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Abstract: Diarrhea is responsible for Killing around 525,000 children every year, even though it is preventable and
treatable. More than 130 nations are affected by the illness of diarrhea. Mathematical models provide a valuable tool for
understanding the dynamics of infectious diseases like diarrhea and evaluating potential control strategies. To
understand its transmission dynamics in Bangladesh, this study develops a Susceptible-Infectious-Recovered (SIR)
mathematical model that incorporates both the human (host) and housefly (vector) populations. The model consists of
five nonlinear ordinary differential equations (ODESs). We analyze the model to determine its equilibrium points and the
basic reproduction number (R,). Using demographic and epidemiological parameters for Jashore and Khulna,
Bangladesh, we calculate the basic reproduction number to be R, = 1.35. This value, being greater than 1, indicates
that the disease-free state is unstable and predicts a stable endemic equilibrium where diarrhea persists in the population.
Numerical simulations for Khulna and Jashore illustrate this endemic dynamic, showing a decline in initial infections
followed by long-term persistence. The findings confirm the model's utility in explaining the endemic nature of diarrhea
in the region and highlight that interventions targeting vector (housefly) control are essential for effective public health
strategies.

Index Terms: SIR Model, Diarrhea Disease, Epidemic, Reproduction Number, Bangladesh

1. Introduction

Mathematical modeling has become indispensable in understanding infectious disease dynamics and designing
effective interventions. Compartmental models such as Sl, SIS, and SIR remain foundational frameworks, providing a
structured way to quantify transmission, recovery, and intervention impacts. These models allow researchers to explore
disease persistence, eradication, and the effectiveness of public health strategies. Their applications range from
influenza and HIV/AIDS to diarrheal diseases and, more recently, COVID-19, where they have informed policy
decisions by estimating transmission potential, intervention thresholds, and herd immunity effects.

Early research primarily focused on theoretical development and model validation. Kandhway and Kuri [1]
demonstrated optimal control strategies for SIS and SIR dynamics, highlighting how interventions can be timed to
minimize spread. Rodrigues [2] provided a comprehensive analysis of the classical SIR model, emphasizing its
versatility for various infectious diseases. Ehrhardt et al. [3] extended the SIR framework to incorporate vaccination and
waning immunity, applying numerical methods to examine disease progression, while Zaman et al. [4] analyzed
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equilibrium states to distinguish conditions leading to disease-free or endemic populations. Barro et al. [5] integrated
time delays with optimal control, bridging theoretical modeling and applied intervention strategies. These studies
collectively underscore the importance of connecting mathematical rigor with practical epidemiological interpretation.

Subsequent research has adapted these models to disease-specific contexts, particularly diarrhea, which involves
complex interactions between human populations and vectors such as houseflies. Rahmadani et al. [7] developed a
multi-compartment model including vectors to evaluate ten control scenarios, illustrating how vector dynamics can
shape disease outcomes. Affandi and Salam [8] adopted an SIR-VT model incorporating vaccination and treatment,
optimizing interventions using numerical simulations. These studies demonstrate the potential of SIR-based models to
inform resource allocation and intervention design but also reveal a recurring limitation: most rely on estimated
parameters rather than robust empirical data, limiting real-world validation [10-13].

Recent modeling efforts emphasize heterogeneity, stochasticity, and delay effects to enhance realism. Zhang et al.
[15] introduced fixed infectious periods as delays in SIR dynamics, capturing realistic temporal progression of infection.
Acemoglu et al. [19] developed a multi-risk SIR model, showing that age-stratified infection and mortality risks
critically influence disease outcomes. Sharif et al. [22] incorporated stochastic environmental fluctuations in diarrheal
disease models, providing insights into persistence, extinction, and long-term dynamics under uncertainty. These
advancements highlight the growing sophistication of epidemic modeling in accounting for real-world complexity.
Despite these contributions, several gaps remain. Most studies emphasize mathematical or computational results
without integrating empirical epidemiological data, which limits parameter validation and predictive accuracy.
Furthermore, the literature often lacks comparative evaluation of modeling approaches, with limited discussion of how
assumptions (e.g., homogeneous mixing, constant populations, or vector behavior) affect results. Finally, there is
insufficient linkage between mathematical findings and actionable public health strategies in specific regions, reducing
the practical relevance of many models [23-27].

