
I. J. Mathematical Sciences and Computing, 2025, 3, 1-18
Published Online on October 8, 2025 by MECS Press (http://www.mecs-press.org/)

DOI: 10.5815/ijmsc.2025.03.01

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 11 (2025), Issue 3

Bridging Category Theory and Functional

Programming for Enhanced Learning

Fethi Kadhi*
University of Manouba, National School of Computer Science, Manouba, Tunisia

E-mail: fethi.kadhi@ensi.uma.tn

ORCID iD: https://orcid.org//0000-0001-5173-5363

*Corresponding Author

Received: 23 October, 2024; Revised: 26 February, 2025; Accepted: 18 August, 2025; Published: 08 October, 2025

Abstract: Functional programming is frequently taught in isolation from its mathematical roots, particularly category

theory, leading to a fragmented understanding for students. Simultaneously, category theory is often perceived as too

abstract and difficult to grasp, despite its foundational role in programming. This gap between theory and practice

creates barriers for students, preventing them from fully appreciating the deep connections between functional

programming and its underlying mathematical structures. Although there are resources aimed at bridging this divide,

such as works by Milewski, MacLane, and Leinster, they often either lack practical examples or fail to delve deeply into

the mathematical rigor required for a comprehensive understanding of category theory. This paper presents a novel

pedagogical approach that integrates category theory with functional programming in a unified and accessible

framework. By leveraging monadic programming, particularly through the list and maybe monads, we offer concrete

examples of how abstract mathematical concepts can address real-world programming challenges, such as handling

missing data. Our approach builds on and generalizes Dayou Jiang's method of using programming to teach partially

ordered relations. In doing so, we concurrently teach functional programming and category theory, making the abstract

more tangible and applicable. This interdisciplinary method not only enhances comprehension of both fields but also

aligns with contemporary educational reforms that prioritize integrated learning across mathematical and computational

domains.

Index Terms: Category Theory, Functional Programming, Modern Education, Monads, Interdisciplinary Learning,

Computer Science Pedagogy

1. Introduction

In many computer science programs, functional programming is often taught in isolation from its underlying

mathematical foundations, leaving students with a fragmented and incomplete understanding of the subject. This lack of

a structured, theoretical framework makes it difficult for students to engage with functional programming principles in a

meaningful and systematic way. At the same time, category theory, which provides a deep and rigorous mathematical

foundation for functional programming, is often viewed as overly abstract and challenging to comprehend. Despite the

availability of resources aimed at introducing category theory to learners with a basic mathematical background [1, 2, 3],

many students still struggle to grasp its relevance and practical application, particularly in the context of programming.

Works such as [4] offer valuable insights into the intersection of category theory and programming. However,

these resources often lack the depth needed to fully explore the mathematical rigor of category theory and its direct

application to functional programming. As a result, students are limited in their ability to fully leverage the strengths of

both fields, missing out on the profound connections between abstract mathematics and practical programming.

This paper aims to address this gap by presenting a pedagogical approach that integrates category theory with

functional programming in a unified and accessible framework. Our goal is to provide students with a structured

method for exploring functional programming while simultaneously offering practical insights into the abstract

principles of category theory. Through concrete examples, we demonstrate how monadic programming particularly

using the list and Maybe monads can be applied to real world programming challenges such as handling missing data.

In doing so, this approach generalizes Dayou Jiang’s method of teaching partially ordered relations through

programming [5]. Many educational resources have adopted this approach, using programming languages to teach

fundamental mathematical and scientific concepts.

Bridging Category Theory and Functional Programming for Enhanced Learning

2 Volume 11 (2025), Issue 3

Our method can be seen as a generalization of [5]. First, because partially ordered sets are small categories, and

second, because we apply the same approach in both directions, teaching category theory and functional programming

simultaneously.

The paper is organized as follows: Section 2 outlines a multidisciplinary pedagogical approach designed to bridge

the significant epistemological gap between the abstract theory of category theory and the concrete practice of

functional programming. It identifies a dual challenge: mathematics students struggle with the motivation, verification,

and application of abstract concepts, while programming students face hurdles in understanding the mathematical

abstractions and laws behind functional constructs.

The proposed solution uses Haskell as a tool for instrumental genesis, transforming passive learning into active

construction. This approach is grounded in precedents from computational mathematics (e.g., Mathematica, R) and

directly addresses the core challenges by providing immediate, practical motivation, objective verification through the

compiler, and inherent application of theory. The method is designed to be accessible to students with basic

mathematical maturity and varying backgrounds, leveraging the synergy between the two domains to foster a deep,

integrated understanding.

In Section 3, we cover the essential concepts of category theory, including the definition of categories, functors,

natural transformations, monads, and the Yoneda Lemma. Each of these topics is introduced with examples to make the

abstract theory more accessible. Section 4 shifts the focus to functional programming, particularly the Haskell language.

We explore how category theory applies to Haskell, treating it as a category (Hask), and examine how functors and

monads manifest in this context. We also address practical issues, such as handling missing data using monadic

structures. By the end of this section, we further deepen our understanding of category theory through the application of

the Yoneda Lemma to the category Hask.

Section 5 offers a conclusion, emphasizing the potential for this interdisciplinary approach to enhance students’

engagement with both functional programming and category theory. By integrating these two domains, students gain a

deeper understanding of both mathematical principles and their practical applications in programming.

