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Abstract: Diarrhea is responsible for killing around 525,000 children every year, even though it is preventable and 

treatable. More than 130 nations are affected by the illness of diarrhea. Mathematical models provide a valuable tool for 

understanding the dynamics of infectious diseases like diarrhea and evaluating potential control strategies. To 

understand its transmission dynamics in Bangladesh, this study develops a Susceptible-Infectious-Recovered (SIR) 

mathematical model that incorporates both the human (host) and housefly (vector) populations. The model consists of 
five nonlinear ordinary differential equations (ODEs). We analyze the model to determine its equilibrium points and the 

basic reproduction number  (  ) . Using demographic and epidemiological parameters for Jashore and Khulna, 

Bangladesh, we calculate the basic reproduction number to be        . This value, being greater than 1, indicates 

that the disease-free state is unstable and predicts a stable endemic equilibrium where diarrhea persists in the population. 

Numerical simulations for Khulna and Jashore illustrate this endemic dynamic, showing a decline in initial infections 

followed by long-term persistence. The findings confirm the model's utility in explaining the endemic nature of diarrhea 

in the region and highlight that interventions targeting vector (housefly) control are essential for effective public health 

strategies. 

 

Index Terms: SIR Model, Diarrhea Disease, Epidemic, Reproduction Number, Bangladesh 
 

 

1. Introduction 

Mathematical modeling has become indispensable in understanding infectious disease dynamics and designing 

effective interventions. Compartmental models such as SI, SIS, and SIR remain foundational frameworks, providing a 

structured way to quantify transmission, recovery, and intervention impacts. These models allow researchers to explore 

disease persistence, eradication, and the effectiveness of public health strategies. Their applications range from 

influenza and HIV/AIDS to diarrheal diseases and, more recently, COVID-19, where they have informed policy 

decisions by estimating transmission potential, intervention thresholds, and herd immunity effects. 
Early research primarily focused on theoretical development and model validation. Kandhway and Kuri [1] 

demonstrated optimal control strategies for SIS and SIR dynamics, highlighting how interventions can be timed to 

minimize spread. Rodrigues [2] provided a comprehensive analysis of the classical SIR model, emphasizing its 

versatility for various infectious diseases. Ehrhardt et al. [3] extended the SIR framework to incorporate vaccination and 

waning immunity, applying numerical methods to examine disease progression, while Zaman et al. [4] analyzed 
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equilibrium states to distinguish conditions leading to disease-free or endemic populations. Barro et al. [5] integrated 

time delays with optimal control, bridging theoretical modeling and applied intervention strategies. These studies 

collectively underscore the importance of connecting mathematical rigor with practical epidemiological interpretation. 

Subsequent research has adapted these models to disease-specific contexts, particularly diarrhea, which involves 

complex interactions between human populations and vectors such as houseflies. Rahmadani et al. [7] developed a 

multi-compartment model including vectors to evaluate ten control scenarios, illustrating how vector dynamics can 

shape disease outcomes. Affandi and Salam [8] adopted an SIR-VT model incorporating vaccination and treatment, 

optimizing interventions using numerical simulations. These studies demonstrate the potential of SIR-based models to 

inform resource allocation and intervention design but also reveal a recurring limitation: most rely on estimated 

parameters rather than robust empirical data, limiting real-world validation [10-13]. 

Recent modeling efforts emphasize heterogeneity, stochasticity, and delay effects to enhance realism. Zhang et al. 
[15] introduced fixed infectious periods as delays in SIR dynamics, capturing realistic temporal progression of infection. 

Acemoglu et al. [19] developed a multi-risk SIR model, showing that age-stratified infection and mortality risks 

critically influence disease outcomes. Sharif et al. [22] incorporated stochastic environmental fluctuations in diarrheal 

disease models, providing insights into persistence, extinction, and long-term dynamics under uncertainty. These 

advancements highlight the growing sophistication of epidemic modeling in accounting for real-world complexity. 

Despite these contributions, several gaps remain. Most studies emphasize mathematical or computational results 

without integrating empirical epidemiological data, which limits parameter validation and predictive accuracy. 

