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Abstract: Functional programming is frequently taught in isolation from its mathematical roots, particularly category 

theory, leading to a fragmented understanding for students. Simultaneously, category theory is often perceived as too 

abstract and difficult to grasp, despite its foundational role in programming. This gap between theory and practice 

creates barriers for students, preventing them from fully appreciating the deep connections between functional 

programming and its underlying mathematical structures. Although there are resources aimed at bridging this divide, 

such as works by Milewski, MacLane, and Leinster, they often either lack practical examples or fail to delve deeply into 

the mathematical rigor required for a comprehensive understanding of category theory. This paper presents a novel 

pedagogical approach that integrates category theory with functional programming in a unified and accessible 

framework. By leveraging monadic programming, particularly through the list and maybe monads, we offer concrete 

examples of how abstract mathematical concepts can address real-world programming challenges, such as handling 

missing data. Our approach builds on and generalizes Dayou Jiang's method of using programming to teach partially 

ordered relations. In doing so, we concurrently teach functional programming and category theory, making the abstract 

more tangible and applicable. This interdisciplinary method not only enhances comprehension of both fields but also 

aligns with contemporary educational reforms that prioritize integrated learning across mathematical and computational 

domains. 

 

Index Terms: Category Theory, Functional Programming, Modern Education, Monads, Interdisciplinary Learning, 

Computer Science Pedagogy 

 

 

1. Introduction 

In many computer science programs, functional programming is often taught in isolation from its underlying 

mathematical foundations, leaving students with a fragmented and incomplete understanding of the subject. This lack of 

a structured, theoretical framework makes it difficult for students to engage with functional programming principles in a 

meaningful and systematic way. At the same time, category theory, which provides a deep and rigorous mathematical 

foundation for functional programming, is often viewed as overly abstract and challenging to comprehend. Despite the 

availability of resources aimed at introducing category theory to learners with a basic mathematical background [1, 2, 3], 

many students still struggle to grasp its relevance and practical application, particularly in the context of programming. 

Works such as [4] offer valuable insights into the intersection of category theory and programming. However, 

these resources often lack the depth needed to fully explore the mathematical rigor of category theory and its direct 

application to functional programming. As a result, students are limited in their ability to fully leverage the strengths of 

both fields, missing out on the profound connections between abstract mathematics and practical programming. 

This paper aims to address this gap by presenting a pedagogical approach that integrates category theory with 

functional programming in a unified and accessible framework. Our goal is to provide students with a structured 

method for exploring functional programming while simultaneously offering practical insights into the abstract 

principles of category theory. Through concrete examples, we demonstrate how monadic programming particularly 

using the list and Maybe monads can be applied to real world programming challenges such as handling missing data. 

In doing so, this approach generalizes Dayou Jiang’s method of teaching partially ordered relations through 

programming [5]. Many educational resources have adopted this approach, using programming languages to teach 

fundamental mathematical and scientific concepts. 
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Our method can be seen as a generalization of [5]. First, because partially ordered sets are small categories, and 

second, because we apply the same approach in both directions, teaching category theory and functional programming 

simultaneously. 

The paper is organized as follows:  Section 2 outlines a multidisciplinary pedagogical approach designed to bridge 

the significant epistemological gap between the abstract theory of category theory and the concrete practice of 

functional programming. It identifies a dual challenge: mathematics students struggle with the motivation, verification, 

and application of abstract concepts, while programming students face hurdles in understanding the mathematical 

abstractions and laws behind functional constructs. 

The proposed solution uses Haskell as a tool for instrumental genesis, transforming passive learning into active 

construction. This approach is grounded in precedents from computational mathematics (e.g., Mathematica, R) and 

directly addresses the core challenges by providing immediate, practical motivation, objective verification through the 

compiler, and inherent application of theory. The method is designed to be accessible to students with basic 

mathematical maturity and varying backgrounds, leveraging the synergy between the two domains to foster a deep, 

integrated understanding. 

In Section 3, we cover the essential concepts of category theory, including the definition of categories, functors, 

natural transformations, monads, and the Yoneda Lemma. Each of these topics is introduced with examples to make the 

abstract theory more accessible. Section 4 shifts the focus to functional programming, particularly the Haskell language. 

We explore how category theory applies to Haskell, treating it as a category (Hask), and examine how functors and 

monads manifest in this context. We also address practical issues, such as handling missing data using monadic 

structures. By the end of this section, we further deepen our understanding of category theory through the application of 

the Yoneda Lemma to the category Hask. 

Section 5 offers a conclusion, emphasizing the potential for this interdisciplinary approach to enhance students’ 

engagement with both functional programming and category theory. By integrating these two domains, students gain a 

deeper understanding of both mathematical principles and their practical applications in programming.  

2. A Multidisciplinary Pedagogical Approach 

2.1  The Dual Pedagogical Challenge: Abstract Theory and Concrete Practice 

In contemporary education, multidisciplinary approaches are recognized as key drivers of innovation, yet they 

introduce unique complexities. This work is situated at the intersection of two particularly challenging fields: the 

abstract mathematics of category theory and the applied practice of functional programming. The core difficulty is a 

bidirectional epistemological gap that hinders effective learning in both domains. 