2. A Multidisciplinary Pedagogical Approach

2.1 The Dual Pedagogical Challenge: Abstract Theory and Concrete Practice

In contemporary education, multidisciplinary approaches are recognized as key drivers of innovation, yet they

introduce unique complexities. This work is situated at the intersection of two particularly challenging fields: the

abstract mathematics of category theory and the applied practice of functional programming. The core difficulty is a

bidirectional epistemological gap that hinders effective learning in both domains.

From the mathematical perspective, students struggle to form operational intuition for highly abstract concepts

(e.g., functors, monads, natural transformations) when taught through traditional, passive, axiomatic methods. This

manifests as:

 The Motivation Problem: Students perceive definitions as arbitrary formalisms, asking, “Why is this

important?”

 The Verification Problem: Unlike solving an equation, reasoning with commutative diagrams offers no

mechanism for self-correction, leading to reliance on external validation.

 The Transfer Problem: Students fail to apply theoretical knowledge to practical computational domains

where these ideas are influential.

Conversely, from the programming perspective, teaching functional programming through a categorical lens

presents its own set of obstacles. Students, especially those with imperative backgrounds, must bridge the gap between

concrete code and abstract mathematical structures:

 The Abstraction Hurdle: Students must learn to see types not just as data containers but as objects in a

category, and functions not as procedures but as morphisms defined by compositional behavior.

 The Dual Interpretation Challenge: Concepts like functors must be understood simultaneously as

mathematical constructs that preserve structure and as typeclasses with specific methods and laws.

 The Lawful Abstraction Problem: Beyond writing code that compiles, students must learn to create

abstractions that obey mathematical laws (e.g., functor laws, monad laws), a requirement unfamiliar to most

programmers.

This dual challenge exists because the prevailing pedagogical model for both subjects remains one of passive

reception rather than active construction. Students are shown concepts but are given no tools to build with them. Our

interdisciplinary approach integrating Haskell with category theory is specifically designed to bridge this gap. We use

each domain to illuminate the other: functional programming provides the concrete, executable environment missing

from abstract mathematics, while category theory provides the conceptual framework that reveals the deeper structure

Bridging Category Theory and Functional Programming for Enhanced Learning

Volume 11 (2025), Issue 3 3

and laws underlying functional code. This creates a pedagogical synergy that transforms the challenge of teaching two

difficult subjects into an opportunity for developing profound, integrated understanding.

2.2 Our Solution: Haskell as a Tool for Instrumental Genesis

Our interdisciplinary approach integrating functional programming (Haskell) with category theory is the deliberate

solution to this problem. It is not a mere juxtaposition of subjects; it is a pedagogical strategy that uses programming as

an instrumental genesis tool, providing the missing constructive framework.

2.3 Precedents in Computational Mathematics

This methodology is firmly supported by established practices in other mathematical disciplines:

 Tools like Mathematica are indispensable in numerical analysis, enabling interactive exploration of iterative

methods and approximations [6, 7].

 The language R is pivotal in probability and statistics, allowing students to manipulate data and bring

stochastic processes to life [8, 9].

These tools succeed by transforming passive learning into active experimentation. Category theory has lacked a

similar widely-adopted computational tool. We argue that Haskell fills this void. Inspired by categorical principles, it

provides a formal, executable environment where theoretical constructs are not just illustrated but are necessitated by

the language’s structure.

2.4 A Comparative Framework: Bridging Theory and Practice

The following table contrasts the traditional approach with our proposed method, demonstrating how it directly

targets each facet of the identified gap:

Table 1. Comparison of traditional and interdisciplinary approaches to teaching category theory

Pedagogical

Challenge

 Traditional Approach (The Gap) Our Interdisciplinary Solution

Motivation

Problem

 Abstract justification. “It’s a

foundational theory.”

Concrete Necessity. A Monad is not an option; it is the

pattern required to handle I/O, state, and failure in a

pure language. Purpose is immediately demonstrated.

Verification

Problem

 Theoretical exercises graded by an
instructor. Feedback is delayed and

subjective.

Immediate, Objective Feedback. Code compiles and
behaves correctly, verifying understanding, or it fails,

highlighting a misconception. The compiler becomes

an automated tutor.

Transfer Problem Theory is taught in a vacuum, with

hoped-for later application.

 Theory is Taught Through Application. Students

learn natural transformations by writing functions that

convert between Haskell functors. Application is
inherent.

2.5 Pedagogical Benefits and Observed Outcomes

This approach has a profound impact: it bridges theory and practice, allows students to visualize and simulate

abstract ideas in real-time, and sharpens critical thinking by applying mathematical reasoning to concrete problems. Our

experience at confirmed its efficacy, resulting in markedly higher attendance and deeper in-class engagement. The

resultant dual mastery of both category theory and functional programming is not the primary goal but a powerful

outcome of an efficient educational intervention.

2.6 Target Audience and Prerequisites

To ensure accessibility and maximum effectiveness, our pedagogical approach is designed for students with a

foundational yet flexible background. The primary prerequisite is not advanced expertise in either field, but rather a

level of mathematical maturity typically gained through early undergraduate studies in computer science, mathematics,

or a related discipline. Specifically, students should be comfortable with basic algebraic structures and logical reasoning;

a prior encounter with fundamental concepts like sets, functions, and relations is sufficient. No prior knowledge of

category theory itself is assumed or required. In parallel, while experience with any programming language is beneficial,

proficiency in functional programming is not a prerequisite. The course is structured to introduce Haskell’s syntax and

core paradigms from the ground up. This design allows students who are stronger in mathematics to grasp programming

concepts through theoretical lenses, and students with a programming background to solidify their practical skills by

understanding their formal mathematical underpinnings. Essentially, the course meets students at their individual points

of strength and uses the synergy between the two domains to bootstrap understanding in the other, making it accessible

to a broad range of learners. Some students naturally gravitate toward theoretical and abstract thinking, while others

prefer focusing on practical solutions without delving deeply into the underlying frameworks of the tools they use.

