==

|
| Modern Education
| and Computer Science

| PRESS

I. J. Mathematical Sciences and Computing, 2025, 3, 1-18
Published Online on October 8, 2025 by MECS Press (http://www.mecs-press.org/)
DOI: 10.5815/ijmsc.2025.03.01

Bridging Category Theory and Functional
Programming for Enhanced Learning

Fethi Kadhi*

University of Manouba, National School of Computer Science, Manouba, Tunisia
E-mail: fethi.kadhi@ensi.uma.tn

ORCID iD: https://orcid.org//0000-0001-5173-5363

*Corresponding Author

Received: 23 October, 2024; Revised: 26 February, 2025; Accepted: 18 August, 2025; Published: 08 October, 2025

Abstract: Functional programming is frequently taught in isolation from its mathematical roots, particularly category
theory, leading to a fragmented understanding for students. Simultaneously, category theory is often perceived as too
abstract and difficult to grasp, despite its foundational role in programming. This gap between theory and practice
creates barriers for students, preventing them from fully appreciating the deep connections between functional
programming and its underlying mathematical structures. Although there are resources aimed at bridging this divide,
such as works by Milewski, MacLane, and Leinster, they often either lack practical examples or fail to delve deeply into
the mathematical rigor required for a comprehensive understanding of category theory. This paper presents a novel
pedagogical approach that integrates category theory with functional programming in a unified and accessible
framework. By leveraging monadic programming, particularly through the list and maybe monads, we offer concrete
examples of how abstract mathematical concepts can address real-world programming challenges, such as handling
missing data. Our approach builds on and generalizes Dayou Jiang's method of using programming to teach partially
ordered relations. In doing so, we concurrently teach functional programming and category theory, making the abstract
more tangible and applicable. This interdisciplinary method not only enhances comprehension of both fields but also
aligns with contemporary educational reforms that prioritize integrated learning across mathematical and computational
domains.

Index Terms: Category Theory, Functional Programming, Modern Education, Monads, Interdisciplinary Learning,
Computer Science Pedagogy

1. Introduction

In many computer science programs, functional programming is often taught in isolation from its underlying
mathematical foundations, leaving students with a fragmented and incomplete understanding of the subject. This lack of
a structured, theoretical framework makes it difficult for students to engage with functional programming principles in a
meaningful and systematic way. At the same time, category theory, which provides a deep and rigorous mathematical
foundation for functional programming, is often viewed as overly abstract and challenging to comprehend. Despite the
availability of resources aimed at introducing category theory to learners with a basic mathematical background [1, 2, 3],
many students still struggle to grasp its relevance and practical application, particularly in the context of programming.

Works such as [4] offer valuable insights into the intersection of category theory and programming. However,
these resources often lack the depth needed to fully explore the mathematical rigor of category theory and its direct
application to functional programming. As a result, students are limited in their ability to fully leverage the strengths of
both fields, missing out on the profound connections between abstract mathematics and practical programming.

This paper aims to address this gap by presenting a pedagogical approach that integrates category theory with
functional programming in a unified and accessible framework. Our goal is to provide students with a structured
method for exploring functional programming while simultaneously offering practical insights into the abstract
principles of category theory. Through concrete examples, we demonstrate how monadic programming particularly
using the list and Maybe monads can be applied to real world programming challenges such as handling missing data.
In doing so, this approach generalizes Dayou Jiang’s method of teaching partially ordered relations through
programming [5]. Many educational resources have adopted this approach, using programming languages to teach
fundamental mathematical and scientific concepts.

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 11 (2025), Issue 3

Bridging Category Theory and Functional Programming for Enhanced Learning

Our method can be seen as a generalization of [5]. First, because partially ordered sets are small categories, and
second, because we apply the same approach in both directions, teaching category theory and functional programming
simultaneously.

The paper is organized as follows: Section 2 outlines a multidisciplinary pedagogical approach designed to bridge
the significant epistemological gap between the abstract theory of category theory and the concrete practice of
functional programming. It identifies a dual challenge: mathematics students struggle with the motivation, verification,
and application of abstract concepts, while programming students face hurdles in understanding the mathematical
abstractions and laws behind functional constructs.

The proposed solution uses Haskell as a tool for instrumental genesis, transforming passive learning into active
construction. This approach is grounded in precedents from computational mathematics (e.g., Mathematica, R) and
directly addresses the core challenges by providing immediate, practical motivation, objective verification through the
compiler, and inherent application of theory. The method is designed to be accessible to students with basic
mathematical maturity and varying backgrounds, leveraging the synergy between the two domains to foster a deep,
integrated understanding.

In Section 3, we cover the essential concepts of category theory, including the definition of categories, functors,
natural transformations, monads, and the Yoneda Lemma. Each of these topics is introduced with examples to make the
abstract theory more accessible. Section 4 shifts the focus to functional programming, particularly the Haskell language.
We explore how category theory applies to Haskell, treating it as a category (Hask), and examine how functors and
monads manifest in this context. We also address practical issues, such as handling missing data using monadic
structures. By the end of this section, we further deepen our understanding of category theory through the application of
the Yoneda Lemma to the category Hask.

