various stakeholders involved. In this regard, the platform should offer a set of services supported by smart technologies capable of regulating activities according to the approved training programs. Accordingly, this research will present the specification and analytical overview and propose initial designs necessary for the development of such a platform.
[...] Read more.Early prediction of students' placement outcomes is critical for aligning curricula with industry demands, optimizing academic planning, and providing focused career support. It also enhances institutional reputation, strengthens employer partnerships, and supports data-driven decision-making. However, predictive modeling in this context is challenged by data heterogeneity, evolving market factors, subjective evaluations, and bias mitigation. This study proposes an AI-driven framework that integrates Gated Recurrent Unit (GRU) networks with Modified Dwarf Mongoose Optimization (MDMO) to address these challenges. GRU effectively captures temporal patterns in academic and behavioral data, while MDMO ensures optimal hyperparameter tuning through advanced search strategies. Model performance was rigorously evaluated using multiple metrics including accuracy, false positive rate (FPR), false negative rate (FNR), sensitivity, specificity, and Matthews Correlation Coefficient (MCC). The proposed GRU-MDMO model achieved an accuracy of 98.5%, sensitivity of 97.78%, specificity of 99.09%, and MCC of 96.97%, outperforming other baseline models such as SVM, ANN, RF, and traditional GRU variants. These results demonstrate the model’s robustness, reliability, and suitability for early placement prediction. This approach empowers institutions to improve placement rates, enhance curriculum design, attract admissions, and ultimately foster better student career outcomes through AI-guided educational intelligence.
[...] Read more.One of the main concerns in educational research is the effect of computer games on students' psychological well-being and academic achievement. Three hundred students from the State Academic University for the Humanities and Kazan Federal University participated in this study to look at these consequences. Using a mixed-methods approach, quantitative data from standardized questionnaires (GHQ, STAI) and qualitative data from semi-structured interviews were combined. The two universities had GHQ ratings of 15.0 and 17.6 and STAI values of 40.5 and 38.7, respectively, indicating moderate anxiety and general health concerns. Self-reported GPA indicated generally strong academic achievement, with no significant disparities between universities. Significant support was found for educational games in the survey replies, with 75% citing higher motivation and 80% agreeing that they had a favorable influence on learning. Nonetheless, 50% of educators reported difficulties incorporating games into their courses. These results demonstrate how educational games may improve learning and engagement. According to the study, more investigation is required to examine long-term impacts, variances among populations, and aspects of game design that maximize learning results.
[...] Read more.Predicting College placements based on academic performance is critical to supporting educational institutions and students in making informed decisions about future career paths. The present research investigates the use of Machine Learning (ML) algorithms to predict college students' placements using academic performance data. The study makes use of a dataset that includes a variety of academic markers, such as grades, test scores, and extracurricular activities, obtained from a varied sample of college students. To create predictive models, the study analyses numerous ML algorithms, including Logistic Regression, Gaussian Naive Bayes, Random Forest, Support Vector Machine, and K-Nearest Neighbour. The predictive models are evaluated using performance criteria such as accuracy, precision, recall, and F1-score. The most effective machine learning method for forecasting students' placements based on academic achievement is identified through a comparative study. The findings show that Random Forest approaches have the potential to effectively forecast college student placements. The findings show that academic factors such as grades and test scores have a considerable impact on prediction accuracy. The findings of this study could be beneficial to educational institutions, students, and career counsellors.
[...] Read more.Technology has changed the way we teach and the way we learn. Many learning theories can be used to apply and integrate this technology more effectively. There is a close relationship between technology and constructivism, the implementation of each one benefiting the other. Constructivism states that learning takes place in contexts, while technology refers to the designs and environments that engage learners. Recent efforts to integrate technology in the classroom have been within the context of a constructivist framework. The purpose of this paper is to examine the definition of constructivism, incorporating technology into the classroom, successful technology integration into the classroom, factors contributing to teachers’ use of technology, role of technology in a constructivist classroom, teacher’s use of learning theories to enable more effective use of technology, learning with technology: constructivist perspective, and constructivism as a framework for educational technology. This paper explains whether technology by itself can make the education process more effective or if technology needs an appropriate instructional theory to indicate its positive effect on the learner.