What distinguishes this approach is that it fosters a balanced learning environment where each group can benefit from

the strengths of the other: abstract thinking enriches practical work with deeper insights, while a practical orientation

Bridging Category Theory and Functional Programming for Enhanced Learning

4 Volume 11 (2025), Issue 3

brings theoretical ideas to life. In this way, the diversity of orientations is not an obstacle but a source of mutual

enrichment that strengthens comprehensive understanding and enhances the dynamics of collective learning.

2.7 Roadmap for Implementation

The following sections extend this approach through concrete Haskell examples, demonstrating how category

theory provides elegant solutions to real-world programming challenges, offering students a unique opportunity to

deepen their understanding in an engaging and practical way.

3. Some Elements of Category Theory

This section introduces the fundamental concepts of category theory in a clear and accessible manner, suitable for

readers with varying levels of mathematical background. We will focus on a foundational understanding of categories,

limiting ourselves to the essential elements needed for the subsequent sections. For a more detailed exploration, we

recommend Category Theory for the Working Mathematician by Saunders MacLane [1].

3.1 Category

3.1.1 Definition

A category consists of four main components and satisfies two key axioms:

A collection of objects . Objects can be anything from sets, numbers, or even more abstract entities,

depending on the context of the category.

For , a collection of arrows (also called morphisms) from to . These arrows represent

transformations between objects, similar to how functions work in set theory.

A composition law: for ,

 (1)

This law defines how arrows are composed. Just as functions can be composed in mathematics (applying one

function after another), arrows in a category follow this rule.

For each object , there exists a unique arrow , called the identity arrow, that relates to itself. This

identity arrow behaves just like the identity function in mathematics, where applying it doesn’t change the object.

Categories must satisfy two fundamental axioms:

Associativity: For each , , and , we have

 (2)

This means that no matter how arrows are grouped when composing them, the result will be the same.

Identity Law: For each , we have

 (3)

The identity law ensures that applying the identity arrow to any arrow leaves the arrow unchanged, much like

multiplying by 1 in arithmetic.

3.1.2 Examples

1. The smallest category is , which contains no objects or arrows. This is a trivial case of a category with no

structure.

2. A category with a single object and only its identity arrow is denoted :

 (4)

3. A category with two objects linked by an arrow can be depicted as:

 (5)

4. The fundamental example of a category is , whose objects are sets and whose arrows are functions between

sets. This is a foundational category in mathematics, where the objects are familiar entities (sets), and the

arrows are transformations (functions) between them.

Bridging Category Theory and Functional Programming for Enhanced Learning

Volume 11 (2025), Issue 3 5

3.2 Functor

3.2.1 Definition

Let and be two categories. A functor is a mapping between categories that preserves their structure:

 It maps each object in to an object in :

 (6)

 It also maps each arrow (or morphism) in to an arrow in :

 (7)

This ensures that arrows between objects in category are mapped to arrows between the corresponding objects

in category . For instance, if there is a morphism from object to object , then is a morphism from to

 .

A functor must satisfy the following two properties to preserve the structure of the categories:

 For any arrows and in , we must have:

 (8)

This property ensures that functors respect composition of arrows. In other words, if you compose two morphisms

in , the result must be the same as applying the functor to each morphism individually and then composing the results

in .

 For each object in , the identity arrow must be mapped to the identity arrow of in :

 (9)

This guarantees that the identity arrow in , which does nothing to its object, is mapped to the identity arrow in ,

maintaining the identity property across categories.

3.3 Natural Transformation

3.3.1 Definition

Let and be two functors from a category to a category . A natural transformation is a way of

transforming one functor into another, while preserving the structure of the categories involved.

A natural transformation assigns to each object an arrow in . This must satisfy the

following condition: for every morphism in , we have

 (10)

In other words, applying the functor to and then applying must give the same result as applying and

then applying the functor to . This ensures that natural transformations respect the structure of the functors and the

morphisms in the category.

3.3.2 Examples

1. Consider a morphism in . This induces a natural transformation
 , where and

are hom-functors. For each object , the component maps an arrow to . The

commutativity of the naturality square follows from the associativity of arrow composition in categories. This example

shows how a natural transformation relates two hom-functors by "shifting" arrows via composition.

2. Another example of a natural transformation is the inclusion map from a set to its power set , denoted by

 . For each element , is the singleton set . This defines a natural transformation
 , where is the identity functor on and is the power set functor. For any function ,

we have:

 (11)

Bridging Category Theory and Functional Programming for Enhanced Learning

6 Volume 11 (2025), Issue 3

3.4 Monad

3.4.1 Definition

A monad on a category consists of a triple , where:

 is an endofunctor, meaning that maps objects and morphisms in to objects and morphisms within

the same category.

 is a natural transformation, called the **unit** of the monad, which assigns to each object an

arrow . This maps each object to a "wrapped" version of itself within the structure provided by .

 is a natural transformation, called the **multiplication** of the monad. It "flattens" two

applications of into one. More formally, for each object , combines two layers of

the structure into one.

These structures must satisfy two key axioms, which ensure coherence and consistency:

 Left identity law: For any object , we have:

 (12)

This condition ensures that applying the unit and then "flattening" with gives back the original structure.

 Right identity law: For any object ,

 (13)

This ensures that applying to the unit and then "flattening" with also returns the original structure.