From the mathematical perspective, students struggle to form operational intuition for highly abstract concepts 

(e.g., functors, monads, natural transformations) when taught through traditional, passive, axiomatic methods. This 

manifests as:   

 

 The Motivation Problem: Students perceive definitions as arbitrary formalisms, asking, “Why is this 

important?”  

 The Verification Problem: Unlike solving an equation, reasoning with commutative diagrams offers no 

mechanism for self-correction, leading to reliance on external validation.  

 The Transfer Problem: Students fail to apply theoretical knowledge to practical computational domains 

where these ideas are influential.  

 

Conversely, from the programming perspective, teaching functional programming through a categorical lens 

presents its own set of obstacles. Students, especially those with imperative backgrounds, must bridge the gap between 

concrete code and abstract mathematical structures:   

 

 The Abstraction Hurdle: Students must learn to see types not just as data containers but as objects in a 

category, and functions not as procedures but as morphisms defined by compositional behavior.  

 The Dual Interpretation Challenge: Concepts like functors must be understood simultaneously as 

mathematical constructs that preserve structure and as typeclasses with specific methods and laws.  

 The Lawful Abstraction Problem: Beyond writing code that compiles, students must learn to create 

abstractions that obey mathematical laws (e.g., functor laws, monad laws), a requirement unfamiliar to most 

programmers.  

 

This dual challenge exists because the prevailing pedagogical model for both subjects remains one of passive 

reception rather than active construction. Students are shown concepts but are given no tools to build with them. Our 

interdisciplinary approach integrating Haskell with category theory is specifically designed to bridge this gap. We use 

each domain to illuminate the other: functional programming provides the concrete, executable environment missing 

from abstract mathematics, while category theory provides the conceptual framework that reveals the deeper structure 
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and laws underlying functional code. This creates a pedagogical synergy that transforms the challenge of teaching two 

difficult subjects into an opportunity for developing profound, integrated understanding. 

2.2  Our Solution: Haskell as a Tool for Instrumental Genesis 

Our interdisciplinary approach integrating functional programming (Haskell) with category theory is the deliberate 

solution to this problem. It is not a mere juxtaposition of subjects; it is a pedagogical strategy that uses programming as 

an instrumental genesis tool, providing the missing constructive framework. 

2.3  Precedents in Computational Mathematics 

This methodology is firmly supported by established practices in other mathematical disciplines:   

 

 Tools like Mathematica are indispensable in numerical analysis, enabling interactive exploration of iterative 

methods and approximations [6, 7].  

 The language R is pivotal in probability and statistics, allowing students to manipulate data and bring 

stochastic processes to life [8, 9].  

 

These tools succeed by transforming passive learning into active experimentation. Category theory has lacked a 

similar widely-adopted computational tool. We argue that Haskell fills this void. Inspired by categorical principles, it 

provides a formal, executable environment where theoretical constructs are not just illustrated but are necessitated by 

the language’s structure. 

2.4  A Comparative Framework: Bridging Theory and Practice 

The following table contrasts the traditional approach with our proposed method, demonstrating how it directly 

targets each facet of the identified gap:   

Table 1. Comparison of traditional and interdisciplinary approaches to teaching category theory 

Pedagogical 

Challenge  

 Traditional Approach (The Gap)   Our Interdisciplinary Solution  

Motivation 

Problem  

 Abstract justification. “It’s a 

foundational theory.”  

Concrete Necessity. A Monad is not an option; it is the 

pattern required to handle I/O, state, and failure in a 

pure language. Purpose is immediately demonstrated.  

Verification 

Problem  

 Theoretical exercises graded by an 
instructor. Feedback is delayed and 

subjective.  

Immediate, Objective Feedback. Code compiles and 
behaves correctly, verifying understanding, or it fails, 

highlighting a misconception. The compiler becomes 

an automated tutor.  

Transfer Problem   Theory is taught in a vacuum, with 

hoped-for later application.  

 Theory is Taught Through Application. Students 

learn natural transformations by writing functions that 

convert between Haskell functors. Application is 
inherent.  

2.5  Pedagogical Benefits and Observed Outcomes 

This approach has a profound impact: it bridges theory and practice, allows students to visualize and simulate 

abstract ideas in real-time, and sharpens critical thinking by applying mathematical reasoning to concrete problems. Our 

experience at confirmed its efficacy, resulting in markedly higher attendance and deeper in-class engagement. The 

resultant dual mastery of both category theory and functional programming is not the primary goal but a powerful 

outcome of an efficient educational intervention. 

2.6  Target Audience and Prerequisites 

To ensure accessibility and maximum effectiveness, our pedagogical approach is designed for students with a 

foundational yet flexible background. The primary prerequisite is not advanced expertise in either field, but rather a 

level of mathematical maturity typically gained through early undergraduate studies in computer science, mathematics, 

or a related discipline. Specifically, students should be comfortable with basic algebraic structures and logical reasoning; 

a prior encounter with fundamental concepts like sets, functions, and relations is sufficient. No prior knowledge of 

category theory itself is assumed or required. In parallel, while experience with any programming language is beneficial, 

proficiency in functional programming is not a prerequisite. The course is structured to introduce Haskell’s syntax and 

core paradigms from the ground up. This design allows students who are stronger in mathematics to grasp programming 

concepts through theoretical lenses, and students with a programming background to solidify their practical skills by 

understanding their formal mathematical underpinnings. Essentially, the course meets students at their individual points 

of strength and uses the synergy between the two domains to bootstrap understanding in the other, making it accessible 

to a broad range of learners. Some students naturally gravitate toward theoretical and abstract thinking, while others 

prefer focusing on practical solutions without delving deeply into the underlying frameworks of the tools they use. 