Section 5 offers a conclusion, emphasizing the potential for this interdisciplinary approach to enhance students’
engagement with both functional programming and category theory. By integrating these two domains, students gain a
deeper understanding of both mathematical principles and their practical applications in programming.

2. A Multidisciplinary Pedagogical Approach

2.1 The Dual Pedagogical Challenge: Abstract Theory and Concrete Practice

In contemporary education, multidisciplinary approaches are recognized as key drivers of innovation, yet they
introduce unique complexities. This work is situated at the intersection of two particularly challenging fields: the
abstract mathematics of category theory and the applied practice of functional programming. The core difficulty is a
bidirectional epistemological gap that hinders effective learning in both domains.

From the mathematical perspective, students struggle to form operational intuition for highly abstract concepts
(e.g., functors, monads, natural transformations) when taught through traditional, passive, axiomatic methods. This
manifests as:

e The Motivation Problem: Students perceive definitions as arbitrary formalisms, asking, “Why is this
important?”

e The Verification Problem: Unlike solving an equation, reasoning with commutative diagrams offers no
mechanism for self-correction, leading to reliance on external validation.

e The Transfer Problem: Students fail to apply theoretical knowledge to practical computational domains
where these ideas are influential.

Conversely, from the programming perspective, teaching functional programming through a categorical lens
presents its own set of obstacles. Students, especially those with imperative backgrounds, must bridge the gap between
concrete code and abstract mathematical structures:

e The Abstraction Hurdle: Students must learn to see types not just as data containers but as objects in a
category, and functions not as procedures but as morphisms defined by compositional behavior.

e The Dual Interpretation Challenge: Concepts like functors must be understood simultaneously as
mathematical constructs that preserve structure and as typeclasses with specific methods and laws.

e The Lawful Abstraction Problem: Beyond writing code that compiles, students must learn to create
abstractions that obey mathematical laws (e.g., functor laws, monad laws), a requirement unfamiliar to most
programmers.

This dual challenge exists because the prevailing pedagogical model for both subjects remains one of passive
reception rather than active construction. Students are shown concepts but are given no tools to build with them. Our
interdisciplinary approach integrating Haskell with category theory is specifically designed to bridge this gap. We use
each domain to illuminate the other: functional programming provides the concrete, executable environment missing
from abstract mathematics, while category theory provides the conceptual framework that reveals the deeper structure

2 Volume 11 (2025), Issue 3

Bridging Category Theory and Functional Programming for Enhanced Learning

and laws underlying functional code. This creates a pedagogical synergy that transforms the challenge of teaching two
difficult subjects into an opportunity for developing profound, integrated understanding.

2.2 Our Solution: Haskell as a Tool for Instrumental Genesis

Our interdisciplinary approach integrating functional programming (Haskell) with category theory is the deliberate
solution to this problem. It is not a mere juxtaposition of subjects; it is a pedagogical strategy that uses programming as
an instrumental genesis tool, providing the missing constructive framework.

2.3 Precedents in Computational Mathematics
This methodology is firmly supported by established practices in other mathematical disciplines:
e Tools like Mathematica are indispensable in numerical analysis, enabling interactive exploration of iterative
methods and approximations [6, 7].

e The language R is pivotal in probability and statistics, allowing students to manipulate data and bring
stochastic processes to life [8, 9].

These tools succeed by transforming passive learning into active experimentation. Category theory has lacked a
similar widely-adopted computational tool. We argue that Haskell fills this void. Inspired by categorical principles, it
provides a formal, executable environment where theoretical constructs are not just illustrated but are necessitated by
the language’s structure.

2.4 A Comparative Framework: Bridging Theory and Practice

The following table contrasts the traditional approach with our proposed method, demonstrating how it directly
targets each facet of the identified gap:

Table 1. Comparison of traditional and interdisciplinary approaches to teaching category theory

subjective.

Pedagogical Traditional Approach (The Gap) Our Interdisciplinary Solution

Challenge

Motivation Abstract justification. “It’s a | Concrete Necessity. A Monad is not an option; it is the

Problem foundational theory.” pattern required to handle 1/O, state, and failure in a
pure language. Purpose is immediately demonstrated.

Verification Theoretical exercises graded by an | Immediate, Objective Feedback. Code compiles and

Problem instructor. Feedback is delayed and | behaves correctly, verifying understanding, or it fails,

highlighting a misconception. The compiler becomes
an automated tutor.

Transfer Problem

Theory is taught in a vacuum, with
hoped-for later application.

Theory is Taught Through Application. Students
learn natural transformations by writing functions that

convert between Haskell functors. Application is
inherent.