[...] Read more.The project-based learning (PjBL) paradigm is often considered the most advanced in vocational education. The increasing use of the PjBL paradigm in vocational education is an intriguing topic of study. In line with the rapid growth of information technology, it enables PjBL in vocational education to help students develop problem-solving, critical thinking, and teamwork skills. In this study, a bibliometric method is used to provide insight into the structure of the subject, social networks, research trends, and issues reflecting project-based learning in vocational education. On November 27, 2022, the Scopus database was searched using project-based learning terms in the title. The second search field appears in the title, abstract, and keywords vocational education or TVET, restricted to journal articles or proceedings and in English to keep them current. This analysis revealed 60 articles in Scopus-indexed journals and proceedings between 2010 and 2022. Dwi Agus Sudjimat from Malang State University, Indonesia, was the most prolific author, having authored four articles on the subject. Indonesia is the nation investing the most in developing PjBL models. According to the thematic data, project-based learning is located in the first quadrant, has high centrality and density, and has well-developed questions related to the study topic. The results of this study show that the project-based learning model that is evolving in vocational education is likely to continue to be an important teaching approach in this field.
[...] Read more.Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for house owners and the real estate market. A survey of literature is carried out to analyze the relevant attributes and the most efficient models to forecast the house prices. The findings of this analysis verified the use of the Artificial Neural Network, Support Vector Regression and XGBoost as the most efficient models compared to others. Moreover, our findings also suggest that locational attributes and structural attributes are prominent factors in predicting house prices. This study will be of tremendous benefit, especially to housing developers and researchers, to ascertain the most significant attributes to determine house prices and to acknowledge the best machine learning model to be used to conduct a study in this field.
[...] Read more.Large Language Models (LLMs) have received significant attention due to their potential to transform the field of education and assessment through the provision of automated responses to a diverse range of inquiries. The objective of this research is to examine the efficacy of three LLMs - ChatGPT, BingChat, and Bard - in relation to their performance on the Vietnamese High School Biology Examination dataset. This dataset consists of a wide range of biology questions that vary in difficulty and context. By conducting a thorough analysis, we are able to reveal the merits and drawbacks of each LLM, thereby providing valuable insights for their successful incorporation into educational platforms. This study examines the proficiency of LLMs in various levels of questioning, namely Knowledge, Comprehension, Application, and High Application. The findings of the study reveal complex and subtle patterns in performance. The versatility of ChatGPT is evident as it showcases potential across multiple levels. Nevertheless, it encounters difficulties in maintaining consistency and effectively addressing complex application queries. BingChat and Bard demonstrate strong performance in tasks related to factual recall, comprehension, and interpretation, indicating their effectiveness in facilitating fundamental learning. Additional investigation encompasses educational environments. The analysis indicates that the utilization of BingChat and Bard has the potential to augment factual and comprehension learning experiences. However, it is crucial to acknowledge the indispensable significance of human expertise in tackling complex application inquiries. The research conducted emphasizes the importance of adopting a well-rounded approach to the integration of LLMs, taking into account their capabilities while also recognizing their limitations. The refinement of LLM capabilities and the resolution of challenges in addressing advanced application scenarios can be achieved through collaboration among educators, developers, and AI researchers.
[...] Read more.Due to the COVID-19 situation, all activities, including education, were shifted to online platforms. Consequently, instructors encountered increased challenges in evaluating students. In traditional assessment methods, instructors often face ambiguous cases when evaluating students’ competencies. Recent research has focused on the effectiveness of fuzzy logic in assessing students’ competencies, considering the presence of uncertain factors or multiple variables. Additionally, demographic characteristics, which can potentially influence students’ performance, are not typically utilized as inputs in the fuzzy logic method. Therefore, analyzing students’ performance by incorporating these factors is crucial in suggesting adjustments to teaching and learning strategies. In this study, we employ a combination of fuzzy logic and hierarchical linear regression to analyze students’ performance. The experiment involved 318 students from various programs and showed that the hybrid approach assessed students’ performance with greater nuance and adaptability when compared to a traditional method. Moreover, the findings in this study revealed the following: 1) There are differences in students’ performance between traditional and fuzzy evaluation methods; 2) The learning method is an impact on students’ fuzzy grades; 3) Students studying online do not perform better than those studying onsite. These findings suggest that instructors and educators should explore effective strategies being fair and suitable in assessment and learning.