What distinguishes this approach is that it fosters a balanced learning environment where each group can benefit from 

the strengths of the other: abstract thinking enriches practical work with deeper insights, while a practical orientation  
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brings theoretical ideas to life. In this way, the diversity of orientations is not an obstacle but a source of mutual 

enrichment that strengthens comprehensive understanding and enhances the dynamics of collective learning. 

2.7  Roadmap for Implementation 

The following sections extend this approach through concrete Haskell examples, demonstrating how category 

theory provides elegant solutions to real-world programming challenges, offering students a unique opportunity to 

deepen their understanding in an engaging and practical way.  

3. Some Elements of Category Theory 

This section introduces the fundamental concepts of category theory in a clear and accessible manner, suitable for 

readers with varying levels of mathematical background. We will focus on a foundational understanding of categories, 

limiting ourselves to the essential elements needed for the subsequent sections. For a more detailed exploration, we 

recommend Category Theory for the Working Mathematician by Saunders MacLane [1]. 

3.1  Category 

3.1.1  Definition 

A category   consists of four main components and satisfies two key axioms:   

A collection of objects      . Objects can be anything from sets, numbers, or even more abstract entities, 

depending on the context of the category.  

For          , a collection        of arrows (also called morphisms) from   to  . These arrows represent 

transformations between objects, similar to how functions work in set theory.  

A composition law: for            ,  

 
                    
         

                                                              (1) 

 

This law defines how arrows are composed. Just as functions can be composed in mathematics (applying one 

function after another), arrows in a category follow this rule. 

For each object    , there exists a unique arrow   , called the identity arrow, that relates   to itself. This 

identity arrow behaves just like the identity function in mathematics, where applying it doesn’t change the object.  

Categories must satisfy two fundamental axioms:   

Associativity: For each         ,         , and         , we have  

 

                 (2) 

 

This means that no matter how arrows are grouped when composing them, the result will be the same. 

Identity Law: For each         , we have  

 

             (3) 

 

The identity law ensures that applying the identity arrow to any arrow leaves the arrow unchanged, much like 

multiplying by 1 in arithmetic.  

3.1.2  Examples 

1. The smallest category is  , which contains no objects or arrows. This is a trivial case of a category with no 

structure. 

2. A category with a single object and only its identity arrow is denoted  :  

 

                                                                                           (4) 

 

3. A category with two objects linked by an arrow can be depicted as:  

 

    (5) 

 

4. The fundamental example of a category is    , whose objects are sets and whose arrows are functions between 

sets. This is a foundational category in mathematics, where the objects are familiar entities (sets), and the 

arrows are transformations (functions) between them.  
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3.2  Functor 

3.2.1  Definition 

Let   and   be two categories. A functor       is a mapping between categories that preserves their structure:   

 It maps each object in   to an object in  :  

 
           

      
                                                                           (6) 

 

 It also maps each arrow (or morphism) in   to an arrow in  :  

 

 
                     

      
 (7) 

 

This ensures that arrows between objects in category   are mapped to arrows between the corresponding objects 

in category  . For instance, if there is a morphism   from object   to object   , then      is a morphism from      to 

     .  

A functor must satisfy the following two properties to preserve the structure of the categories:   

 For any arrows        and          in  , we must have:  

 

                  (8) 

 

This property ensures that functors respect composition of arrows. In other words, if you compose two morphisms 

in  , the result must be the same as applying the functor to each morphism individually and then composing the results 

in  . 

 For each object   in  , the identity arrow    must be mapped to the identity arrow of      in  :  

 

             (9) 

 

This guarantees that the identity arrow in  , which does nothing to its object, is mapped to the identity arrow in  , 

maintaining the identity property across categories.  

3.3  Natural Transformation 

3.3.1  Definition 

Let   and   be two functors from a category   to a category  . A natural transformation       is a way of 

transforming one functor into another, while preserving the structure of the categories involved. 

A natural transformation assigns to each object     an arrow              in  . This must satisfy the 

following condition: for every morphism        in  , we have  

 

                  (10) 

 

In other words, applying the functor   to   and then applying     must give the same result as applying    and 

then applying the functor   to  . This ensures that natural transformations respect the structure of the functors and the 

morphisms in the category. 

3.3.2  Examples 

1. Consider a morphism        in  . This induces a natural transformation     
     , where    and     

are hom-functors. For each object    , the component       maps an arrow           to           . The 

commutativity of the naturality square follows from the associativity of arrow composition in categories. This example 

shows how a natural transformation relates two hom-functors by "shifting" arrows via composition. 