Furthermore, the literature often lacks comparative evaluation of modeling approaches, with limited discussion of how 

assumptions (e.g., homogeneous mixing, constant populations, or vector behavior) affect results. Finally, there is 

insufficient linkage between mathematical findings and actionable public health strategies in specific regions, reducing 

the practical relevance of many models [23-27]. 
Addressing these gaps, the present study develops a computational SIR model for diarrhea that integrates realistic 

assumptions, interprets equilibrium points epidemiologically, and evaluates intervention strategies in regions such as 

Khulna and Jashore. By combining theoretical rigor with empirical plausibility, this work provides insights into disease 

dynamics that can inform targeted public health interventions and contribute to broader efforts in diarrhea control and 

eradication. 

The paper is organized as follows: Section 2 reviews the classical SIR model by Kermack and McKendrick; 

Section 3 introduces the proposed SIR model for diarrheal disease; Section 4 presents results and discussion; and 

Section 5 concludes with key findings and future directions. 

2. Methodology 

2.1 SIR Model Due to Kermack and Mckendrick 

In this part, we will discuss a fundamental SIR model [25]. It is used to simulate the spread of various infectious 

diseases within a large population. The population is divided into three groups, identified by the labels  ,   and  . Each 

of these is a function of time  . 
 

∎   represents the number of susceptible individuals who are not currently infected but are at risk of becoming 

infected. 

∎   denotes the rate of infection. Susceptible individuals become infected through interactions with infective 

individuals. 

∎   indicates the total number of infected individuals. These individuals carry the disease and are capable of 

transmitting it to susceptible. 

∎   represents the recovery rate. Infected individuals recover over time. 

∎   represents the number of individuals who have been removed. 

 

                               

 

                                                             
 

 

Fig. 1. Basic SIR model diagram 

The transmission of infection depends on the interaction between susceptible and infected individuals. New 

infections result from contact between susceptible individuals and those who are infective. In this model, the rate of 

new infections is given by   , where   is a positive constant. 

When a new illness arises, the affected individual moves from the susceptible to the infective class. There are no 

other mechanisms in this approach for individuals to transition in or out of the susceptible class. The alternative 

procedure involves transferring infective individuals to the removed class. It is assumed that this happens at a rate of   ,  
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with   being a positive constant. 

 
    

    
  

   

 
                                                                                    (1) 

 
  

  
 
   

 
 –                                                                                     (2) 

 
    

    
                                                                                        (3) 

 
Through the model, we assume the total population remains constant. The population is made up of susceptible, 

infected, and recovered individuals. Total population:    (     ). 

3. SIR Model for Diarrhea Disease 

Though the SIR model is primarily used to evaluate stability of disease in human populations, it is equally 

applicable to vectors. The transmission of diarrheal disease to humans occurs via contact with houseflies ( ) . This 

effect needs to be represented within the SIR model. The recovery rate of houseflies will be overlooked because of their 

limited lifespan. 

Let    denote the total human population, including susceptible, infected, and removed individuals(          ). 
Again, let    denote the total vector population, consisting of both susceptible and infected houseflies(     ). In this 

model,    and    are considered to be constant. As a result, the birth rate for the total population is     , where   

refers to either   (vectors) or   (host), and    is the corresponding death rate. 

 

 

Fig. 2. Schematic diagram of diarrhea infection transmission 

Description of variables and parameters of this model: 

 

∎  ( ) be the number of susceptible individuals at time t . 

∎  ( ) be the number of infected individuals at time  . 
∎  ( ) be the number of recovered at time  . 
∎   be the constant recovery rate. 

∎   be the rate of contact that is sufficient to transmit the disease. 

∎   be the death rate due to diarrhea disease. 

∎   be the rate of natural death. 

∎   be the rate at which infected people are recovered. 

∎     represents the total human population. 

∎     represents the number of humans who are susceptible, meaning they are not infected but could potentially 
become infected. 

∎     represents the number of infected humans. These individuals are infected with the disease and have the 

ability to transmit it to the houseflies. 