[...] Read more.With the rapid and constant changes in computer and information technology, the content and learning methods in Computer Science related courses need to be continuously adapted and consistently aligned with the latest developments in the field. This paper proposes a learning approach called the Gallery-walk integrated Project-Based Learning (G-PBL) which can develop students’ lifelong learning skills that are extremely crucial for Computer Science students. The G-PBL was designed by incorporating the advantages of Project-Based Learning (PBL) and gallery walk learning strategy. In contrast to traditional PBL where students may present their project work to instructors only, students have to present their project work to their classmates as part of the G-PBL approach. All students are required to evaluate their peers’ project work and then give feedback and suggestions. For the research experiments, the G-PBL was implemented as an instructional approach in two Computer Science related courses. This study focuses on exploring the differences in knowledge gain, learning motivation, and perceived usefulness when learning by using the teacher-centered and G-PBL approach. Moreover, the impact of gender differences on learning outcomes is also investigated. The results reveal that using the G-PBL approach helps students to gain more knowledge significantly, for both male and female students. In terms of motivation, female students are more favorable toward the G-PBL approach. On the contrary, male students prefer learning via a teacher-centered approach. Regarding the perceived usefulness, female students strongly view the G-PBL as a highly effective learning approach, whereas male students are more prone to concur that the teacher-centered approach is a more effective learning method.
[...] Read more.Motivation has been called the “neglected heart” of language teaching. As teachers, we often forget that all of our learning activities are filtered through our students’ motivation. In this sense, students control the flow of the classroom. Without student motivation, there is no pulse, there is no life in the class. When we learn to incorporate direct approaches to generating student motivation in our teaching, we will become happier and more successful teachers. This paper is an attempt to look at EFL learners’ motivation in learning a foreign language from a theoretical approach. It includes a definition of the concept, the importance of motivation, specific approaches for generating motivation, difference between integrative and instrumental motivation, difference between intrinsic and extrinsic motivation, factors influencing motivation, and adopting motivational teaching practice.
[...] Read more.Entrepreneurship is the key driver of economic progress in many countries; thus, many countries have introduced policies to promote a more entrepreneurial environment. This study assesses the impact of factors affecting entrepreneurial intention of university students. The data was collected through a survey of 341 students at 09 leading universities in Hanoi, Vietnam and analyzed using structural equation modeling (SEM) with SPSS and Amos software. The research results show that entrepreneurial skills, entrepreneurial environment and subjective norms either directly or indirectly affect business motivation and entrepreneurial intention of university students. Thus, it is suggested that university and other educational institutions should provide more activities and taught courses that help students acquire the knowledge and skills necessary for entrepreneurship.
[...] Read more.It is important to study learning styles because recent studies have shown that a match between teaching and learning styles helps to motivate students´ process of learning. That is why teachers should identify their own teaching styles as well as their learning styles to obtain better results in the classroom. The aim is to have a balanced teaching style and to adapt activities to meet students´ style and to involve teachers in this type of research to assure the results found in this research study. Over 100 students complete a questionnaire to determine if their learning styles are auditory, visual, or kinesthetic. Discovering these learning styles will allow the students to determine their own personal strengths and weaknesses and learn from them. Teachers can incorporate learning styles into their classroom by identifying the learning styles of each of their students, matching teaching styles to learning styles for difficult tasks, strengthening weaker learning styles. The purpose of this study is to explain learning styles, teaching styles match or mismatch between learning and teaching styles, visual, auditory, and kinesthetic learning styles among Iranian learners, and pedagogical implications for the EFL/ESL classroom. A review of the literature along with analysis of the data will determine how learning styles match the teaching styles.
[...] Read more.Predicting College placements based on academic performance is critical to supporting educational institutions and students in making informed decisions about future career paths. The present research investigates the use of Machine Learning (ML) algorithms to predict college students' placements using academic performance data. The study makes use of a dataset that includes a variety of academic markers, such as grades, test scores, and extracurricular activities, obtained from a varied sample of college students. To create predictive models, the study analyses numerous ML algorithms, including Logistic Regression, Gaussian Naive Bayes, Random Forest, Support Vector Machine, and K-Nearest Neighbour. The predictive models are evaluated using performance criteria such as accuracy, precision, recall, and F1-score. The most effective machine learning method for forecasting students' placements based on academic achievement is identified through a comparative study. The findings show that Random Forest approaches have the potential to effectively forecast college student placements. The findings show that academic factors such as grades and test scores have a considerable impact on prediction accuracy. The findings of this study could be beneficial to educational institutions, students, and career counsellors.