2. Another example of a natural transformation is the inclusion map from a set   to its power set     , denoted by 

         . For each element    ,       is the singleton set    . This defines a natural transformation        
 , where      is the identity functor on     and   is the power set functor. For any function      , 

we have:  

 

                  (11) 
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3.4 Monad 

3.4.1  Definition 

A monad on a category   consists of a triple        , where: 

 

       is an endofunctor, meaning that   maps objects and morphisms in   to objects and morphisms within 

the same category.  

        is a natural transformation, called the **unit** of the monad, which assigns to each object     an 

arrow          . This maps each object to a "wrapped" version of itself within the structure provided by  .  

        is a natural transformation, called the **multiplication** of the monad. It "flattens" two 

applications of   into one. More formally, for each object    ,                 combines two layers of 

the structure into one.  

 

These structures must satisfy two key axioms, which ensure coherence and consistency:   

 

 Left identity law: For any object    , we have:  

 

                (12) 

 

This condition ensures that applying the unit   and then "flattening" with   gives back the original structure. 

 

 Right identity law: For any object    ,  

 

                (13) 

 

This ensures that applying   to the unit and then "flattening" with   also returns the original structure. 

 

 Associativity law: For any object    , the following diagram must commute:  

 

                   (14) 

3.4.2  Examples 

1. Powerset Monad Consider the power set functor          , which assigns to each set   the set of all its 

subsets     . The monad structure on   consists of:   

 

 Unit: The unit           maps each element     to the singleton subset    :  
 

           (15) 

 

This embeds each element of   as a subset of  .  

 

 Multiplication: The multiplication                 takes a set of subsets      and returns their  

union:  

 

          ⋃      (16) 

 

This operation "flattens" a collection of subsets into a single set by taking their union.  

The unit and multiplication satisfy the monad axioms, ensuring that embedding a set into its power set and then 

taking unions returns the original set. The associativity condition ensures that repeated applications of the power set and 

union behave in a consistent way. 

2. The Maybe Monad The Maybe monad can be defined as a functor           that assigns to each set   the 

set           , where   is a new element representing a possible failure or absence of information. 

The monad structure on   consists of:   

- Unit: The unit           maps each element     to itself in     :  

 

         (17) 

 

preserving successful values and adding the possibility of failure.  

- Multiplication: The multiplication                 "flattens" nested occurrences of the failure or success 

condition: 
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                            (18) 

 

This monad is often used in contexts where computations may "fail" or return a result that represents the absence 

of a value. 

3.5  Yoneda Lemma 

The Yoneda Lemma is a fundamental result in category theory that provides deep insights into how objects relate 

to other objects in a category. It allows us to fully understand an object by examining how it interacts with other objects 

through morphisms (arrows). 

Let   be a locally small category, and let     be an object. Suppose         is a functor that maps objects in 

  to sets. The Yoneda Lemma asserts that the set of natural transformations from the hom-functor    (which represents 

morphisms from   to other objects) to   is naturally isomorphic to     :  

 

 [     ]            (19) 

 

This isomorphism is natural in both   and  . Essentially, the Yoneda Lemma tells us that an object is fully 

determined by its relationships (morphisms) with other objects in the category. 

3.5.1  Consequences and Intuition 

A key consequence of the Yoneda Lemma is that if two objects   and   have hom-functors that are naturally 

isomorphic (i.e.,      ), then    , meaning the objects themselves are isomorphic. This highlights how the lemma 

reduces the study of objects to the study of their relationships. 

The intuition behind the Yoneda Lemma is that if two objects "see" the rest of the category in the same way, 

through the same morphisms, then they must be the same object. This shifts the focus from internal properties of objects 

to how they relate to others, providing a powerful conceptual tool for studying categories. 

4. Functional Programming 

Functional programming is a declarative paradigm that emphasizes the application of mathematical functions while 

avoiding state changes and data mutations. Instead of using state machines, functional programming promotes the 

composition of pure functions black-box like entities that take inputs and produce outputs without side effects. This 

focus on function purity simplifies unit testing and facilitates effective memory management, which is essential for 

teaching structured problem-solving in science and mathematics education. 

Understanding how data is organized is a crucial first step in any programming language. In Haskell, common 

structures such as lists, vectors, and trees are treated as functors, providing an ideal platform for exploring connections 

between functional programming and category theory. The concepts of categories, functors, and natural transformations 

naturally emerge, helping students grasp the mathematical underpinnings of these structures. 

Interpreting Haskell as a category (denoted as Hask) allows students to engage with important questions:   

 

1. What are the objects and arrows (morphisms) in Hask?  

2. How are arrows composed, and how do they satisfy the axioms of a category?  

3. How can functors and other categorical constructions be represented in Hask?  

 

These questions provide a roadmap for educators to introduce functional programming through a mathematical 

lens, enhancing interdisciplinary learning. Students can engage with Haskell code through practical online compilers 

[11], gaining hands-on experience with concepts like functors and natural transformations while consolidating their 

understanding of mathematical principles. 

4.1  Category Hask 

4.1.1  Objects of Hask 

Objects of Hask are Types, for examples:   

 

1. Int is a type  representing integer data types. Any integer between                  and 

            belongs to the Int type class. Int uses 32 bits of memory, with one bit reserved for the sign.  

2. Integer can be seen as a superset of Int. It has no upper limit, allowing integers of arbitrary length without 

restrictions.  