 Associativity law: For any object , the following diagram must commute:

 (14)

3.4.2 Examples

1. Powerset Monad Consider the power set functor , which assigns to each set the set of all its

subsets . The monad structure on consists of:

 Unit: The unit maps each element to the singleton subset :

 (15)

This embeds each element of as a subset of .

 Multiplication: The multiplication takes a set of subsets and returns their

union:

 ⋃ (16)

This operation "flattens" a collection of subsets into a single set by taking their union.

The unit and multiplication satisfy the monad axioms, ensuring that embedding a set into its power set and then

taking unions returns the original set. The associativity condition ensures that repeated applications of the power set and

union behave in a consistent way.

2. The Maybe Monad The Maybe monad can be defined as a functor that assigns to each set the

set , where is a new element representing a possible failure or absence of information.

The monad structure on consists of:

- Unit: The unit maps each element to itself in :

 (17)

preserving successful values and adding the possibility of failure.

- Multiplication: The multiplication "flattens" nested occurrences of the failure or success

condition:

Bridging Category Theory and Functional Programming for Enhanced Learning

Volume 11 (2025), Issue 3 7

 (18)

This monad is often used in contexts where computations may "fail" or return a result that represents the absence

of a value.

3.5 Yoneda Lemma

The Yoneda Lemma is a fundamental result in category theory that provides deep insights into how objects relate

to other objects in a category. It allows us to fully understand an object by examining how it interacts with other objects

through morphisms (arrows).

Let be a locally small category, and let be an object. Suppose is a functor that maps objects in

 to sets. The Yoneda Lemma asserts that the set of natural transformations from the hom-functor (which represents

morphisms from to other objects) to is naturally isomorphic to :

 [] (19)

This isomorphism is natural in both and . Essentially, the Yoneda Lemma tells us that an object is fully

determined by its relationships (morphisms) with other objects in the category.

3.5.1 Consequences and Intuition

A key consequence of the Yoneda Lemma is that if two objects and have hom-functors that are naturally

isomorphic (i.e.,), then , meaning the objects themselves are isomorphic. This highlights how the lemma

reduces the study of objects to the study of their relationships.

The intuition behind the Yoneda Lemma is that if two objects "see" the rest of the category in the same way,

through the same morphisms, then they must be the same object. This shifts the focus from internal properties of objects

to how they relate to others, providing a powerful conceptual tool for studying categories.

4. Functional Programming

Functional programming is a declarative paradigm that emphasizes the application of mathematical functions while

avoiding state changes and data mutations. Instead of using state machines, functional programming promotes the

composition of pure functions black-box like entities that take inputs and produce outputs without side effects. This

focus on function purity simplifies unit testing and facilitates effective memory management, which is essential for

teaching structured problem-solving in science and mathematics education.

Understanding how data is organized is a crucial first step in any programming language. In Haskell, common

structures such as lists, vectors, and trees are treated as functors, providing an ideal platform for exploring connections

between functional programming and category theory. The concepts of categories, functors, and natural transformations

naturally emerge, helping students grasp the mathematical underpinnings of these structures.

Interpreting Haskell as a category (denoted as Hask) allows students to engage with important questions:

1. What are the objects and arrows (morphisms) in Hask?

2. How are arrows composed, and how do they satisfy the axioms of a category?

3. How can functors and other categorical constructions be represented in Hask?

These questions provide a roadmap for educators to introduce functional programming through a mathematical

lens, enhancing interdisciplinary learning. Students can engage with Haskell code through practical online compilers

[11], gaining hands-on experience with concepts like functors and natural transformations while consolidating their

understanding of mathematical principles.

4.1 Category Hask

4.1.1 Objects of Hask

Objects of Hask are Types, for examples:

1. Int is a type representing integer data types. Any integer between and

 belongs to the Int type class. Int uses 32 bits of memory, with one bit reserved for the sign.

2. Integer can be seen as a superset of Int. It has no upper limit, allowing integers of arbitrary length without

restrictions.

3. Float is a floating-point number type.

4. Bool is a boolean type. It can either be True or False. Here’s an example code snippet to demonstrate how

Bool works in Haskell:

Bridging Category Theory and Functional Programming for Enhanced Learning

8 Volume 11 (2025), Issue 3

4.1.2 Arrows in Haskell

Arrows in Hask are Haskell functions, a function in Hask is built in the following manner:

Examples 1.1

 sp :: (Float, Float, Float) -> (Float, Float) sp (a,b,c)=(a+b+c,a*b*c) main = do print(sp(1,2,3))-- (6.0,6.0)

 We observe that the construction of the function in Haskell follows the same structure as a mathematical

function.

 (20)

-- Example: Calculate the area and circumference of a circle

-- Function returning a tuple (area, circumference)

circleProperties :: Float -> (Float, Float)

circleProperties radius = (area, circumference)

 where

 area = pi * radius * radius

 circumference = 2 * pi * radius

-- Main program

main :: IO ()

main = do

 let result = circleProperties 5.0

 putStrLn ("Area: " ++ show (fst result) ++

 ", Circumference: " ++ show (snd result))

 -- Output: Area: 78.53982, Circumference: 31.41593

We can see this Haskell function follows the same structure as a mathematical function:

 (21)

The where clause organizes the calculations similarly to how we might show our work in mathematics

4.1.3 The Composition Law in Hask

-- Function type declarations

g :: Int -> Bool

f :: Bool -> String

-- Why is f . g well defined?

-- g takes an Int and returns a Bool.

-- f takes a Bool and returns a String.

-- So (f . g) takes an Int and returns a String.