[...] Read more.There appears to be a tendency for the strategies and methods that have been offered in OOP course learning to affect the improvement of individual skills only. There is a significant need for learning strategies which are relevant and able of improving collaborative working skills. The purpose of this study is to develop a Collaborative Learning and Programming model suitable for Object-Oriented Programming courses and assess its validity, practicality, and effectiveness. The implementation of the CLP model was conducted using the ADDIE development procedure by involving 7 experts, 35 experimental class students, 23 control class students and 4 lecturers of the Object-Oriented Programming course. The survey results showed that the CLP model was valid, practical, and effective in achieving these goals. The validity test results were verified based on experts' assessment, indicating that the aspects contained in the CLP model were valid with an Aiken's value V =0.89. The practicality test results indicated that the model was highly practical with the practicality value of 89.95% from students and 89.67% from lecturers. Finally, using the CLP model demonstrated its effectiveness in reducing the abstraction and complexity of OOP courses and improving student collaboration, particularly in programming tasks. The significance of conducting this survey is that it provides evidence for the effectiveness of the CLP model in achieving its intended goals and can inform the development of future OOP courses and programming tasks. The survey was conducted well, as it used both expert assessment and student and lecturer feedback to assess the validity, practicality, and effectiveness of the CLP model.
[...] Read more.With the rapid and constant changes in computer and information technology, the content and learning methods in Computer Science related courses need to be continuously adapted and consistently aligned with the latest developments in the field. This paper proposes a learning approach called the Gallery-walk integrated Project-Based Learning (G-PBL) which can develop students’ lifelong learning skills that are extremely crucial for Computer Science students. The G-PBL was designed by incorporating the advantages of Project-Based Learning (PBL) and gallery walk learning strategy. In contrast to traditional PBL where students may present their project work to instructors only, students have to present their project work to their classmates as part of the G-PBL approach. All students are required to evaluate their peers’ project work and then give feedback and suggestions. For the research experiments, the G-PBL was implemented as an instructional approach in two Computer Science related courses. This study focuses on exploring the differences in knowledge gain, learning motivation, and perceived usefulness when learning by using the teacher-centered and G-PBL approach. Moreover, the impact of gender differences on learning outcomes is also investigated. The results reveal that using the G-PBL approach helps students to gain more knowledge significantly, for both male and female students. In terms of motivation, female students are more favorable toward the G-PBL approach. On the contrary, male students prefer learning via a teacher-centered approach. Regarding the perceived usefulness, female students strongly view the G-PBL as a highly effective learning approach, whereas male students are more prone to concur that the teacher-centered approach is a more effective learning method.
[...] Read more.The project-based learning (PjBL) paradigm is often considered the most advanced in vocational education. The increasing use of the PjBL paradigm in vocational education is an intriguing topic of study. In line with the rapid growth of information technology, it enables PjBL in vocational education to help students develop problem-solving, critical thinking, and teamwork skills. In this study, a bibliometric method is used to provide insight into the structure of the subject, social networks, research trends, and issues reflecting project-based learning in vocational education. On November 27, 2022, the Scopus database was searched using project-based learning terms in the title. The second search field appears in the title, abstract, and keywords vocational education or TVET, restricted to journal articles or proceedings and in English to keep them current. This analysis revealed 60 articles in Scopus-indexed journals and proceedings between 2010 and 2022. Dwi Agus Sudjimat from Malang State University, Indonesia, was the most prolific author, having authored four articles on the subject. Indonesia is the nation investing the most in developing PjBL models. According to the thematic data, project-based learning is located in the first quadrant, has high centrality and density, and has well-developed questions related to the study topic. The results of this study show that the project-based learning model that is evolving in vocational education is likely to continue to be an important teaching approach in this field.
[...] Read more.Due to the COVID-19 situation, all activities, including education, were shifted to online platforms. Consequently, instructors encountered increased challenges in evaluating students. In traditional assessment methods, instructors often face ambiguous cases when evaluating students’ competencies. Recent research has focused on the effectiveness of fuzzy logic in assessing students’ competencies, considering the presence of uncertain factors or multiple variables. Additionally, demographic characteristics, which can potentially influence students’ performance, are not typically utilized as inputs in the fuzzy logic method. Therefore, analyzing students’ performance by incorporating these factors is crucial in suggesting adjustments to teaching and learning strategies. In this study, we employ a combination of fuzzy logic and hierarchical linear regression to analyze students’ performance. The experiment involved 318 students from various programs and showed that the hybrid approach assessed students’ performance with greater nuance and adaptability when compared to a traditional method. Moreover, the findings in this study revealed the following: 1) There are differences in students’ performance between traditional and fuzzy evaluation methods; 2) The learning method is an impact on students’ fuzzy grades; 3) Students studying online do not perform better than those studying onsite. These findings suggest that instructors and educators should explore effective strategies being fair and suitable in assessment and learning.