∎     denotes the total number of human individuals who have been removed. These individuals may or may not 

carry the disease, but they are unable to infected again or transmit it to others. These individuals could have 

natural immunity, recovered from the illness with immunity, be infected but unable to spread it (due to isolation), 

or may have died. This mathematical model makes no distinguish among these options. 

∎     denotes the birth rate of humans. The parameter interacts directly with the overall population   . 

∎     represents the human death rate. 

∎    represents the human infection rate. 

∎    represents the human recovery rate. 

∎     represents the total population of houseflies. 
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∎     represents the number of houseflies that are susceptible, meaning they are not infected but have the potential 

to become infected. 

∎     represents the number of houseflies that are infected. These infected houseflies have the disease and can 

spread it to humans. 

∎     represents the infection rate for houseflies. 

∎     represents the death rate for houseflies. 

∎    represents the birth rate for houseflies. The parameter interacts with the overall housefly population   . 
∎   denotes the average interaction rate of a housefly. 

 

First, we will determine the host model, which describes the rates of susceptible, infected and recovered human. 

The interaction model is described by three differential equations. 

 
 

  
        

   

  
                                                                          (4) 

 
 

  
   

   

  
     (     )                                                                   (5) 

 
 

  
                                                                                      (6) 

 

Next, we will determine the vector model, which describes the rates of susceptible and infected vectors. The 

interaction model is described by a system of two differential equations. 
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Now, we may also consider that              , therefore we have these two models as follows: 
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     (     )                                                                  (10) 
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and 
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                                                                              (13) 

 
Since total human population is equal to the addition of susceptible, infected and recovered individuals, so we have, 

 

                                                                                     (14) 

 

Again, since total vector population is equal to the addition of the susceptible and infected individuals, so we have, 

 

                                                                                   (15) 

 

In order to comprehend the stability of human and housefly populations, it will reorganize both models and 

combine them into one. 

Applying (  ) to (  ) 
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Applying (  ) to (  ) 
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As a result, these two equations tell us that our conditions can be expressed as, 
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In order to simplify the model by removing its nonlinear terms, we will nondimensionalize it. 

 

 ( )  
  

  
   ( )  
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                                                               (19) 

 

Let us define, 

 

•  
     

  
 
                                                                            

                      
; 

•   (     )  Birth rate of human Recovery rate of human; 

•       Average of housefly contact Infection rate of houseflies; 

•      Birth rate of houseflies; 

•       Birth rate of human; 

 

Thus, we get from (  ) 
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Equation (  ) becomes  
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Thus, by nondimensionalizing the system, we obtain the following model: 

 
  

   
  *   ( )+    ( ) ( )                                                              (20) 

 
  

  
    ( ) ( )    ( )                                                                   (21) 

 
  

    
   ( ) *   ( )+    ( )                                                            (22) 

 

To identify the point(s) of equilibrium, the aforementioned equations must be set to  . Therefore, 

 
  

  
  *   ( )+    ( ) ( )   
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                                                       (23) 

 

Solving this system yields two equilibrium points. The first   (     ) represents the Disease-Free Equilibrium 

(DFE), where no infected humans (   )or vectors(   ) exist, and the entire human population is susceptible(  
 ). The second (        ) represents the Endemic Equilibrium (EE), where the disease persists in the population at a 

constant level. 
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Let,   
  

  
   

  

  
   

  

  
 

Now, using the Jacobian of the non-dimensionalized model, we obtain the following, 
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So, at the equilibrium point (     ), we obtain 
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To find the eigenvalues, we set 
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This yield 

 

 

 (    )(               )                                                   (28) 
The three eigenvalues are  
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We have    and    are always negative, because        are always positive and    can be either positive or 

negative. 

At the equilibrium point (        ), we have 
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To find the eigen-values we set 
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The eigenvalues of the system can be efficiently computed through computer simulations, for which Maple 

provides an effective computational platform. In addition, assigning specific numerical values to the parameters 

facilitates a clearer stability analysis. 