2.5 Pedagogical Benefits and Observed Outcomes

This approach has a profound impact: it bridges theory and practice, allows students to visualize and simulate
abstract ideas in real-time, and sharpens critical thinking by applying mathematical reasoning to concrete problems. Our
experience at confirmed its efficacy, resulting in markedly higher attendance and deeper in-class engagement. The
resultant dual mastery of both category theory and functional programming is not the primary goal but a powerful
outcome of an efficient educational intervention.

2.6 Target Audience and Prerequisites

To ensure accessibility and maximum effectiveness, our pedagogical approach is designed for students with a
foundational yet flexible background. The primary prerequisite is not advanced expertise in either field, but rather a
level of mathematical maturity typically gained through early undergraduate studies in computer science, mathematics,
or a related discipline. Specifically, students should be comfortable with basic algebraic structures and logical reasoning;
a prior encounter with fundamental concepts like sets, functions, and relations is sufficient. No prior knowledge of
category theory itself is assumed or required. In parallel, while experience with any programming language is beneficial,
proficiency in functional programming is not a prerequisite. The course is structured to introduce Haskell’s syntax and
core paradigms from the ground up. This design allows students who are stronger in mathematics to grasp programming
concepts through theoretical lenses, and students with a programming background to solidify their practical skills by
understanding their formal mathematical underpinnings. Essentially, the course meets students at their individual points
of strength and uses the synergy between the two domains to bootstrap understanding in the other, making it accessible
to a broad range of learners. Some students naturally gravitate toward theoretical and abstract thinking, while others
prefer focusing on practical solutions without delving deeply into the underlying frameworks of the tools they use.
What distinguishes this approach is that it fosters a balanced learning environment where each group can benefit from
the strengths of the other: abstract thinking enriches practical work with deeper insights, while a practical orientation

Volume 11 (2025), Issue 3 3

Bridging Category Theory and Functional Programming for Enhanced Learning

brings theoretical ideas to life. In this way, the diversity of orientations is not an obstacle but a source of mutual
enrichment that strengthens comprehensive understanding and enhances the dynamics of collective learning.

2.7 Roadmap for Implementation

The following sections extend this approach through concrete Haskell examples, demonstrating how category
theory provides elegant solutions to real-world programming challenges, offering students a unique opportunity to
deepen their understanding in an engaging and practical way.

3. Some Elements of Category Theory

This section introduces the fundamental concepts of category theory in a clear and accessible manner, suitable for
readers with varying levels of mathematical background. We will focus on a foundational understanding of categories,
limiting ourselves to the essential elements needed for the subsequent sections. For a more detailed exploration, we
recommend Category Theory for the Working Mathematician by Saunders MacLane [1].

3.1 Category
3.1.1 Definition

A category A consists of four main components and satisfies two key axioms:

A collection of objects ob(A). Objects can be anything from sets, numbers, or even more abstract entities,
depending on the context of the category.

For a,b € ob(A), a collection A(a, b) of arrows (also called morphisms) from a to b. These arrows represent
transformations between objects, similar to how functions work in set theory.

A composition law: for a, b, ¢ € ob(A),

A(b,c) X A(a,b) - A(ac) 1)
9.f) Pogef

This law defines how arrows are composed. Just as functions can be composed in mathematics (applying one
function after another), arrows in a category follow this rule.
For each object a € A, there exists a unique arrow 1,, called the identity arrow, that relates a to itself. This
identity arrow behaves just like the identity function in mathematics, where applying it doesn’t change the object.
Categories must satisfy two fundamental axioms:
Assaociativity: For each f € A(a,b), g € A(b,c),and h € A(c,d), we have

(heg)ef=he(gef))

This means that no matter how arrows are grouped when composing them, the result will be the same.
Identity Law: For each f € A(a, b), we have

fela=f=1yef ®)

The identity law ensures that applying the identity arrow to any arrow leaves the arrow unchanged, much like
multiplying by 1 in arithmetic.

3.1.2 Examples

1. The smallest category is @, which contains no objects or arrows. This is a trivial case of a category with no
structure.
2. A category with a single object and only its identity arrow is denoted 1:

. (4)

3. A category with two objects linked by an arrow can be depicted as:
e (5)
4. The fundamental example of a category is Set, whose objects are sets and whose arrows are functions between

sets. This is a foundational category in mathematics, where the objects are familiar entities (sets), and the
arrows are transformations (functions) between them.

4 Volume 11 (2025), Issue 3

Bridging Category Theory and Functional Programming for Enhanced Learning

3.2 Functor
3.2.1 Definition

Let A and B be two categories. A functor F: A — B is a mapping between categories that preserves their structure:
e It maps each object in A to an object in B:

ob(A) - ob(B)
a = F(a) ©)

e It also maps each arrow (or morphism) in A to an arrow in B:

A(a,a) - BF(a)F(a))

fooe F()

This ensures that arrows between objects in category A are mapped to arrows between the corresponding objects
in category B. For instance, if there is a morphism f from object a to object a’, then F(f) is a morphism from F(a) to
F(a").