Addressing these gaps, the present study develops a computational SIR model for diarrhea that integrates realistic
assumptions, interprets equilibrium points epidemiologically, and evaluates intervention strategies in regions such as
Khulna and Jashore. By combining theoretical rigor with empirical plausibility, this work provides insights into disease
dynamics that can inform targeted public health interventions and contribute to broader efforts in diarrhea control and
eradication.

The paper is organized as follows: Section 2 reviews the classical SIR model by Kermack and McKendrick;
Section 3 introduces the proposed SIR model for diarrheal disease; Section 4 presents results and discussion; and
Section 5 concludes with key findings and future directions.

2. Methodology

2.1 SIR Model Due to Kermack and Mckendrick

In this part, we will discuss a fundamental SIR model [25]. It is used to simulate the spread of various infectious
diseases within a large population. The population is divided into three groups, identified by the labels S, I and R. Each
of these is a function of time t.

m S represents the number of susceptible individuals who are not currently infected but are at risk of becoming
infected.

m 1 denotes the rate of infection. Susceptible individuals become infected through interactions with infective
individuals.

m [ indicates the total number of infected individuals. These individuals carry the disease and are capable of
transmitting it to susceptible.

m u represents the recovery rate. Infected individuals recover over time.

m R represents the number of individuals who have been removed.

Fig. 1. Basic SIR model diagram

The transmission of infection depends on the interaction between susceptible and infected individuals. New
infections result from contact between susceptible individuals and those who are infective. In this model, the rate of
new infections is given by SI, where y is a positive constant.

When a new illness arises, the affected individual moves from the susceptible to the infective class. There are no
other mechanisms in this approach for individuals to transition in or out of the susceptible class. The alternative
procedure involves transferring infective individuals to the removed class. It is assumed that this happens at a rate of I,
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with u being a positive constant.
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Through the model, we assume the total population remains constant. The population is made up of susceptible,
infected, and recovered individuals. Total population: N = (S +1 + R).

3. SIR Model for Diarrhea Disease

Though the SIR model is primarily used to evaluate stability of disease in human populations, it is equally
applicable to vectors. The transmission of diarrheal disease to humans occurs via contact with houseflies (f) . This
effect needs to be represented within the SIR model. The recovery rate of houseflies will be overlooked because of their
limited lifespan.

Let H;, denote the total human population, including susceptible, infected, and removed individuals(S,, I, Ry ).
Again, let E, denote the total vector population, consisting of both susceptible and infected houseflies(S,, I,,). In this
model, H,, and E, are considered to be constant. As a result, the birth rate for the total population is &, N,, where k
refers to either v (vectors) or h (host), and g, is the corresponding death rate.

Bs (a—1)I
I(®)
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v

S(t) R(t)
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Fig. 2. Schematic diagram of diarrhea infection transmission
Description of variables and parameters of this model:

m S(t) be the number of susceptible individuals at timet .

m [(t) be the number of infected individuals at time t.

m R(t) be the number of recovered at time t.

m « be the constant recovery rate.

m (3 be the rate of contact that is sufficient to transmit the disease.

m d be the death rate due to diarrhea disease.

m u be the rate of natural death.

m 7 be the rate at which infected people are recovered.

m H, represents the total human population.

m S, represents the number of humans who are susceptible, meaning they are not infected but could potentially
become infected.

m [, represents the number of infected humans. These individuals are infected with the disease and have the
ability to transmit it to the houseflies.

m R;,, denotes the total number of human individuals who have been removed. These individuals may or may not
carry the disease, but they are unable to infected again or transmit it to others. These individuals could have
natural immunity, recovered from the illness with immunity, be infected but unable to spread it (due to isolation),
or may have died. This mathematical model makes no distinguish among these options.

m §,, denotes the birth rate of humans. The parameter interacts directly with the overall population H,.

m &, represents the human death rate.

m ), represents the human infection rate.

m 4, represents the human recovery rate.

m F, represents the total population of houseflies.
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m S, represents the number of houseflies that are susceptible, meaning they are not infected but have the potential
to become infected.

m [, represents the number of houseflies that are infected. These infected houseflies have the disease and can
spread it to humans.

m 1, represents the infection rate for houseflies.

m &, represents the death rate for houseflies.

m J,, represents the birth rate for houseflies. The parameter interacts with the overall housefly population F,.

m f denotes the average interaction rate of a housefly.