-- Function definitions

g x = if x `rem` 2 == 0

 then True

 else False

f x = if x == True

 then "This is an even Number"

 else "This is an ODD number"

-- Main program

main = do

 putStrLn "Example of Haskell function composition"

 print ((f . g) 16) -- "This is an even Number"

Bridging Category Theory and Functional Programming for Enhanced Learning

Volume 11 (2025), Issue 3 9

 print ((f . g) 27) -- "This is an ODD number"

 -- Function to calculate circle area

circleArea :: Float -> Float

circleArea radius = pi * radius * radius

-- Function to format the result with a message

formatResult :: Float -> String

formatResult area = "The area is " ++ show area ++ " square units"

-- Function to add a decorative header to the message

addHeader :: String -> String

-- Composed function that calculates and formats the area

calculateAndFormat :: Float -> String

calculateAndFormat = addHeader . formatResult . circleArea

-- Main program

main :: IO ()

main = do

 putStrLn "Composition with Data Transformation Example:"

 putStrLn (calculateAndFormat 5.0)

 -- Output:

 -- ==== RESULT ====

 -- The area is 78.53982 square units

 -- =================

 putStrLn (calculateAndFormat 2.5)

 -- Output:

 -- ==== RESULT ====

 -- The area is 19.63495 square units

 -- =================

This composition follows the mathematical structure:

 (22)

Where:

 (circleArea function)

 (formatResult function)

 (addHeader function)

 The composition creates a pipeline:

4.1.4 The Identity Arrow in Hask

The identity arrow is predefined in Haskell. In the previous example, we composed two functions and . We

can verify that composing with does not change the function’s result.

 -- Identity Arrow Example

-- Function declaration and definition

g :: Int -> Bool

g x = if x `rem` 2 == 0

 then True

 else False

-- Main program

main = do

Bridging Category Theory and Functional Programming for Enhanced Learning

10 Volume 11 (2025), Issue 3

 putStrLn "Example of Haskell function composition"

 print (g 16) -- True

 print ((id . g) 16) -- True

 print (g 27) -- False

 print ((id . g) 27) -- False We note that Haskell retains the same name, , for the identity arrow as it is named in

category theory. This choice has significant pedagogical value.

4.2 Functors in Hask

4.2.1 List []

In Haskell, a List is an endofunctor whose construction is inspired by the functor , see Examples (3.5.2).

[]

 []

 []

 []

By analogy to , the application of a function to the elements of a list is encoded in Haskell by

fmap.

main = do print(fmap (\x -> [x, x+1]) [1..5])

This code produces the output:

 [[1,2],[2,3],[3,4],[4,5],[5,6]]

-- Example demonstrating that `fmap` satisfies the Functor laws

main :: IO ()

main = do

 -- Identity Law: fmap id should return the original list

 print (fmap id [1..5])

 -- Expected output: [1,2,3,4,5]

 -- Composition Law: fmap (f . g) == fmap f . fmap g

 let f = (+1) -- Function f adds 1

 let g = (*2) -- Function g multiplies by 2

 -- Verify the composition law

 print (fmap (f . g) [1..5])

 -- Output: [3,5,7,9,11]

 print (fmap f (fmap g [1..5]))

 -- Output: [3,5,7,9,11] (the same)

4.3 Monads of Hask

4.3.1 List []

In fact, List in Haskell [] is more than just a functor. It is a monad equipped with a natural transformation, coded

by return, which is similar to of , and a natural transformation coded by >>=, which is similar to of .

-- Example demonstrating the list monad with `>>= return`

main :: IO ()

main = do

 print ([1..10] >>= return)

 -- Output: [1,2,3,4,5,6,7,8,9,10]

Bridging Category Theory and Functional Programming for Enhanced Learning

Volume 11 (2025), Issue 3 11

In this example, we verify that the first law of monads is satisfied for the functor. Indeed, the order of composition

here is: we apply return to the contents of the list and then apply >>= to the obtained list, which corresponds to
 . The question now is, how does >>= work?

 main = do print([1..10] >>= (\x -> if odd x then [x*2] else []))

 This Haskell code produces the output:

 [2,6,10,14,18]

 Composing with return neutralizes the action of >>=:

 -- Example demonstrating list monad with a conditional transformation

main :: IO ()

main = do

 print ([1..10] >>= return . (\x -> if odd x then [x*2] else []))

 -- Output: [[2],[],[6],[],[10],[],[14],[],[18],[]]

Thus, it is clear that the function >>= works exactly in the same way as the natural transformation of the monad

 .

4.3.2 Application

For an integer , we want to determine all triplets that satisfy the Pythagorean relation with

 .

Let , with

 (23)

We can see as

 (24)

The only Haskell function that allows us to merge this union of unions is the bind function, coded in Haskell

by >>=. Thus, we can construct the function in Haskell as follows:

-- Example: Finding Pythagorean triples using the list monad

phi :: Integer -> [(Integer, Integer, Integer)]

phi n = [1 .. n] >>= (\x ->

 [1 .. n] >>= (\y ->

 [1 .. n] >>= (\z ->

 if x^2 + y^2 == z^2

 then [(x, y, z)]

 else [])))

main :: IO ()

main = do

 print (phi 9)

 -- Output: [(3,4,5),(4,3,5)]

4.3.3 Maybe Monad

A value is of type Maybe a if and only if can be expressed as: where is of type a, or
 .