[...] Read more.Entrepreneurship is the key driver of economic progress in many countries; thus, many countries have introduced policies to promote a more entrepreneurial environment. This study assesses the impact of factors affecting entrepreneurial intention of university students. The data was collected through a survey of 341 students at 09 leading universities in Hanoi, Vietnam and analyzed using structural equation modeling (SEM) with SPSS and Amos software. The research results show that entrepreneurial skills, entrepreneurial environment and subjective norms either directly or indirectly affect business motivation and entrepreneurial intention of university students. Thus, it is suggested that university and other educational institutions should provide more activities and taught courses that help students acquire the knowledge and skills necessary for entrepreneurship.
[...] Read more.Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for house owners and the real estate market. A survey of literature is carried out to analyze the relevant attributes and the most efficient models to forecast the house prices. The findings of this analysis verified the use of the Artificial Neural Network, Support Vector Regression and XGBoost as the most efficient models compared to others. Moreover, our findings also suggest that locational attributes and structural attributes are prominent factors in predicting house prices. This study will be of tremendous benefit, especially to housing developers and researchers, to ascertain the most significant attributes to determine house prices and to acknowledge the best machine learning model to be used to conduct a study in this field.
[...] Read more.The development of methods for assessing lecturers' performance is needed to motivate lecturers to achieve institutional targets. Currently, lecturers are required to be able to adapt to the rapid development of technology. Lecturer performance assessment must be done periodically. Competence is measured as a basis for planning resource development activities. The method that is often used for assessing lecturer performance is the Simple Additive Weighting (SAW) method. However, the SAW method has drawbacks, namely 1) the process of determining criteria is only carried out by the leadership (subjective); 2) The SAW method can only be applied to multi-criteria data ; 3) Data ranking problems. Based on this deficiency, a new method was built, namely, the Weighted Performance Indicator (WPI) method using respondents’ opinion to determine the criteria. This study aims to compare the performance of the two methods. Testing criteria using SPPS application dan WPI method, while testing methods utilized the SAW method and the WPI method. The results of the criterion test show the Percentage of Similarity of data validity = 96.7 % witht the minimum percentage limit (MPL) = 40%. While the results of the SAW method and WPI method testing resulted in the highest score in the 13th alternative, namely SAW score (v13) = 793.76 and WP score (WP13) = 0.928, and the lowest value in the 30th alternative, SAW score (v30) = 18.60 and WP score (WP30) = 0.140. the ranking positions in these two methods show similarities. However, for other alternatives, the rating value can be different.
The WPI method is a scientific development in the field of decision support systems that can be applied to other performance assessments, such other human resources, system performance assesment etc.
The results of this study prove that the WPI method can be used as a performance assessment method with different characteristics from the SAW method.
The foundational tenet of any nation's prosperity, character, and progress is education. Thus, a lot of emphasis is laid on quality of education and education delivery system in India with current financial year (2022-23) education budget outlay of Rs. 1,04,277.72 crores. This research contributes in analyzing how students perform in academics depending upon the time spent on their extracurricular activities with the help of three Machine Learning prediction algorithms namely Decision Tree, Random Forest and KNN. Additionally, in order to comprehend the underlying causes of the shortcomings in each machine learning technique, comparisons of the prediction outcomes obtained by these various techniques are made. On our dataset, the Decision Tree outscored all other algorithms, achieving F1 84 and an accuracy of 85%. The research, which is at an introductory level, is meant to open the door for more complexes, specialised, and in-depth studies in the area of predicting the performance in academics.
[...] Read more.Assessing pre-service teachers’ digital literacy is challenging, particularly in inclusive education. Reliable and valid testing instruments are required to measure the digital literacy pre-service teachers possess in inclusive education. The entire research process comprises three phases. The first stage was to develop the assessment instrument, the second stage was to validate its content validity, and a pilot study was then conducted to test the reliability and construct validity of the instrument. The results of this study showed that item-level and scale-level content validity scores were both 1.0. The Kaiser-Meyer-Olkin is equal to 0.865. Five factors were extracted, explaining 54.40% of the total variance. The model fits were also all satisfactory. Standardized factor loadings of the instrument’ s 28 items were above 0.5. The values of Cronbach’s are higher than 0.7 for the five factors and the whole instrument. It can be summarized that the instrument had good reliability and validity and can be used to assess the digital literacy of pre-service teachers in inclusive education. There has been research into developing tools to evaluate the digital literacy of pre-service teachers. Still, few studies have addressed pre-service teachers of inclusive education, and this study fills this research gap. The subsequent phase involves evaluating it using a more extensive sample.
[...] Read more.