First, we will determine the host model, which describes the rates of susceptible, infected and recovered human.
The interaction model is described by three differential equations.

d Ynf
“e5h = SpHy — H_hhlvsh — &nSh 4)

da Yuf
2= H_hhlvsh — (en + 1pIn ®)

d
2 Rn = tnln — €nRp, (6)

Next, we will determine the vector model, which describes the rates of susceptible and infected vectors. The
interaction model is described by a system of two differential equations.

d Yof
ESV =6,F, - Hh IpS, — &5, (7)

d Yof
EIV = Hp, IS, — &1, (8)

Now, we may also consider that &, = &, &, = &, therefore we have these two models as follows:

d Yrf
;Sh = SpHy — H_hhlvsh — 6nSh 9)
a f
2l = z/;,LII:Sh — (On + )y (10)
h
d
ERh = pplp — 6pRp (11)
and
d Yof
ESV =6,F, — Hhp IS, = 6,5, (12)
a vf
EIV = u[;_hlhsv — 6,1, (13)

Since total human population is equal to the addition of susceptible, infected and recovered individuals, so we have,
Sy4+1,+R,=H,=>R, =H,—S, — I (14)

Again, since total vector population is equal to the addition of the susceptible and infected individuals, so we have,
S,+1,=E, =S, =F, —1, (15)

In order to comprehend the stability of human and housefly populations, it will reorganize both models and
combine them into one.

Applying (14) to (11)

d
ERh = pnlp — 6pRp

d
= It (Hp = Sp = 1) = piply — 6p(Hp — Sp — I,)
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BP T = tply, — 6pHy + 6,5, + O,
= —E = H'hlh - 6hHh + 5h5h + (Shlh +E
aip

= —=h = I’lhlh - 5hHh + 6’15’1 + Shlh + ShHh whhf IvSh - 5h5h [USIng(9)]
dly Ynf

= —E = l’lhlh + Shlh _H_thSh

dl Ynf
= d_th = HLthSh = (6p + up)ly

Applying (15) to (12)

d Yo f
—S, = 8,F, — i

dt
d 1Pf
= E(Fv_lv)zéva_HLh

dl U, f

d—t" =- ;h 1S, + 8,1,
al, _uf

> T —1,5,—6,1,

th - 617517
Ith - 617(E7 - Iv )

=>0-

As a result, these two equations tell us that our conditions can be expressed as,

da Ynf
Esh = 8pHy — H_hhlvsh — 6nSh (16)
a f
2l = IIZILIVSh — (On + )y an
h
d vf
wilo =2 1,5,= 5,1, (18)

In order to simplify the model by removing its nonlinear terms, we will nondimensionalize it.

x(t)— ,y(t)—— Z(t)— (19)
Let us define,

€ fYnFy Average housefly contact x Infection rate of human X total vector population
L] = —

Hp total human population !
* vy = (6, + up) =Birth rate of human + Recovery rate of human;
* u = f, =Average of housefly contact x Infection rate of houseflies;
» { = §,, =Birth rate of houseflies;
* § = &, = Birth rate of human;

Thus, we get from (16)

Ynf
a(sh) = 6, Hp — Hihlvsh — 81Sh

i(ﬁ)_a _¢hf1v5h_5 Sh
= Op

= TRV s,
de \H, Ay~
d v*iv

-G =20V~ 50
- —x(t)z(t)whf Y sux(0)

= 6p{1 —x(8)} - ex(0)2(0)

Equation (17) becomes
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(Ih) _ ¥ fI vSn — (6 + up)ly

d I S, 1
(’1)——1”’1“ ~ B+ ) g

dt\H,) ~ H,H,

d vTv

== ()M;—(shwh)y(t)
= x(Dz(t) M RTaRRel0)

= ex(t)z (t) Yy (®)

From (18)
d _f
dtl H, —1,5,—6,1,
il_ _wvflhsv _%

dtFE,  HyF, E,

dz  _ . HSy
:>dt =y(t :
E,—1

= y(Op——F—- ¢z(t)

= y(®ufl — 2(t)} — {2()

Thus, by nondimensionalizing the system, we obtain the following model:

% = 8{1 — x(D)} — ex(t)z(t) (20)
2 = ex(®)z(t) —yy(®) (21)
= y(@®)u{l = z(0)} = {z(0) (22)
To identify the point(s) of equilibrium, the aforementioned equations must be set to 0. Therefore
== 51— x(D} — ex(z(t) = 0 )
(23)

d— = ex(t)z(t) —yy(t) =0 ¥

—=y®Ou{l-z)}—-3z(t) =0 )

Solving this system yields two equilibrium points. The first (1,0,0) represents the Disease-Free Equilibrium

(DFE), where no infected humans (y = 0)or vectors(z = 0) exist, and the entire human population is susceptible(x =
0). The second (x,, y,, Z,) represents the Endemic Equilibrium (EE), where the disease persists in the population at a

constant level.

0= uGre)

)
_ Oue- y€)¥ (24)
|

0 = cus )

et U=y =2w="=
Now, usmg the Jacobian of the non-dimensionalized model, we obtain the following,
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a
dx dy
|
Sy =| L
aw . aw
dx dy
-0 —¢z 0
=)y z)=| ez —y
0 U—zu
So, at the equilibrium point (1,0,0), we obtain
-6 0
J(1,00)=1] 0 -y
0 u
To find the eigenvalues, we set
|-6—-4 0
0 —-y—A1
0 u

This yield

S (=6 —D(—eu+yl+yA+7A+213) =0

The three eigenvalues are

).1 =_6

A =3(y = —aeu+y? =20+ 7

Ay =3y =+ Vaeu+y? =20 + 7

(25)

(26)

(@7)

(28)

(29)

We have 4, and 4, are always negative, because y,{,u are always positive and 15 can be either positive or

negative.

At the equilibrium point (x,, ¥, 2o), We have

E(Me ¥$)
/ —0- e(u5+yc'))
_ Sue=v9) _
]@mym%)—| g(mwwo) Y
o (Sue=yd)
\ 0 K ‘u(e(u5+y5))

To find the eigen-values we set
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#(8+8)

6u+y<
u(5 +€)

6(#8 VO
w(5+€)

\.
| (30)
~¢)
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Sue—ydY _ _ o (Srtr¢
—6—¢ (s(,u6'+y5)) A 0 € (u(é’+£))
5(#8-?5)) L Su+yq _
€ (s(#5+y§) 14 A € (#(§+5)) =0 (31)
_ 8(#8—75)) _ (6(118—7() o
0 KoK (s(u6+y<) H\Guere ) =4

The eigenvalues of the system can be efficiently computed through computer simulations, for which Maple
provides an effective computational platform. In addition, assigning specific numerical values to the parameters
facilitates a clearer stability analysis.

Reproduction Number R,
The equilibrium point (x,,y,, Z) is meaningful only if y,, z, are positive. This depends on a threshold parameter,
the basic reproduction number, R, given by:

_
Ry =—

=% (32)

An epidemic occurs if Ry > 1, and the disease dies out if Ry < 1.
4. Results and Discussions

In this section, we present numerical data based on the SIR model for diarrhea infection. Chaturvedi et al. [26]
provided several parameter values intended to support further analytical and numerical studies. These values are
summarized in Table 1. Using this dataset, together with supplementary information from additional sources, we

conduct a series of simulations to investigate the model’s dynamical behavior.

Table 1. Basic parameters

Name of the Parameter Symbol Initial Value
Transmission probability of vector to host U, 0.5
Transmission probability of host to vector [ 0.2
Contacts per susceptible housefly per day fs 0.4

Contacts per infectious housefly per day fi 0.6
Interaction Rate, Host to Vector Chy 0.5
Interaction Rate, Vector to Host Con 0.3

Human Life Span 1 HL
Sy
Vector Life Span 1 VL
8y
Host Infection Duration [33] 1 5 Days
On + 1

HL and VL represent the life span we obtained from resources. Let us consider analyzing the population of Khulna
city in Bangladesh. Record shows that Khulna city has total population of 10, 00,000 [28]. Therefore, we consider some
parameters for this population and assume there are 300,000 houseflies in Khulna [22]. Let us consider HL = 26650
days [29] and VL = 25 days [30] are regarded as the minimum lifespan of a housefly.