For example, the function

 is defined on . If we associate Nothing with , then is defined on . We

say that is a total function. Consider the following Haskell code:

 -- Example: Using Maybe to handle partial functions safely

f :: Float -> Maybe Float

f x = if x >= 0

 then Just (1 - sqrt x)

 else Nothing

main :: IO ()

main = do

Bridging Category Theory and Functional Programming for Enhanced Learning

12 Volume 11 (2025), Issue 3

 print (f 3) -- Just (-0.7320508)

 print (f (-3))-- Nothing

 print (f 0) -- Just 1.0

 print (f (-1))-- Nothing

Notice that Just is an instance of a functor. We can then construct with fmap a function
 :

 -- Example: Using fmap with Maybe to apply a function safely

import Prelude

g :: Maybe Float -> Maybe Float

g x = fmap (\x -> log x) x

main :: IO ()

main = do

 print (g (Just 5)) -- Just 1.609438

 print (g (Just 0)) -- Just (-Infinity)

 print (g Nothing)) -- Nothing

 print (g (Just (-1))) -- Just NaN

Let us note that is composable with the function since the domain of is the codomain of .

 -- Example: Composing partial functions using Maybe and fmap

f :: Float -> Maybe Float

f x = if x >= 0

 then Just (1 - sqrt x)

 else Nothing

g :: Maybe Float -> Maybe Float

g x = fmap (\x -> log x) x

main :: IO ()

main = do

 print ((g . f) 3) -- Just NaN

 print ((g . f) (-3))-- Nothing

 print ((g . f) 0) -- Just 0.0

 print ((g . f) 1) -- Just (-Infinity)

We see that returns different results for degenerate cases: Just NaN, Nothing, Infinity. The Maybe monad

simplifies calculations into Just(x) or Nothing:

 -- Example: Composing partial functions safely using Maybe and explicit case

f :: Float -> Maybe Float

f x = if x >= 0

 then Just (1 - sqrt x)

 else Nothing

g :: Maybe Float -> Maybe Float

g mx = case mx of

 Nothing -> Nothing

 Just x -> if x > 0

 then Just (log x)

 else Nothing

main :: IO ()

main = do

 print ((g . f) 3) -- Nothing

 print ((g . f) (-3)) -- Nothing

Bridging Category Theory and Functional Programming for Enhanced Learning

Volume 11 (2025), Issue 3 13

 print ((g . f) 0) -- Just 0.0

 print ((g . f) 1) -- Nothing

4.4 Missing Data Problem

In Haskell, the Maybe monad allows us to address the problem of missing information in a database. Suppose, for

example, that our database consists of a collection of lists. We want to query this database for the head of each list. Each

empty list can cause an error that disrupts the execution of the program. The Maybe monad allows us to solve this

problem once and for all. We can redefine the head function so that it returns Nothing when the list is empty.

 -- Example: Redefining `head` safely using Maybe

import Data.List

-- Safe version of head

safehead :: [Int] -> Maybe Int

safehead [] = Nothing

safehead (x:_) = Just x

main :: IO ()

main = do

 print $ safehead [] -- Nothing

 print $ safehead [6,1,2] -- Just 6

The function safehead retrieves the head of a list. Sometimes, a list might be empty, in which case the safehead

function returns Nothing and automatically continues to search for the head of other lists. In typical programming, this

problem is generally handled manually through an operation called database cleaning. This cleaning is unnecessary in

the case of monadic programming.

Now suppose that our database consists of a list of phone numbers Table 2:

Table 2. Contact information of individuals

 Ali 96552233

 Belgacem 98555111

 Salha 27211211

 Mohsen

 Massaoud 55222333

We want to query this database for the number associated with a given name. If the name does not appear in the

database, we risk encountering an error message. The Maybe monad allows us to always return an answer, even if it

means returning Nothing when the name does not exist in the list. In Haskell, the function that queries a list for such

data is called lookup.

 -- Example: Using lookup and defining a safe lookup function

-- Sample phonebook

phonebook :: [(String, String)]

phonebook =

 [("Ali", "96552233")

 , ("Belgacem", "98555111")

 , ("Salha", "27211211")

 , ("Mohsen", "")

 , ("Massaoud", "55222333")

]

main :: IO ()

main = do

 print (lookup "Ali" phonebook) -- Just "96552233"

 print (lookup "Salem" phonebook) -- Nothing

 print (lookup "Mohsen" phonebook) -- Just ""

-- Safe lookup function: treats empty strings as missing data

safeLookup :: String -> [(String, String)] -> Maybe String

safeLookup name book = case lookup name book of

 Just "" -> Nothing -- empty string treated as missing

Bridging Category Theory and Functional Programming for Enhanced Learning

14 Volume 11 (2025), Issue 3

 result -> result -- otherwise return the result

main2 :: IO ()

main2 = do

 print (safeLookup "Ali" phonebook) -- Just "96552233"

 print (safeLookup "Mohsen" phonebook) -- Nothing

 print (safeLookup "Salem" phonebook) -- Nothing

In a more advanced framework, the functorial interpretation of databases in Haskell has allowed for optimizing the

execution time of programs in big data [10].

Consider this richer example that shows how the Maybe monad cleanly propagates Nothing when some data is

missing. This example chains lookups across two tables: an employee manager table and a person phone table.

The students will see how a missing manager or a missing phone number stops the computation without explicit error-

checking at every step.