Reproduction Number    

The equilibrium point  (        ) is meaningful only if         are positive. This depends on a threshold parameter, 

the basic reproduction number,    given by:   
 

   
  

  
                                                                                   (32) 

 

An epidemic occurs if     , and the disease dies out if     . 

4. Results and Discussions 

In this section, we present numerical data based on the SIR model for diarrhea infection. Chaturvedi et al. [26] 

provided several parameter values intended to support further analytical and numerical studies. These values are 

summarized in Table 1. Using this dataset, together with supplementary information from additional sources, we 

conduct a series of simulations to investigate the model’s dynamical behavior. 

Table 1. Basic parameters 

Name of the Parameter Symbol Initial Value 

Transmission probability of vector to host    0.5 

Transmission probability of host to vector    0.2 

Contacts per susceptible housefly per day    0.4 

Contacts per infectious housefly per day    0.6 

Interaction Rate, Host to Vector     0.5 

Interaction Rate, Vector to Host     0.3 

Human Life Span  

  
 

HL 

Vector Life Span  

  
 

VL 

Host Infection Duration [33]  

     
 

5 Days 

 

HL and VL represent the life span we obtained from resources. Let us consider analyzing the population of Khulna 

city in Bangladesh. Record shows that Khulna city has total population of 10, 00,000 [28]. Therefore, we consider some 

parameters for this population and assume there are 300,000 houseflies in Khulna [22]. Let us consider HL = 26650 

days [29] and VL = 25 days [30] are regarded as the minimum lifespan of a housefly. 
Now we have, 
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Now putting the values of         and  , into (24), we get, 
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Thus, the equilibrium points are:  
(        )  (     ) and  (        )  (                           ) 

Now, we need to calculate the eigen-values for the equilibrium point (     ). 
From (29), we get three eigen-values. That are, 
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Now putting the values of         and  , we get, 
 

               

             

            
 

Therefore, we get the eigen-values for the equilibrium point,   (     ) are:                  
          and            , which is unstable, as the eigenvalue    is positive. This result aligns with our finding 

that     , predicting that the disease-free state is not sustainable. 

Again, we need to calculate the eigen-values for the equilibrium point (                           ) 
Now, based on the Jacobian of the nondimensionalized model from (25), we have 
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At the equilibrium point (                           ), 
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To find the eigen-values we set 
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Using Maple software, the eigenvalues of the equilibrium point, 
(                           ) were computed as                ,                         and    
                    . Since all eigenvalues have negative real parts, the equilibrium is stable. This result 

corroborates our finding that, with a basic reproduction number        , the disease cannot be eradicated and is 

expected to persist in the population, becoming endemic. 
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Also, from equation (  ) we get the basic reproduction number: 

 

    
  

  
 
         

        
      

 

Since          , the disease is expected to persist and become endemic in the population. 

4.1. Sensitivity Analysis 

To identify the most critical parameters for disease control, we performed a sensitivity analysis on   . We varied 

each parameter by      while holding all others constant at their baseline values and recorded the change in   . 

Table 2. Basic parameters and sensitivity analysis 

Parameter Description Baseline Value     (Value +25%)     (Value -25%) 

  Vector-to-Host Rate 0.036 1.688 1.013 

  Host-to-Vector Rate 0.3 1.688 1.013 

  Vector Death Rate 0.04 1.08 1.80 

  Human Recovery Rate 0.2 1.08 1.80 

 

The sensitivity analysis reveals that      is most sensitive to changes in the human recovery rate ( )  and the vector 

death rate    . This suggests that interventions focused on treating infected humans (to increase ) and controlling the 

housefly lifespan (to increase ) will have the most significant impact on reducing the spread of diarrhea. 

We will now create two cases based on these parameters. 

Case I: 

Let us assume some initial data. Consider the case where we have    ( )          ( )           ( )  
    and    ( )           ( )         [31]. Based on the initial data, we get the following table. 