A functor must satisfy the following two properties to preserve the structure of the categories:

e Foranyarrows f:a — a’and g:a’ - a" in A, we must have:

F(geof)=F(@)°F())

This property ensures that functors respect composition of arrows. In other words, if you compose two morphisms
in A, the result must be the same as applying the functor to each morphism individually and then composing the results
in B.

e For each object a in A, the identity arrow 1, must be mapped to the identity arrow of F(a) in B:

F(1,) = 1F(a) 9)

This guarantees that the identity arrow in A, which does nothing to its object, is mapped to the identity arrow in B,
maintaining the identity property across categories.

3.3 Natural Transformation
3.3.1 Definition

Let F and G be two functors from a category A to a category B. A natural transformation a: F = G is a way of
transforming one functor into another, while preserving the structure of the categories involved.

A natural transformation assigns to each object a € A an arrow a,: F(a) —» G(a) in B. This must satisfy the
following condition: for every morphism f:a — a' in A, we have

A o F(f) =G(f)°aq (10)

In other words, applying the functor F to f and then applying a,, must give the same result as applying «, and
then applying the functor G to f. This ensures that natural transformations respect the structure of the functors and the
morphisms in the category.

3.3.2 Examples

1. Consider a morphism f:a — a’ in A. This induces a natural transformation H;: H* = H®, where H* and H
are hom-functors. For each object b € €, the component (Hf), maps an arrow g € C(a’,b) to g o f € C(a,b). The
commutativity of the naturality square follows from the associativity of arrow composition in categories. This example
shows how a natural transformation relates two hom-functors by "shifting" arrows via composition.

2. Another example of a natural transformation is the inclusion map from a set X to its power set P(X), denoted by
nx: X = P(X). For each element x € X, nx(x) is the singleton set {x}. This defines a natural transformation n: 1g¢;, =
P, where 14, is the identity functor on Set and P is the power set functor. For any function f: X - Y,
we have:

P(HH{x}) = {f ()} (11)

Volume 11 (2025), Issue 3 5

Bridging Category Theory and Functional Programming for Enhanced Learning

3.4 Monad
3.4.1 Definition

A monad on a category C consists of a triple (T, n, 1), where:

e T:C — Cisan endofunctor, meaning that T maps objects and morphisms in C to objects and morphisms within
the same category.

e 1:1. = T is a natural transformation, called the **unit** of the monad, which assigns to each object a € C an
arrow n,: a = T(a). This maps each object to a "wrapped" version of itself within the structure provided by T.

e wT?=T is a natural transformation, called the **multiplication** of the monad. It “flattens" two
applications of T into one. More formally, for each object a € C, u,: T(T(a)) = T(a) combines two layers of
the structure into one.

These structures must satisfy two key axioms, which ensure coherence and consistency:
e Leftidentity law: For any object a € C, we have:

Ua ° N1 = 1@ (12)
This condition ensures that applying the unit n and then "flattening™ with u gives back the original structure.
e Right identity law: For any object a € C,

Ea°TMa) = 1r(a (13)
This ensures that applying T to the unit and then "flattening" with p also returns the original structure.
e Associativity law: For any object a € C, the following diagram must commute:

Ha © Hr(a) = Ha © T(Hq) (14)

3.4.2 Examples

1. Powerset Monad Consider the power set functor P: Set — Set, which assigns to each set X the set of all its
subsets P(X). The monad structure on P consists of:

e Unit: The unit ny: X = P(X) maps each element x € X to the singleton subset {x}:

nx(x) = {x} (15)
This embeds each element of X as a subset of X.

e Multiplication: The multiplication py: P(P (X)) — P(X) takes a set of subsets {4;} and returns their
union:

pux({A}) = U 4; (16)

This operation "flattens" a collection of subsets into a single set by taking their union.

The unit and multiplication satisfy the monad axioms, ensuring that embedding a set into its power set and then
taking unions returns the original set. The associativity condition ensures that repeated applications of the power set and
union behave in a consistent way.

2. The Maybe Monad The Maybe monad can be defined as a functor T: Set — Set that assigns to each set X the
set T(X) = X U {x}, where = is a new element representing a possible failure or absence of information.

The monad structure on T consists of:

- Unit: The unit ny: X — T(X) maps each element x € X to itself in T(X):

nx(x) =x 17)
preserving successful values and adding the possibility of failure.
- Multiplication: The multiplication uy: T (T (X)) — T(X) "flattens" nested occurrences of the failure or success
condition:

6 Volume 11 (2025), Issue 3

Bridging Category Theory and Functional Programming for Enhanced Learning

px(¥) =%, pux(x) =xifx € X (18)

This monad is often used in contexts where computations may "fail" or return a result that represents the absence
of a value.

3.5 Yoneda Lemma

The Yoneda Lemma is a fundamental result in category theory that provides deep insights into how objects relate
to other objects in a category. It allows us to fully understand an object by examining how it interacts with other objects
through morphisms (arrows).