-- ManagerPhone.hs

import Data.Maybe (maybe)

-- A small helper: treat empty string as "missing" (Nothing)

safeLookup :: String -> [(String, String)] -> Maybe String

safeLookup name book = case lookup name book of

 Just "" -> Nothing -- empty string denotes "no data"

 result -> result -- either Just non-empty string or Nothing

-- Sample data: employee -> manager

employees :: [(String, String)]

employees =

 [("Alice", "Bob")

 , ("Bob", "Carol")

 , ("Eve", "Carol")

 , ("Mallory", "") -- Mallory has no recorded manager

]

-- Sample contact table: name -> phone (empty = missing)

contacts :: [(String, String)]

contacts =

 [("Bob", "555-1234")

 , ("Carol", "") -- Carol's phone is missing

 , ("Eve", "555-9999")

]

-- Compose two lookups using the Maybe monad (do-notation)

findManagerPhone :: String -> [(String,String)] -> [(String,String)] -> Maybe String

findManagerPhone emp emps book = do

 mgr <- lookup emp emps -- lookup returns Maybe String

 phone <- safeLookup mgr book -- safeLookup returns Maybe String

 return phone

-- Same logic using >>= (bind)

findManagerPhone' :: String -> [(String,String)] -> [(String,String)] -> Maybe String

findManagerPhone' emp emps book =

 lookup emp emps >>= (\mgr -> safeLookup mgr book)

-- Query several employees at once: mapM will return Nothing if any query fails

findManyManagerPhones :: [String] -> [(String,String)] -> [(String,String)] -> Maybe [String]

findManyManagerPhones names emps book =

 mapM (\n -> findManagerPhone n emps book) names

-- A small display helper using Data.Maybe.maybe

displayManagerPhone :: String -> [(String,String)] -> [(String,String)] -> String

displayManagerPhone name emps book =

 maybe ("No phone found for manager of " ++ name)

Bridging Category Theory and Functional Programming for Enhanced Learning

Volume 11 (2025), Issue 3 15

 ("Manager's phone: " ++)

 (findManagerPhone name emps book)

-- Example main that prints results (expected results shown as comments)

main :: IO ()

main = do

 print $ findManagerPhone "Alice" employees contacts

 -- Just "555-1234" (Alice -> Bob -> "555-1234")

 print $ findManagerPhone "Bob" employees contacts

 -- Nothing (Bob -> Carol, but Carol has empty phone -> Nothing)

 print $ findManagerPhone "Mallory" employees contacts

 -- Nothing (Mallory -> "" (no manager) -> lookup "" fails -> Nothing)

 print $ findManyManagerPhones ["Alice","Eve"] employees contacts

 -- Just ["555-1234","555-9999"]

 print $ findManyManagerPhones ["Alice","Bob"] employees contacts

 -- Nothing (because Bob's manager Carol has no phone)

 putStrLn $ displayManagerPhone "Alice" employees contacts

 -- "Manager's phone: 555-1234"

 putStrLn $ displayManagerPhone "Bob" employees contacts

 -- "No phone found for manager of Bob"

This example shows the pedagogically useful property of the Maybe monad: it abstracts and centralizes the

missing-data handling, removing repetitive checks and making programs easier to reason about. For classroom

exercises, mix do-notation, >>= and type-level modeling (Maybe in the data) so students see the full picture.

Although Haskell is a theoretical programming language not widely used in practice, some languages are

influenced by Haskell’s monadic structures. This example shows how R can treat a list as a monad using the purrr

library. We will apply a function to each element of a list and accumulate the results.

 # Example: Treating a list as a monad in R using the purrr library

Load the purrr library

library(purrr)

Create a list of numbers

numbers <- list(1, 2, 3, 4, 5)

Apply a function to each element (square it) and reduce by summing

result <- numbers %>%

 map(~ .x^2) %>% # Square each element

 reduce(`+`) # Sum all elements

Print the result

print(result)

Outputs: 55

The map function applies a function to each element of the list, while reduce combines the list values into a single

result by summing them. This example illustrates how R can treat a list functionally, similar to monads in Haskell.

While R is not built around monads, libraries like purrr enable a functional programming approach, providing an

elegant way to manipulate data.

4.5 Yoneda Lemma in Hask

So far, we have seen how category theory can be applied to functional programming. Conversely, functional

programming provides a rich setting where category theory finds practical applications in computer science. It also

helps students deepen their understanding of category theory. For instance, students often face challenges when trying

to grasp the Yoneda Lemma, as discussed in various online forums [12, 13]. These challenges are shared by educators

tasked with teaching category theory to students who have a purely computer science-oriented background. Writing out

Bridging Category Theory and Functional Programming for Enhanced Learning

16 Volume 11 (2025), Issue 3

the Yoneda Lemma in the context of the Hask category can help make these ideas clearer. Consider the functor

 . For each type in Hask, the functor assigns the set of all Haskell functions from Integer to . In

other words:

 (25)

For example:

 (26)

 which could include functions like:

 {

 (27)

 or

 (28)

 (29)

For each Haskell function , the functor assigns a function

 (30)

which maps a function to a new function defined by:

 (31)

Suppose and :

 (32)

Now, for any , the functor maps this to a new function

 (33)

where:

 (34)

 For example, if , then:

 (35)

So:

 {

 (36)

Let be a set-valued functor that associates to a type in Hask the set of elements of type :

 (37)

For each Haskell function , the functor maps this function to a function defined by:

 (38)

for every .

Bridging Category Theory and Functional Programming for Enhanced Learning

Volume 11 (2025), Issue 3 17

The Yoneda Lemma states that the set of natural transformations from to is in bijection with

 . This is a powerful result, as it simplifies the problem of finding natural transformations: instead of

considering all types , it suffices to understand the transformation on just the object Integer. Thus, category theory is a

very beautiful story. Told through Hask, this story becomes very entertaining.