Table 3. Simulation results for Case I in Khulna city 

Days  hS t   hI t   hR t   vI t  

  53000 25500 0 25000 

   34000 16000 15000 16000 

   26000 8500 26000 11500 

   19000 3000 31000 6000 

   13000 2000 35400 4800 

   9000 1000 37000 2500 

   7500 850 38100 1050 

   5200 470 39300 500 

   3100 280 40500 420 

   2300 0 41000 280 

    1500 0 42500 0 

 

 

Fig. 3. Temporal dynamics of human and housefly populations in Khulna city for Case I 
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The graph indicates that a significant portion of the population recovers over time, with time measured in days. 

The simulation shows that the number of infected humans approaches zero after approximately 90 days, while the 

population of infected houseflies reaches zero around day 100. Notably, some susceptible individuals remain uninfected 

by day 100, as there are no longer any infected houseflies to transmit the disease. Consequently, the numbers of 

susceptible and recovered individuals stabilize by this time, which aligns with expected epidemiological behavior. 

Case II: 

Let us assume some initial data. Consider the case where we have   ( )          ( )          ( )  
   and   ( )           ( )        [32]. Based on the initial data, we get the following table. 

Table 4. Simulation results for Case II in Jashore city 

Day  hS t   hI t   hR t   vI t  

  64000 21500 0 19000 

   52700 13700 12000 15100 

   46300 9200 16500 12000 

   35480 4800 23200 11200 

   27200 2300 29000 7500 

   18400 950 34500 6200 

   11200 560 42700 4700 

   7500 420 46500 2500 

   3000 250 50000 1650 

   3000 0 51200 720 

    3000 0 53500 0 

 

 

Fig. 4. Temporal dynamics of human and housefly populations in Jashore city for Case II 

The graph illustrates that a significant portion of the population recovers over time, with time measured in days. 

The simulation indicates that the number of infected humans approaches zero after approximately 85 days, while the 

infected housefly population reaches zero after about 100 days. Notably, since there are no remaining infected 

houseflies, some exposed individuals remain uninfected beyond day 100. Consequently, the numbers of susceptible and 

recovered individuals stabilize after this period, consistent with expected epidemiological behavior. Furthermore, the 

results suggest that highly infected houseflies die at a faster rate than those with lower infection levels, highlighting the 

impact of infection intensity on vector mortality. 

5. Conclusion 

This study successfully developed a host-vector SIR model to analyze diarrhea transmission in Bangladesh. By 

establishing a system of five ODEs and non-dimensionalizing them, we established two key equilibrium points: the 

Disease-Free Equilibrium (DFE) and the Endemic Equilibrium (EE). Our primary finding is the calculation of the basic 

reproduction number,        , for Jashore and Khulna city. This critical value, being greater than 1, demonstrates 

that diarrhea is not a temporary outbreak but is endemic in the region. This mathematical result is consistent with the 

stability analysis, which showed the DFE to be unstable and the EE to be stable. The results emphasize the importance 

of considering both human and vector dynamics in modeling diarrheal diseases and provide a quantitative basis for  
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public health interventions. By highlighting the persistence of the disease and the key factors driving its transmission, 

this study offers valuable insights for the design of targeted control strategies, such as vector management and improved 

sanitation measures, to mitigate the burden of diarrhea in affected communities. 

6. Public Health Implications 

The goal for public health officials is to implement strategies that reduce the reproduction number to     . Our 

model's formula,    
  

  
, provides a clear guide for intervention:  

 

1. Reduce ε  (Vector-to-Host Transmission):    is a product of fly contact rate  f  and human infection 

probability    h . Public health campaigns should focus on vector control (e.g., insecticides, fly traps) to reduce the 

housefly population    vF  and physical barriers (e.g., window screens) to reduce contact.  

2. Reduce    (Host-to-Vector Transmission):    is a product of fly contact rate  f  and vector infection 

probability    v . This can be achieved by improving sanitation (e.g., building covered latrines, managing waste) to 

reduce the ability of houseflies to come into contact with infectious human material.  

3. Increase γ  (Human Recovery Rate): γ is the sum of the human birth/death rate  h  and the recovery rate

   h
. Increasing access to rapid medical treatment (e.g., rehydration therapy, clean water) will increase  h , which in turn 

increases γ  and lowers the   . 