Let C be a locally small category, and let a € C be an object. Suppose X: C — Set is a functor that maps objects in
C to sets. The Yoneda Lemma asserts that the set of natural transformations from the hom-functor H* (which represents
morphisms from a to other objects) to X is naturally isomorphic to X (a):

[C,Set](H%, X) = X(a) (19)

This isomorphism is natural in both X and a. Essentially, the Yoneda Lemma tells us that an object is fully
determined by its relationships (morphisms) with other objects in the category.

3.5.1 Consequences and Intuition

A key consequence of the Yoneda Lemma is that if two objects a and b have hom-functors that are naturally
isomorphic (i.e., H* = HP), then a = b, meaning the objects themselves are isomorphic. This highlights how the lemma
reduces the study of objects to the study of their relationships.

The intuition behind the Yoneda Lemma is that if two objects "see" the rest of the category in the same way,
through the same morphisms, then they must be the same object. This shifts the focus from internal properties of objects
to how they relate to others, providing a powerful conceptual tool for studying categories.

4. Functional Programming

Functional programming is a declarative paradigm that emphasizes the application of mathematical functions while
avoiding state changes and data mutations. Instead of using state machines, functional programming promotes the
composition of pure functions black-box like entities that take inputs and produce outputs without side effects. This
focus on function purity simplifies unit testing and facilitates effective memory management, which is essential for
teaching structured problem-solving in science and mathematics education.

Understanding how data is organized is a crucial first step in any programming language. In Haskell, common
structures such as lists, vectors, and trees are treated as functors, providing an ideal platform for exploring connections
between functional programming and category theory. The concepts of categories, functors, and natural transformations
naturally emerge, helping students grasp the mathematical underpinnings of these structures.

Interpreting Haskell as a category (denoted as Hask) allows students to engage with important questions:

1. What are the objects and arrows (morphisms) in Hask?
2. How are arrows composed, and how do they satisfy the axioms of a category?
3. How can functors and other categorical constructions be represented in Hask?

These questions provide a roadmap for educators to introduce functional programming through a mathematical
lens, enhancing interdisciplinary learning. Students can engage with Haskell code through practical online compilers
[11], gaining hands-on experience with concepts like functors and natural transformations while consolidating their
understanding of mathematical principles.

4.1 Category Hask
4.1.1 Obijects of Hask

Objects of Hask are Types, for examples:

1. Int is a type representing integer data types. Any integer between 23! —1 = 2147483647 and
—2147483647 belongs to the Int type class. Int uses 32 bits of memory, with one bit reserved for the sign.

2. Integer can be seen as a superset of Int. It has no upper limit, allowing integers of arbitrary length without

restrictions.

Float is a floating-point number type.

4, Bool is a boolean type. It can either be True or False. Here’s an example code snippet to demonstrate how
Bool works in Haskell:

w

Volume 11 (2025), Issue 3 7

Bridging Category Theory and Functional Programming for Enhanced Learning

4.1.2 Arrows in Haskell

Arrows in Hask are Haskell functions, a function in Hask is built in the following manner:
Examples 1.1

sp :: (Float, Float, Float) -> (Float, Float) sp (a,b,c)=(a+b+c,a*b*c) main = do print(sp(1,2,3))-- (6.0,6.0)
We observe that the construction of the sp function in Haskell follows the same structure as a mathematical
function.

sp: D3 — D?
(a,b,c) » (a+b+c,abc) (20)

-- Example: Calculate the area and circumference of a circle

-- Function returning a tuple (area, circumference)
circleProperties :: Float -> (Float, Float)
circleProperties radius = (area, circumference)
where
area = pi * radius * radius
circumference = 2 * pi * radius

-- Main program
main :: 10 ()
main = do

let result = circleProperties 5.0

putStrLn ("Area: " ++ show (fst result) ++

", Circumference: " ++ show (snd result))

-- Output: Area: 78.53982, Circumference: 31.41593

We can see this Haskell function follows the same structure as a mathematical function:

fi R — RxR
r o (mr?2nr) (21)

The where clause organizes the calculations similarly to how we might show our work in mathematics
4.1.3 The Composition Law in Hask

-- Function type declarations
g:: Int-> Bool
f:: Bool -> String

-- Why is f . g well defined?

-- g takes an Int and returns a Bool.

-- f takes a Bool and returns a String.

-- So (f. g) takes an Int and returns a String.