3. Float is a floating-point number type.  

4. Bool is a boolean type. It can either be True or False. Here’s an example code snippet to demonstrate how 

Bool works in Haskell:  
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4.1.2  Arrows in Haskell 

Arrows in Hask are Haskell functions, a function in Hask is built in the following manner: 

  

Examples 1.1  
      

 sp :: (Float, Float, Float) -> (Float, Float) sp (a,b,c)=(a+b+c,a*b*c) main = do print(sp(1,2,3))-- (6.0,6.0)  

 We observe that the construction of the    function in Haskell follows the same structure as a mathematical 

function.  

 

 

        

                    (20) 

 

-- Example: Calculate the area and circumference of a circle 

 

-- Function returning a tuple (area, circumference) 

circleProperties :: Float -> (Float, Float) 

circleProperties radius = (area, circumference) 

  where 

    area         = pi * radius * radius 

    circumference = 2 * pi * radius 

 

-- Main program 

main :: IO () 

main = do 

    let result = circleProperties 5.0 

    putStrLn ("Area: " ++ show (fst result) ++ 

              ", Circumference: " ++ show (snd result)) 

    -- Output: Area: 78.53982, Circumference: 31.41593 

We can see this Haskell function follows the same structure as a mathematical function: 

 

 

       

            (21) 

 

The where clause organizes the calculations similarly to how we might show our work in mathematics   

4.1.3  The Composition Law in Hask 

-- Function type declarations 

g :: Int -> Bool 

f :: Bool -> String 

 

-- Why is f . g well defined? 

-- g takes an Int and returns a Bool. 

-- f takes a Bool and returns a String. 

-- So (f . g) takes an Int and returns a String. 

 

-- Function definitions 

g x = if x `rem` 2 == 0 

         then True 

         else False 

 

f x = if x == True 

         then "This is an even Number" 

         else "This is an ODD number" 

 

-- Main program 

main = do 

    putStrLn "Example of Haskell function composition" 

    print ((f . g) 16)  -- "This is an even Number" 
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    print ((f . g) 27)  -- "This is an ODD number"  

     

 -- Function to calculate circle area 

circleArea :: Float -> Float 

circleArea radius = pi * radius * radius 

 

-- Function to format the result with a message 

formatResult :: Float -> String 

formatResult area = "The area is " ++ show area ++ " square units" 

 

-- Function to add a decorative header to the message 

addHeader :: String -> String 

 

-- Composed function that calculates and formats the area 

calculateAndFormat :: Float -> String 

calculateAndFormat = addHeader . formatResult . circleArea 

 

-- Main program 

main :: IO () 

main = do 

    putStrLn "Composition with Data Transformation Example:" 

 

    putStrLn (calculateAndFormat 5.0) 

    -- Output: 

    -- ==== RESULT ==== 

    -- The area is 78.53982 square units 

    -- ================= 

 

    putStrLn (calculateAndFormat 2.5) 

    -- Output: 

    -- ==== RESULT ==== 

    -- The area is 19.63495 square units 

    -- ================= 

This composition follows the mathematical structure: 

 

 

       

   
                                    

 (22) 

 

Where:   

 

          (circleArea function)  

                                        (formatResult function)  

                                (addHeader function)  

 The composition creates a pipeline:                  

4.1.4  The Identity Arrow in Hask 

The identity arrow    is predefined in Haskell. In the previous example, we composed two functions   and  . We 

can verify that composing with    does not change the function’s result.  

 

 -- Identity Arrow Example 

 

-- Function declaration and definition 

g :: Int -> Bool 

g x = if x `rem` 2 == 0 

         then True 

         else False 

 

-- Main program 

main = do 
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    putStrLn "Example of Haskell function composition" 

 

    print (g 16)        -- True 

    print ((id . g) 16) -- True 

 

    print (g 27)        -- False 

    print ((id . g) 27) -- False We note that Haskell retains the same name,   , for the identity arrow as it is named in 

category theory. This choice has significant pedagogical value. 

4.2  Functors in Hask 

4.2.1  List [ ] 

In Haskell, a List is an endofunctor whose construction is inspired by the functor  , see Examples (3.5.2).  

 
[ ]          

  [   ]

   [   ]

  [   ]

 

 

By analogy to             , the application of a function to the elements of a list is encoded in Haskell by 

fmap. 

 

main = do print(fmap (\x -> [x, x+1]) [1..5])  

 

This code produces the output: 

 

 [[1,2],[2,3],[3,4],[4,5],[5,6]]  

 

 

-- Example demonstrating that `fmap` satisfies the Functor laws 

 

main :: IO () 

main = do 

    -- Identity Law: fmap id should return the original list 

    print (fmap id [1..5]) 

    -- Expected output: [1,2,3,4,5] 

 

    -- Composition Law: fmap (f . g) == fmap f . fmap g 

    let f = (+1)   -- Function f adds 1 

    let g = (*2)   -- Function g multiplies by 2 

 

    -- Verify the composition law 

    print (fmap (f . g) [1..5]) 

    -- Output: [3,5,7,9,11] 

 

    print (fmap f (fmap g [1..5])) 

    -- Output: [3,5,7,9,11] (the same) 

4.3  Monads of Hask 

4.3.1 List [ ] 

In fact, List in Haskell [ ] is more than just a functor. It is a monad equipped with a natural transformation, coded 

by return, which is similar to   of  , and a natural transformation coded by >>=, which is similar to   of  . 