Now, let’s construct a natural transformation from to for each integer . For each , we

construct a natural transformation
 . By the Yoneda Lemma, such a natural transformation corresponds

to an element of , and since , each gives rise to a natural transformation .

For each type , the component of the natural transformation at , denoted , is a function:

 (39)

This function maps any Haskell function to the element . In other words:

 (40)

To verify that is a natural transformation, we must show that for every morphism in , the

following diagram commutes:

→

→

 (41)

This means that for every , we need to show:

 (42)

Substituting the definitions of and , we get:

 (43)

Since , the diagram commutes, proving that is indeed a natural transformation.

5. Conclusion

Category theory and functional programming are essential fields in both mathematics and computer science.

However, category theory remains under-represented in many academic programs, while functional programming is

often taught without a strong theoretical foundation. This paper introduces a pedagogical framework that bridges these

two domains, making abstract concepts such as monads and the Yoneda Lemma more accessible to undergraduate

students.

By integrating theoretical principles with practical programming, we offer an innovative approach that allows

students to engage with complex ideas early in their academic journey. This interdisciplinary method not only

strengthens students’ understanding of functional programming but also deepens their comprehension of category

theory’s abstract principles.

To implement this strategy, we successfully introduced a new course titled Category Theory and Functional

Programming into the curriculum of the National Engineer’s Degree in Computer Science: Artificial Intelligence [14].

The interdisciplinary nature of this framework has the potential to contribute to innovative teaching strategies,

collaborative learning, and interdisciplinary projects. Although pedagogical at its core, this study also highlights the

practical application of theoretical frameworks in addressing real-world computational challenges, such as big data and

database structures.

Moving forward, future research could explore further integration of category theory into computer science

education and its application across various disciplines. A significant challenge is using Haskell to understand advanced

concepts of category theory, as discussed in [15, 16, 17].

References

[1] S. MacLane, Category Theory for the Working Mathematician, 2nd ed. Springer-Verlag, 1998.

[2] T. Leinster, Basic Category Theory. Cambridge University Press, 2014.

[3] D. I. Spivak, Category Theory for the Sciences. The MIT Press, 2014.

[4] B. Milewski, Category Theory for Programmers. Leanpub, 2019.

Bridging Category Theory and Functional Programming for Enhanced Learning

18 Volume 11 (2025), Issue 3

[5] D. Jiang, “Teaching Partial Order Relations: A Programming Approach,” Int. J. Educ. Manag. Eng. (IJEME), vol. 14, no. 1, pp.

25–32, 2024, doi: 10.5815/ijeme.2024.01.03.

[6] F. Kadhi, Basic Principles in Numerical Analysis. Andalus Publishing House, Hail, 2005.

[7] F. Kadhi, The Appropriate Explanation for Computer Mathematics. Rushd Bookstore, Riyadh, 2005.

[8] R. P. Dobrow, Introduction to Stochastic Processes with R. Wiley, 2016.

[9] W. J. Braun and D. J. Murdoch, A First Course in Statistical Programming with R, 3rd ed. Cambridge University Press, 2021.

[10] Y. Boughanmi, “Categorical Modeling of Databases,” Master’s thesis, Data Science track, ENSI, Feb. 04, 2022.

[11] Online Haskell Compiler. https://onecompiler.com/haskell/42utp6rzq (accessed Oct. 2024).

[12] Discussion on Lemme de Yoneda, Les-Mathématiques.net. https://les-mathematiques.net/vanilla/discussion/987027/lemme-de-

yoneda (accessed Oct. 2024).

[13] Discussion on Yoneda Lemma, Mathematics Stack Exchange. https://math.stackexchange.com/questions/tagged/yoneda-

lemma (accessed Oct. 2024).

[14] National School of Computer Science, Tunisia, Category Theory and Functional Programming. https://ensi.rnu.tn/fra/plaquette-

pedagogique/ (accessed Oct. 2024).

[15] M. Ghazel and F. Kadhi, “Reedy Diagrams in V-Model Categories,” Appl. Categ. Struct., vol. 27, pp. 549–566, 2019, doi:

10.1007/s10485-019-09566-w.

[16] F. Kadhi, “Lemme de Yoneda pour les foncteurs à valeurs monoidales,” arXiv, 2024, doi: 10.48550/arXiv.2410.07766.

[17] F. Kadhi, “Optimisation Abstraite,” arXiv, 2024, doi: 10.48550/arXiv.2410.07734.

[18] F. Kadhi, “Accessible Bridge Between Category Theory and Functional Programming,” in Conference SMT 2023, arXiv, 2024,

doi: 10.48550/arXiv.2410.07918.

Authors’ Profiles

Dr. Fethi Kadhi is an Assistant Professor at the National School of Computer Science (ENSI), University of

Manouba, Tunisia. In addition to his teaching duties, he holds several leadership roles within the university’s

research groups and laboratories. Notably, he led the Department of Image and Mathematical Modeling at ENSI

and coordinated with other departments to establish two Master’s degree programs. Dr Kadhi earned his B.S. in

Mathematics and his M.S. in Optimization Theory from the Faculty of Sciences of Tunis, where he later

completed his Ph.D. in Applied Mathematics. His research interests are interdisciplinary, encompassing

Optimization, Dynamical Systems, Computer Science, and Category Theory.

How to cite this paper: Fethi Kadhi, "Bridging Category Theory and Functional Programming for Enhanced Learning",

International Journal of Mathematical Sciences and Computing(IJMSC), Vol.11, No.3, pp. 1-18, 2025. DOI:

10.5815/ijmsc.2025.03.01