-- Function definitions
gx=ifx rem 2==
then True
else False

fx=ifx==True
then "This is an even Number"
else "This is an ODD number"

-- Main program

main = do
putStrLn "Example of Haskell function composition
print ((f. g) 16) -- "This is an even Number"

8 Volume 11 (2025), Issue 3

Bridging Category Theory and Functional Programming for Enhanced Learning

print ((f. g) 27) -- "This is an ODD number"

-- Function to calculate circle area
circleArea :: Float -> Float
circleArea radius = pi * radius * radius

-- Function to format the result with a message
formatResult :: Float -> String
formatResult area = "The area is " ++ show area ++ " square units"

-- Function to add a decorative header to the message
addHeader :: String -> String

-- Composed function that calculates and formats the area
calculateAndFormat :: Float -> String
calculateAndFormat = addHeader . formatResult . circleArea

-- Main program
main :: 10 ()
main = do
putStrLn "Composition with Data Transformation Example:"

putStrLn (calculateAndFormat 5.0)
-- Output:

- ==== RESULT ====

-- The area is 78.53982 square units

putStrLn (calculateAndFormat 2.5)
-- Output:

-- ==== RESULT ====

-- The area is 19.63495 square units

This composition follows the mathematical structure:

f = h o g o a
\) l \) 22)
String — String Float — String Float — Float

Where:

e a(r) = nr? (circleArea function)

e g(x) = "Theareais" + show(x) + "squareunits” (formatResult function)
e h(s) = decorativeheader + s + footer (addHeader function)

e The composition creates a pipeline: f(r) = h(g(a(r)))

4.1.4 The ldentity Arrow in Hask

The identity arrow id is predefined in Haskell. In the previous example, we composed two functions fand g. We
can verify that composing with id does not change the function’s result.

-- ldentity Arrow Example

-- Function declaration and definition

g :: Int-> Bool
gx=ifxrem 2==
then True
else False

-- Main program
main = do

Volume 11 (2025), Issue 3 9

Bridging Category Theory and Functional Programming for Enhanced Learning

putStrLn "Example of Haskell function composition"

print (g 16) --True
print ((id . g) 16) -- True

print (g 27) -- False
print ((id . g) 27) -- False We note that Haskell retains the same name, id, for the identity arrow as it is named in
category theory. This choice has significant pedagogical value.

4.2 Functors in Hask
4.2.1 List[]

In Haskell, a List is an endofunctor whose construction is inspired by the functor P, see Examples (3.5.2).

[]: Hask — Hask

T - [T]
fi VIS
S > [S]

By analogy to P(f)(A) = f(A), the application of a function to the elements of a list is encoded in Haskell by
fmap.

main = do print(fmap (\x -> [x, x+1]) [1..5])
This code produces the output:

[[1,2],[2,3],[3,4],[4.5].[5.6]]

-- Example demonstrating that “fmap" satisfies the Functor laws

main :: 10 ()

main = do
-- Identity Law: fmap id should return the original list
print (fmap id [1..5])
-- Expected output: [1,2,3,4,5]

-- Composition Law: fmap (f. g) == fmap f. fmap g
let f=(+1) -- Function fadds 1
let g = (*2) -- Function g multiplies by 2

-- Verify the composition law

print (fmap (f. g) [1..5])
-- Output: [3,5,7,9,11]

print (fmap f (fmap g [1..5]))
-- Output: [3,5,7,9,11] (the same)
4.3 Monads of Hask
4.3.1 List[]
In fact, List in Haskell [] is more than just a functor. It is a monad equipped with a natural transformation, coded
by return, which is similar to n of P, and a natural transformation coded by >>=, which is similar to u of P.

-- Example demonstrating the list monad with “>>= return’
main :: 10 ()
main = do

print ([1..10] >>= return)

-- Qutput: [1,2,3,4,5,6,7,8,9,10]

10 Volume 11 (2025), Issue 3

Bridging Category Theory and Functional Programming for Enhanced Learning

In this example, we verify that the first law of monads is satisfied for the functor. Indeed, the order of composition
here is: we apply return to the contents of the list and then apply >>= to the obtained list, which corresponds to u o
P(n) = 1p. The question now is, how does >>= work?

main = do print([1..10] >>= (\x -> if odd x then [x*2] else []))

This Haskell code produces the output:

[2,6,10,14,18]

Composing with return neutralizes the action of >>=;

-- Example demonstrating list monad with a conditional transformation

main :: 10 ()

main = do
print ([1..10] >>=return . (\x -> if odd x then [x*2] else []))
- OUtpUt: [[211[]1[6]1[]1[1011[]1[14]![]![18]1[”

Thus, it is clear that the function >>= works exactly in the same way as the natural transformation u of the monad
P.