 

-- Example demonstrating the list monad with `>>= return` 

main :: IO () 

main = do 

    print ([1..10] >>= return) 

    -- Output: [1,2,3,4,5,6,7,8,9,10] 
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In this example, we verify that the first law of monads is satisfied for the functor. Indeed, the order of composition 

here is: we apply return to the contents of the list and then apply >>= to the obtained list, which corresponds to   
       . The question now is, how does >>= work? 

 main = do print([1..10] >>= (\x -> if odd x then [x*2] else []))  

 This Haskell code produces the output:  

 [2,6,10,14,18]  

 Composing with return neutralizes the action of >>=: 

 

 -- Example demonstrating list monad with a conditional transformation 

 

main :: IO () 

main = do 

    print ([1..10] >>= return . (\x -> if odd x then [x*2] else [])) 

    -- Output: [[2],[],[6],[],[10],[],[14],[],[18],[]]  

 

Thus, it is clear that the function >>= works exactly in the same way as the natural transformation   of the monad 

 . 

4.3.2 Application 

For an integer  , we want to determine all triplets         that satisfy the Pythagorean relation          with 

   . 

Let          , with  

 

                               (23) 

 

We can see   as  

 

                                               (24) 

 

The only Haskell function that allows us to merge this union of unions is the bind function, coded in Haskell 

by >>=. Thus, we can construct the function   in Haskell as follows: 

-- Example: Finding Pythagorean triples using the list monad 

 

phi :: Integer -> [(Integer, Integer, Integer)] 

phi n = [1 .. n] >>= (\x -> 

        [1 .. n] >>= (\y -> 

        [1 .. n] >>= (\z -> 

            if x^2 + y^2 == z^2 

                then [(x, y, z)] 

                else []))) 

 

main :: IO () 

main = do 

    print (phi 9) 

    -- Output: [(3,4,5),(4,3,5)] 

4.3.3  Maybe Monad 

A value   is of type Maybe a if and only if   can be expressed as:           where   is of type a, or   
       . 

For example, the function     
 

 
 is defined on   . If we associate Nothing with  , then   is defined on  . We 

say that   is a total function. Consider the following Haskell code: 

 

 -- Example: Using Maybe to handle partial functions safely 

 

f :: Float -> Maybe Float 

f x = if x >= 0 

        then Just (1 - sqrt x) 

        else Nothing 

 

main :: IO () 

main = do 
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    print (f 3)   -- Just (-0.7320508) 

    print (f (-3))-- Nothing 

    print (f 0)   -- Just 1.0 

    print (f (-1))-- Nothing 

 

Notice that Just is an instance of a functor. We can then construct with fmap a function              
          : 

 

 -- Example: Using fmap with Maybe to apply a function safely 

 

import Prelude 

 

g :: Maybe Float -> Maybe Float 

g x = fmap (\x -> log x) x 

 

main :: IO () 

main = do 

    print (g (Just 5))    -- Just 1.609438 

    print (g (Just 0))    -- Just (-Infinity) 

    print (g Nothing))    -- Nothing 

    print (g (Just (-1))) -- Just NaN 

 

Let us note that   is composable with the function   since the domain of   is the codomain of  . 

 

 -- Example: Composing partial functions using Maybe and fmap 

 

f :: Float -> Maybe Float 

f x = if x >= 0 

        then Just (1 - sqrt x) 

        else Nothing 

 

g :: Maybe Float -> Maybe Float 

g x = fmap (\x -> log x) x 

 

main :: IO () 

main = do 

    print ((g . f) 3)   -- Just NaN 

    print ((g . f) (-3))-- Nothing 

    print ((g . f) 0)   -- Just 0.0 

    print ((g . f) 1)   -- Just (-Infinity) 

 

We see that   returns different results for degenerate cases: Just NaN, Nothing, Infinity. The Maybe monad 

simplifies calculations into Just(x) or Nothing: 

 

 -- Example: Composing partial functions safely using Maybe and explicit case 

 

f :: Float -> Maybe Float 

f x = if x >= 0 

        then Just (1 - sqrt x) 

        else Nothing 

 

g :: Maybe Float -> Maybe Float 

g mx = case mx of 

    Nothing  -> Nothing 

    Just x   -> if x > 0 

                    then Just (log x) 

                    else Nothing 

 

main :: IO () 

main = do 

    print ((g . f) 3)    -- Nothing 

    print ((g . f) (-3)) -- Nothing 
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    print ((g . f) 0)    -- Just 0.0 

    print ((g . f) 1)    -- Nothing 

4.4  Missing Data Problem 

In Haskell, the Maybe monad allows us to address the problem of missing information in a database. Suppose, for 

example, that our database consists of a collection of lists. We want to query this database for the head of each list. Each 

empty list can cause an error that disrupts the execution of the program. The Maybe monad allows us to solve this 

problem once and for all. We can redefine the head function so that it returns Nothing when the list is empty.  

 

 -- Example: Redefining `head` safely using Maybe 

 

import Data.List 

 

-- Safe version of head 

safehead :: [Int] -> Maybe Int 

safehead []     = Nothing 

safehead (x:_)  = Just x 

 

main :: IO () 

main = do 

    print $ safehead []       -- Nothing 

    print $ safehead [6,1,2] -- Just 6 

 

The function safehead retrieves the head of a list. Sometimes, a list might be empty, in which case the safehead 

function returns Nothing and automatically continues to search for the head of other lists. In typical programming, this 

problem is generally handled manually through an operation called database cleaning. This cleaning is unnecessary in 

the case of monadic programming. 