References 

[1] Kandhway, K., & Kuri, J. (2014). How to run a campaign: Optimal control of SIS and SIR information epidemics. Applied 
Mathematics and Computation, 231, 79-92. 

[2] Rodrigues, H. S. (2016). Application of SIR epidemiological model: new trends. arXiv preprint arXiv:1611.02565. 

[3] Ehrhardt, M., Gašper, J., & Kilianová, S. (2019). SIR-based mathematical modeling of infectious diseases with vaccination and 
waning immunity. Journal of Computational Science, 37, 101027. 

[4] Zaman, G., Kang, Y. H., & Jung, I. H. (2008). Stability analysis and optimal vaccination of an SIR epidemic model. BioSystems, 
93(3), 240-249. 

[5] Barro, M., Guiro, A., & Ouedraogo, D. (2018). Optimal control of a SIR epidemic model with general incidence function and a 
time delays. Cubo (Temuco), 20(2), 53-66. 

[6] Chaturvedi, O., Jeffrey, M., Lungu, E., & Masupe, S. (2017). Epidemic model formulation and analysis for diarrheal infections 
caused by salmonella. Simulation, 93(7), 543-552. 

[7] Rahmadani, F., & Lee, H. (2020). Dynamic model for the epidemiology of diarrhea and simulation considering multiple disease 
carriers. International Journal of Environmental Research and Public Health, 17(16), 5692. 

[8] Affandi, P., & Salam, N. (2021, April). Optimal Control of diarrhea Disease model with Vaccination and Treatment. In Journal 
of Physics: Conference Series (Vol. 1807, No. 1, p. 012032). IOP Publishing. 

[9] Gaff, H., & Schaefer, E. (2009). Optimal control applied to vaccination and treatment strategies for various epidemiological 
models. Mathematical biosciences & engineering, 6(3), 469-492. 

[10] Berhe, H. W., Makinde, O. D., & Theuri, D. M. (2019). Modelling the dynamics of direct and pathogens-induced dysentery 
diarrhea epidemic with controls. Journal of biological dynamics, 13(1), 192-217. 

[11] Yu, X., & Ma, Y. (2021). Complex Dynamics of a Dysentery Diarrhea Epidemic Model With Treatment and Sanitation Under 
Environmental Stochasticity: Persistence, Extinction and Ergodicity. IEEE Access, 9, 161129-161140. 

[12] Zhou, Y., & Liu, H. (2003). Stability of periodic solutions for an SIS model with pulse vaccination. Mathematical and Computer 
Modelling, 38(3-4), 299-308. 

[13] Ogwel, B., Mzazi, V., Nyawanda, B. O., Otieno, G., & Omore, R. (2024). Predictive modeling for infectious diarrheal disease in 
pediatric populations: A systematic review. Learning Health Systems, 8(1), e10382. 

[14] Ji, W., Zou, S., Liu, J., Sun, Q., & Xia, L. (2020). Dynamic of non-autonomous vector infectious disease model with cross 
infection. American Journal of Computational Mathematics, 10(04), 591-602. 

[15] Zhang, F., Li, Z. Z., & Zhang, F. (2008). Global stability of an SIR epidemic model with constant infectious period. Applied 

Mathematics and Computation, 199(1), 285-291. 
[16] Mohajan, H. (2022). Mathematical analysis of SIR model for COVID-19 transmission. 
[17] Bernardi, F., & Aminian, M. (2021). Epidemiology and the sir model: Historical context to modern applications. CODEE 

Journal, 14(1), 4. 
[18] Sanchez, D. A. (1979). Ordinary differential equations and stability theory: an introduction. Courier Corporation. 
[19] Acemoglu, D., Chernozhukov, V., Werning, I., & Whinston, M. D. (2020). A multi-risk SIR model with optimally targeted 

lockdown (Vol. 2020). Cambridge, MA: National Bureau of Economic Research. 
[20] Heesterbeek, J. A. P., & Roberts, M. G. (2007). The type-reproduction number T in models for infectious disease control. 

Mathematical biosciences, 206(1), 3-10. 
[21] Moghadas, S. M., & Gumel, A. B. (2002). Global stability of a two-stage epidemic model with generalized non-linear incidence. 