4.3.2 Application

For an integer n, we want to determine all triplets (x, v, z) that satisfy the Pythagorean relation z? = x? + y? with

z<n.
Let ¢: N - N x N x N, with

d(n) = {(x,y,2): z < nandz? = x* + y?} (23)
We can see ¢ as
P (n) =VUicxen (Ulsysn (Vi<z<n {(x' y,2): z% = x* + yZ})) (24)

The only Haskell function that allows us to merge this union of unions is the bind function, coded in Haskell

by >>=. Thus, we can construct the function ¢ in Haskell as follows:
-- Example: Finding Pythagorean triples using the list monad

phi :: Integer -> [(Integer, Integer, Integer)]
phin=[1. n]>>=(\x->
[1..n]>>=(y->
[1.n]>>=(0z->
if X"2 +y"2 ==272"2
then [(x, Y, 2)]

else [])))
main :: 10 ()
main = do
print (phi 9)

-- Output: [(3,4,5),(4,3,5)]
4.3.3 Maybe Monad

A value y is of type Maybe a if and only if y can be expressed as: y = Just(x) where x is of type a, ory =
Nothing.
For example, the function f:x — i is defined on R*. If we associate Nothing with 0, then f is defined on R. We

say that f is a total function. Consider the following Haskell code:
-- Example: Using Maybe to handle partial functions safely

f:: Float -> Maybe Float
fx=ifx>=0
then Just (1 - sqrt x)
else Nothing

main :: 10 ()
main = do

Volume 11 (2025), Issue 3 11

Bridging Category Theory and Functional Programming for Enhanced Learning

print (f 3) -- Just (-0.7320508)
print (f (-3))-- Nothing

print (f0) --Just 1.0

print (f (-1))-- Nothing

Notice that Just is an instance of a functor. We can then construct with fmap a function g: MaybeFloat —
MaybeFloat:

-- Example: Using fmap with Maybe to apply a function safely
import Prelude

g :: Maybe Float -> Maybe Float
g x = fmap (\x -> log x) x

main :: 10 ()

main = do
print (g (Just 5)) -- Just 1.609438
print (g (Just 0)) -- Just (-Infinity)
print (g Nothing)) -- Nothing
print (g (Just (-1))) -- Just NaN

Let us note that g is composable with the function f since the domain of f is the codomain of g.
-- Example: Composing partial functions using Maybe and fmap

f :: Float -> Maybe Float
fx=ifx>=0
then Just (1 - sqrt X)
else Nothing

g :: Maybe Float -> Maybe Float
g x = fmap (\x -> log x) x

main :: 10 ()
main = do
print ((g . f) 3) --Just NaN
print ((g . f) (-3))-- Nothing
print ((g . f) 0) --Just0.0
print ((g.f) 1) --Just (-Infinity)

We see that g returns different results for degenerate cases: Just NaN, Nothing, Infinity. The Maybe monad
simplifies calculations into Just(x) or Nothing:

-- Example: Composing partial functions safely using Maybe and explicit case

f :: Float -> Maybe Float
fx=ifx>=0
then Just (1 - sqrt X)
else Nothing

g :: Maybe Float -> Maybe Float
g mx = case mx of
Nothing -> Nothing
Justx ->ifx>0
then Just (log X)
else Nothing

main :: 10 ()

main = do
print ((g . f) 3) -- Nothing
print ((g . f) (-3)) -- Nothing

12 Volume 11 (2025), Issue 3

Bridging Category Theory and Functional Programming for Enhanced Learning

print ((g.f) 0) --Just0.0
print ((g . f) 1) -- Nothing

4.4 Missing Data Problem

In Haskell, the Maybe monad allows us to address the problem of missing information in a database. Suppose, for
example, that our database consists of a collection of lists. We want to query this database for the head of each list. Each
empty list can cause an error that disrupts the execution of the program. The Maybe monad allows us to solve this
problem once and for all. We can redefine the head function so that it returns Nothing when the list is empty.

-- Example: Redefining “head" safely using Maybe
import Data.List

-- Safe version of head
safehead :: [Int] -> Maybe Int
safehead [] = Nothing
safehead (x;_) = Just x

main :: 10 ()

main = do
print $ safehead [] -- Nothing
print $ safehead [6,1,2] -- Just 6

The function safehead retrieves the head of a list. Sometimes, a list might be empty, in which case the safehead
function returns Nothing and automatically continues to search for the head of other lists. In typical programming, this
problem is generally handled manually through an operation called database cleaning. This cleaning is unnecessary in
the case of monadic programming.

Now suppose that our database consists of a list of phone numbers Table 2:

Table 2. Contact information of individuals

Ali 96552233
Belgacem 98555111
Salha 27211211
Mohsen
Massaoud 55222333

We want to query this database for the number associated with a given name. If the name does not appear in the
database, we risk encountering an error message. The Maybe monad allows us to always return an answer, even if it
means returning Nothing when the name does not exist in the list. In Haskell, the function that queries a list for such
data is called lookup.