Now suppose that our database consists of a list of phone numbers Table 2:  

Table 2. Contact information of individuals 

  Ali   96552233  

 Belgacem   98555111  

 Salha   27211211  

 Mohsen    

 Massaoud   55222333  

 

We want to query this database for the number associated with a given name. If the name does not appear in the 

database, we risk encountering an error message. The Maybe monad allows us to always return an answer, even if it 

means returning Nothing when the name does not exist in the list. In Haskell, the function that queries a list for such 

data is called lookup.  

 -- Example: Using lookup and defining a safe lookup function 

 

-- Sample phonebook 

phonebook :: [(String, String)] 

phonebook = 

    [ ("Ali", "96552233") 

    , ("Belgacem", "98555111") 

    , ("Salha", "27211211") 

    , ("Mohsen", "") 

    , ("Massaoud", "55222333") 

    ] 

 

main :: IO () 

main = do 

    print (lookup "Ali" phonebook)    -- Just "96552233" 

    print (lookup "Salem" phonebook)  -- Nothing 

    print (lookup "Mohsen" phonebook) -- Just "" 

 

-- Safe lookup function: treats empty strings as missing data 

safeLookup :: String -> [(String, String)] -> Maybe String 

safeLookup name book = case lookup name book of 

    Just "" -> Nothing  -- empty string treated as missing 
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    result  -> result   -- otherwise return the result 

 

main2 :: IO () 

main2 = do 

    print (safeLookup "Ali" phonebook)    -- Just "96552233" 

    print (safeLookup "Mohsen" phonebook) -- Nothing 

    print (safeLookup "Salem" phonebook)  -- Nothing 

 

In a more advanced framework, the functorial interpretation of databases in Haskell has allowed for optimizing the 

execution time of programs in big data [10]. 

Consider this richer example that shows how the Maybe monad cleanly propagates Nothing when some data is 

missing. This example chains lookups across two tables: an employee   manager table and a person   phone table. 

The students will see how a missing manager or a missing phone number stops the computation without explicit error-

checking at every step. 

 

-- ManagerPhone.hs 

import Data.Maybe (maybe) 

 

-- A small helper: treat empty string as "missing" (Nothing) 

safeLookup :: String -> [(String, String)] -> Maybe String 

safeLookup name book = case lookup name book of 

    Just "" -> Nothing   -- empty string denotes "no data" 

    result  -> result    -- either Just non-empty string or Nothing 

 

-- Sample data: employee -> manager 

employees :: [(String, String)] 

employees = 

    [ ("Alice", "Bob") 

    , ("Bob", "Carol") 

    , ("Eve", "Carol") 

    , ("Mallory", "")   -- Mallory has no recorded manager 

    ] 

 

-- Sample contact table: name -> phone (empty = missing) 

contacts :: [(String, String)] 

contacts = 

    [ ("Bob", "555-1234") 

    , ("Carol", "")     -- Carol's phone is missing 

    , ("Eve", "555-9999") 

    ] 

 

-- Compose two lookups using the Maybe monad (do-notation) 

findManagerPhone :: String -> [(String,String)] -> [(String,String)] -> Maybe String 

findManagerPhone emp emps book = do 

    mgr   <- lookup emp emps      -- lookup returns Maybe String 

    phone <- safeLookup mgr book  -- safeLookup returns Maybe String 

    return phone 

 

-- Same logic using >>= (bind) 

findManagerPhone' :: String -> [(String,String)] -> [(String,String)] -> Maybe String 

findManagerPhone' emp emps book = 

    lookup emp emps >>= (\mgr -> safeLookup mgr book) 

 

-- Query several employees at once: mapM will return Nothing if any query fails 

findManyManagerPhones :: [String] -> [(String,String)] -> [(String,String)] -> Maybe [String] 

findManyManagerPhones names emps book = 

    mapM (\n -> findManagerPhone n emps book) names 

 

-- A small display helper using Data.Maybe.maybe 

displayManagerPhone :: String -> [(String,String)] -> [(String,String)] -> String 

displayManagerPhone name emps book = 

    maybe ("No phone found for manager of " ++ name) 
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          ("Manager's phone: " ++) 

          (findManagerPhone name emps book) 

 

-- Example main that prints results (expected results shown as comments) 

main :: IO () 

main = do 

    print $ findManagerPhone "Alice" employees contacts 

    -- Just "555-1234" (Alice -> Bob -> "555-1234") 

 

    print $ findManagerPhone "Bob" employees contacts 

    -- Nothing (Bob -> Carol, but Carol has empty phone -> Nothing) 

 

    print $ findManagerPhone "Mallory" employees contacts 

    -- Nothing (Mallory -> "" (no manager) -> lookup "" fails -> Nothing) 

 

    print $ findManyManagerPhones ["Alice","Eve"] employees contacts 

    -- Just ["555-1234","555-9999"] 

 

    print $ findManyManagerPhones ["Alice","Bob"] employees contacts 

    -- Nothing (because Bob's manager Carol has no phone) 

 

    putStrLn $ displayManagerPhone "Alice" employees contacts 

    -- "Manager's phone: 555-1234" 

 

    putStrLn $ displayManagerPhone "Bob" employees contacts 

    -- "No phone found for manager of Bob"   

 

This example shows the pedagogically useful property of the Maybe monad: it abstracts and centralizes the 

missing-data handling, removing repetitive checks and making programs easier to reason about. For classroom 

exercises, mix do-notation, >>= and type-level modeling (Maybe in the data) so students see the full picture.  