Now we have,
. fnFy _ 0.6x0.2X300000 _ 0036
Hp 1000000
§ =8, =— =——=0.0000375
HL %66501
(=06,=—=-=004

TvL 25

©=fi, =0.6x05=0.3
y = (8 +u) =3=02
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Now putting the values of ¢, 6, ¢, u and y, into (24), we get,

_ Su+y¢ _ (0.0000375 X 0.3) + (0.2 X 0.04)

o= 6 +e  03x(0.0000375+0.036) 0.74101
S(ue —y7)  0.0000375 x (0.3 X 0.036 — 0.2 x 0.04)

Yo = = = 0.0000486
yu(s +¢) (0.2 x 0.3) x (0.0000375 + 0.036)

_ 8(ue—y{) _ 0.0000375 X (0.3 X 0.036 — 0.2 X 0.04)

= = = 0.000364
%0 = (o +y0) ~ 0.036 x (0.3 x 0.0000375 + 0.2 x 0.04)

Thus, the equilibrium points are:

(Sp, I, Ry) = (1,0,0) and (Sy,, I, R,) = (0.74101, 0.0000486,0.000364 )
Now, we need to calculate the eigen-values for the equilibrium point (1,0,0).
From (29), we get three eigen-values. That are,

/’{1 2_6
Ry =5y == Aeu+y? =270+ 17)

Ay =5y =+ Aeu+y2 =210+ )
Now putting the values of ¢, 8, {, u and y, we get,

A, =—0.0000375
1, = —0.251149
A3 = 0.011149

Therefore, we get the eigen-values for the equilibrium point, (1,0,0) are: A, = —0.0000375, A, =
—0.251149 and 1; = 0.011149, which is unstable, as the eigenvalue A is positive. This result aligns with our finding
that R, > 1, predicting that the disease-free state is not sustainable.

Again, we need to calculate the eigen-values for the equilibrium point (0.74101, 0.0000486,0.000364 )

Now, based on the Jacobian of the nondimensionalized model from (25), we have

-6 —¢z 0 —&x \
Jy,z2)=| ez —y ex |
0 U—zZu —uy —¢ /
At the equilibrium point (0.74101,0.0000486, 0.000364 ),

/—0.0000244 0 —0.026676

~ J(0.74101,0.0000486,0.000364) = | 0.0000131 -0.2 0.026676

\.
)

—
o

0.299891 —0.0400146

To find the eigen-values we set

—0.0000244 -2 0 —0.026676
0.0000131 —-02-2 0.026676 =0
0 0.299891 —0.0400146 — 2
Using Maple software, the eigenvalues of the equilibrium point,

(0.74101,0.0000486,0.000364 ) were computed as 1, = —0.2400038 , 1, = —0.0000176 + 0.000661i and A; =
—0.0000176 — 0.000661i. Since all eigenvalues have negative real parts, the equilibrium is stable. This result
corroborates our finding that, with a basic reproduction number R, = 1.35, the disease cannot be eradicated and is
expected to persist in the population, becoming endemic.
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Also, from equation (32) we get the basic reproduction number:

e 0.036%0.3

077y T 004x02

Since R, = 1.35 > 1, the disease is expected to persist and become endemic in the population.

4.1. Sensitivity Analysis

To identify the most critical parameters for disease control, we performed a sensitivity analysis on R,. We varied
each parameter by +25% while holding all others constant at their baseline values and recorded the change in R,,.

Table 2. Basic parameters and sensitivity analysis

Parameter Description Baseline Value R, (Value +25%) R, (Value -25%)
I Vector-to-Host Rate 0.036 1.688 1.013
y2i Host-to-Vector Rate 0.3 1.688 1.013
¢ Vector Death Rate 0.04 1.08 1.80
Y Human Recovery Rate 0.2 1.08 1.80

The sensitivity analysis reveals that R, is most sensitive to changes in the human recovery rate () and the vector
death rate (¢). This suggests that interventions focused on treating infected humans (to increase ) and controlling the

housefly lifespan (to increase ) will have the most significant impact on reducing the spread of diarrhea.
We will now create two cases based on these parameters.

Case I:

Let us assume some initial data. Consider the case where we have S,(0) = 53000, I,(0) = 25500, R,(0) =

0, and S,(0) = 50000,,7,(0) = 25000 [31]. Based on the initial data, we get the following table.