Mathematics and computers in simulation, 60(1-2), 107-118. 
 



A Host-Vector SIR Model for Diarrhea Transmission: Analyzing the Role of Houseflies in Bangladesh 

Volume 11 (2025), Issue 4                                                                                                                                                                       23 

[22] Sharif, N., Nobel, N. U., Sakib, N., Liza, S. M., Khan, S. T., Billah, B., and Dey, S. K. (2020). Molecular and epidemiologic 

analysis of diarrheal pathogens in children with acute gastroenteritis in Bangladesh during 2014–2019. The Pediatric infectious 
disease journal, 39(7), 580-585. 

[23] Hattaf, K., & Yousfi, N. (2012). Optimal control of a delayed HIV infection model with immune response using an efficient 
numerical method. International Scholarly Research Notices, 2012(1), 215124. 

[24] Berhe, H. W., Makinde, O. D., & Theuri, D. M. (2019). Parameter estimation and sensitivity analysis of dysentery diarrhea 
epidemic model. Journal of Applied Mathematics, 2019(1), 8465747. 

[25] Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the 
royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772), 700-721. 

[26] Chaturvedi, O., Lungu, E., Jeffrey, M., and Masupe, S. (2018). Rotavirus diarrhea–An analysis through epidemic modeling. 
Journal of Biomedical Engineering and Informatics, 4(2). 

[27] Hidayati, N., Sari, E. R., and Waryanto, N. H. (2021). Mathematical model of Cholera spread based on SIR: Optimal control. 
Pythagoras J. Pendidik. Mat, 16(1). 

[28] https://worldpopulationreview.com/cities/bangladesh/khulna 
[29] https://www.cia.gov/the-world-factbook/field/life-expectancy-at-birth/country-comparison/ 
[30] https://www.orkin.com/pests/flies/house-flies/life-expectancy-of-house-flies 
[31] Extreme heat wave causes patients surge in Khulna https://www.bssnews.net/district/185219 
[32] https://www.uptodate.com/contents/acute-diarrhea-in-adults-beyond-the-basics/print 

 

 
 

 

Authors’ Profiles 
 

Nazrul Islam is an Assistant Professor in the Department of Mathematics at Jashore University of Science and 
Technology, Jashore-7408, Bangladesh. He holds a B.S. (Honor’s) in Mathematics and an M.S. (Master’s) in 

Applied Mathematics, both obtained from the University of Dhaka. Concurrently, he is also a PhD student at 
The Chinese University of Hong Kong (CUHK). His broad research interests center on Applied Mathematics, 
encompassing areas such as the Numerical Solution of ODE, PDE and Spline Approximations, Fluid Dynamics, 
Mathematical Physics, and Mathematical Biology. 

 

 

 

 
Md. Rayhan Prodhan completed his B.S. (Hons) in Mathematics from University of Dhaka. He obtained his 

M.S. in Applied Mathematics from the same University. He is currently working as a lecturer in the Department 
of Mathematics, Jashore University of Science and Technology, Jashore-7408, Bangladesh. His research 
interests are applied mathematics, numerical solution of ODE, PDE and spline approximations, and Fluid 
Dynamics. 
 
 
 

 

 
Md. Asaduzzaman received his B. S. (Hons) degree in Mathematics and M. S. in Pure Mathematics from the 
University of Dhaka. He is working as a Lecturer in the Department of Mathematics, Kishoreganj University, 
Kishoreganj-2300, Bangladesh. His research interest is on Mathematical Programming and different areas of 
Operations Research & Optimization. 

 

 

 

 

 

 

 

 
How to cite this paper: Nazrul Islam, Rayhan Prodhan, Md. Asaduzzaman, "A Host-Vector SIR Model for Diarrhea Transmission: 
Analyzing the Role of Houseflies in Bangladesh", International Journal of Mathematical Sciences and Computing(IJMSC), Vol.11, 
No.4, pp. 11-23, 2025. DOI: 10.5815/ijmsc.2025.04.02 

 