Although Haskell is a theoretical programming language not widely used in practice, some languages are 

influenced by Haskell’s monadic structures. This example shows how R can treat a list as a monad using the purrr 

library. We will apply a function to each element of a list and accumulate the results. 

 

 # Example: Treating a list as a monad in R using the purrr library 

 

# Load the purrr library 

library(purrr) 

 

# Create a list of numbers 

numbers <- list(1, 2, 3, 4, 5) 

 

# Apply a function to each element (square it) and reduce by summing 

result <- numbers %>% 

  map(~ .x^2) %>%   # Square each element 

  reduce(`+`)        # Sum all elements 

 

# Print the result 

print(result) 

# Outputs: 55 

 

The map function applies a function to each element of the list, while reduce combines the list values into a single 

result by summing them. This example illustrates how R can treat a list functionally, similar to monads in Haskell. 

While R is not built around monads, libraries like purrr enable a functional programming approach, providing an 

elegant way to manipulate data. 

4.5 Yoneda Lemma in Hask 

So far, we have seen how category theory can be applied to functional programming. Conversely, functional 

programming provides a rich setting where category theory finds practical applications in computer science. It also 

helps students deepen their understanding of category theory. For instance, students often face challenges when trying 

to grasp the Yoneda Lemma, as discussed in various online forums [12, 13]. These challenges are shared by educators 

tasked with teaching category theory to students who have a purely computer science-oriented background. Writing out  
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the Yoneda Lemma in the context of the Hask category can help make these ideas clearer. Consider the functor 

          . For each type   in Hask, the functor      assigns the set of all Haskell functions from Integer to  . In 

other words:  

 

                                        (25) 

 

For example:  

 

                                        (26) 

 

 which could include functions like:  

 

      {
         
              

 (27) 

 

 or  

 

                  (28) 

 

 

                                      (29) 

 

For each Haskell function      , the functor   assigns a function  

 

                (30) 

 

which maps a function             to a new function                   defined by:  

 

                    (31) 

 

Suppose        and      :  
 

                          (32) 

 

Now, for any               , the functor   maps this to a new function  

 

                     (33) 

 

where:  

 

                    (34) 

 

 For example, if           , then:  

 

                           (35) 

 

So:  

 

            {
      
      

 (36) 

 

Let            be a set-valued functor that associates to a type   in Hask the set of elements of type  :  

 

                                  (37) 

 

For each Haskell function      , the functor   maps this function to a function                defined by:  

 

              (38) 

 

for every       . 
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The Yoneda Lemma states that the set of natural transformations from          to   is in bijection with 

            . This is a powerful result, as it simplifies the problem of finding natural transformations: instead of 

considering all types  , it suffices to understand the transformation on just the object Integer. Thus, category theory is a 

very beautiful story. Told through Hask, this story becomes very entertaining. 

Now, let’s construct a natural transformation from          to   for each integer    . For each    , we 

construct a natural transformation     
         . By the Yoneda Lemma, such a natural transformation corresponds 

to an element of           , and since             , each     gives rise to a natural transformation   . 

For each type       , the component of the natural transformation    at  , denoted      , is a function:  

 

                                       (39) 

 

This function maps any Haskell function             to the element          . In other words:  

 

               (40) 

 

To verify that    is a natural transformation, we must show that for every morphism       in     , the 

following diagram commutes:  

 

 

           
     
→       

                 

           
     
→       

 (41) 

 

This means that for every            , we need to show:  

 

                       
               (42) 

 

Substituting the definitions of    and            , we get:  

 

                     (43) 

 

Since                 , the diagram commutes, proving that    is indeed a natural transformation. 

5. Conclusion 

Category theory and functional programming are essential fields in both mathematics and computer science. 

However, category theory remains under-represented in many academic programs, while functional programming is 

often taught without a strong theoretical foundation. This paper introduces a pedagogical framework that bridges these 

two domains, making abstract concepts such as monads and the Yoneda Lemma more accessible to undergraduate 

students. 

By integrating theoretical principles with practical programming, we offer an innovative approach that allows 

students to engage with complex ideas early in their academic journey. This interdisciplinary method not only 

strengthens students’ understanding of functional programming but also deepens their comprehension of category 

theory’s abstract principles. 

To implement this strategy, we successfully introduced a new course titled Category Theory and Functional 

Programming into the curriculum of the National Engineer’s Degree in Computer Science: Artificial Intelligence [14]. 

The interdisciplinary nature of this framework has the potential to contribute to innovative teaching strategies, 

collaborative learning, and interdisciplinary projects. Although pedagogical at its core, this study also highlights the 

practical application of theoretical frameworks in addressing real-world computational challenges, such as big data and 

database structures. 

Moving forward, future research could explore further integration of category theory into computer science 

education and its application across various disciplines. A significant challenge is using Haskell to understand advanced 

concepts of category theory, as discussed in [15, 16, 17]. 
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