Table 3. Simulation results for Case | in Khulna city

Number of Days

Fig. 3. Temporal dynamics of human and housefly populations in Khulna city for Case |

20

Pas S (1) h (1 Ri(t) (1)
0 53000 25500 0 25000
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20 26000 8500 26000 11500
30 19000 3000 31000 6000
40 13000 2000 35400 4800
50 9000 1000 37000 2500
60 7500 850 38100 1050
70 5200 470 39300 500
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90 2300 0 41000 280
100 1500 0 42500 0
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The graph indicates that a significant portion of the population recovers over time, with time measured in days.
The simulation shows that the number of infected humans approaches zero after approximately 90 days, while the
population of infected houseflies reaches zero around day 100. Notably, some susceptible individuals remain uninfected
by day 100, as there are no longer any infected houseflies to transmit the disease. Consequently, the numbers of
susceptible and recovered individuals stabilize by this time, which aligns with expected epidemiological behavior.

Case IlI:

Let us assume some initial data. Consider the case where we have S,(0) = 64000, I,,(0) = 21500, R,(0) =
0,and S, (0) =90000,, I,,(0) = 19000 [32]. Based on the initial data, we get the following table.

Table 4. Simulation results for Case Il in Jashore city

Day S, (1) 1 (t) R, (t) 1, (t)

0 64000 21500 0 19000
10 52700 13700 12000 15100
20 46300 9200 16500 12000
30 35480 4800 23200 11200
40 27200 2300 29000 7500
50 18400 950 34500 6200
60 11200 560 42700 4700
70 7500 420 46500 2500
80 3000 250 50000 1650
90 3000 0 51200 720
100 3000 0 53500 0

; x10* . . Jashore City . .
[ =—5-—Sh

6 wifie==Rh |
Iv
i |y

Susceptible-Infected-Recovered

u 1 1 1 1 ‘s e -:4 L
0 10 20 30 40 50 60 70 80 920 100
Number of Days

Fig. 4. Temporal dynamics of human and housefly populations in Jashore city for Case |1

The graph illustrates that a significant portion of the population recovers over time, with time measured in days.
The simulation indicates that the number of infected humans approaches zero after approximately 85 days, while the
infected housefly population reaches zero after about 100 days. Notably, since there are no remaining infected
houseflies, some exposed individuals remain uninfected beyond day 100. Consequently, the numbers of susceptible and
recovered individuals stabilize after this period, consistent with expected epidemiological behavior. Furthermore, the
results suggest that highly infected houseflies die at a faster rate than those with lower infection levels, highlighting the
impact of infection intensity on vector mortality.

5. Conclusion

This study successfully developed a host-vector SIR model to analyze diarrhea transmission in Bangladesh. By
establishing a system of five ODEs and non-dimensionalizing them, we established two key equilibrium points: the
Disease-Free Equilibrium (DFE) and the Endemic Equilibrium (EE). Our primary finding is the calculation of the basic
reproduction number, R, = 1.35, for Jashore and Khulna city. This critical value, being greater than 1, demonstrates
that diarrhea is not a temporary outbreak but is endemic in the region. This mathematical result is consistent with the
stability analysis, which showed the DFE to be unstable and the EE to be stable. The results emphasize the importance
of considering both human and vector dynamics in modeling diarrheal diseases and provide a quantitative basis for
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public health interventions. By highlighting the persistence of the disease and the key factors driving its transmission,
this study offers valuable insights for the design of targeted control strategies, such as vector management and improved
sanitation measures, to mitigate the burden of diarrhea in affected communities.

6. Public Health Implications

The goal for public health officials is to implement strategies that reduce the reproduction number to R, < 1. Our
model's formula, R, = % provides a clear guide for intervention:

1. Reduce & (Vector-to-Host Transmission): & is a product of fly contact rate (f) and human infection
probability(wh). Public health campaigns should focus on vector control (e.g., insecticides, fly traps) to reduce the
housefly population (F) and physical barriers (e.g., window screens) to reduce contact.

2. Reduce 4 (Host-to-Vector Transmission): g is a product of fly contact rate (f) and vector infection
probability(y,v). This can be achieved by improving sanitation (e.g., building covered latrines, managing waste) to

reduce the ability of houseflies to come into contact with infectious human material.
3. Increase y (Human Recovery Rate): v is the sum of the human birth/death rate (s, ) and the recovery rate

()" Increasing access to rapid medical treatment (e.g., rehydration therapy, clean water) will increase 4, , which in turn
increases y and lowers the R,,.
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