-- Example: Using lookup and defining a safe lookup function

-- Sample phonebook
phonebook :: [(String, String)]
phonebook =

[("Ali"; "96552233")

, ("Belgacem", "98555111")

, ("Salha", "27211211")

, ("Mohsen", ")

, ("Massaoud", "55222333")

]

main :: 10 ()

main = do
print (lookup "Ali" phonebook) -- Just "96552233"
print (lookup "Salem™ phonebook) -- Nothing
print (lookup "Mohsen" phonebook) -- Just "

-- Safe lookup function: treats empty strings as missing data
safeLookup :: String -> [(String, String)] -> Maybe String
safeLookup name book = case lookup name book of

Just """ -> Nothing -- empty string treated as missing

Volume 11 (2025), Issue 3 13

Bridging Category Theory and Functional Programming for Enhanced Learning

result ->result -- otherwise return the result

main2 :: 10 ()

main2 = do
print (safeLookup "Ali" phonebook) -- Just "96552233"
print (safeLookup "Mohsen™ phonebook) -- Nothing
print (safeLookup "Salem" phonebook) -- Nothing

In a more advanced framework, the functorial interpretation of databases in Haskell has allowed for optimizing the

execution time of programs in big data [10].

Consider this richer example that shows how the Maybe monad cleanly propagates Nothing when some data is

missing. This example chains lookups across two tables: an employee — manager table and a person — phone table.
The students will see how a missing manager or a missing phone number stops the computation without explicit error-
checking at every step.

14

-- ManagerPhone.hs
import Data.Maybe (maybe)

-- A small helper: treat empty string as "missing” (Nothing)
safeLookup :: String -> [(String, String)] -> Maybe String
safeLookup name book = case lookup name book of

Just """ -> Nothing -- empty string denotes "no data"

result ->result -- either Just non-empty string or Nothing

-- Sample data: employee -> manager
employees :: [(String, String)]
employees =
[("Alice", "Bob")
, ("Bob", "Carol")
, ("Eve", "Carol™)
, ("Mallory", ™) -- Mallory has no recorded manager

]

-- Sample contact table: name -> phone (empty = missing)
contacts :: [(String, String)]
contacts =

[("Bob", "555-1234")

, ("Carol", ™) -- Carol's phone is missing

, ("Eve", "555-9999")

]

-- Compose two lookups using the Maybe monad (do-notation)
findManagerPhone :: String -> [(String,String)] -> [(String,String)] -> Maybe String
findManagerPhone emp emps book = do

mgr <- lookup emp emps -- lookup returns Maybe String

phone <- safeLookup mgr book -- safeLookup returns Maybe String

return phone

-- Same logic using >>= (bind)
findManagerPhone' :: String -> [(String,String)] -> [(String,String)] -> Maybe String
findManagerPhone' emp emps book =

lookup emp emps >>= (\mgr -> safeLookup mgr book)

-- Query several employees at once: mapM will return Nothing if any query fails
findManyManagerPhones :: [String] -> [(String,String)] -> [(String,String)] -> Maybe [String]
findManyManagerPhones names emps book =

mapM (\n -> findManagerPhone n emps book) names

-- A small display helper using Data.Maybe.maybe
displayManagerPhone :: String -> [(String,String)] -> [(String,String)] -> String
displayManagerPhone name emps book =

maybe ("No phone found for manager of " ++ name)

Volume 11 (2025), Issue 3

Bridging Category Theory and Functional Programming for Enhanced Learning

("Manager's phone: " ++)
(findManagerPhone name emps book)

-- Example main that prints results (expected results shown as comments)
main :: 10 ()
main = do

print $ findManagerPhone "Alice" employees contacts

-- Just "555-1234" (Alice -> Bob -> "555-1234")

print $ findManagerPhone "Bob" employees contacts
-- Nothing (Bob -> Carol, but Carol has empty phone -> Nothing)

print $ findManagerPhone "Mallory" employees contacts
-- Nothing (Mallory ->"" (no manager) -> lookup "" fails -> Nothing)

print $ findManyManagerPhones ["Alice","Eve"] employees contacts
-- Just ["'555-1234","555-9999"]

print $ findManyManagerPhones ["Alice","Bob"] employees contacts
-- Nothing (because Bob's manager Carol has no phone)

putStrLn $ displayManagerPhone "Alice” employees contacts
-- "Manager's phone: 555-1234"

putStrLn $ displayManagerPhone "Bob" employees contacts
-- "No phone found for manager of Bob"

This example shows the pedagogically useful property of the Maybe monad: it abstracts and centralizes the
missing-data handling, removing repetitive checks and making programs easier to reason about. For classroom
exercises, mix do-notation, >>= and type-level modeling (Maybe in the data) so students see the full picture.

Although Haskell is a theoretical programming language not widely used in practice, some languages are
influenced by Haskell’s monadic structures. This example shows how R can treat a list as a monad using the purrr
library. We will apply a function to each element of a list and accumulate the results.

Example: Treating a list as a monad in R using the purrr library

Load the purrr library
library(purrr)

Create a list of numbers
numbers <- list(1, 2, 3, 4, 5)

Apply a function to each element (square it) and reduce by summing
result <- numbers %>%

map(~ .x"2) %>% # Square each element

reduce(’+) # Sum all elements

Print the result
print(result)
Outputs: 55

The map function applies a function to each element of the list, while reduce combines the list values into a single
result by summing them. This example illustrates how R can treat a list functionally, similar to monads in Haskell.
While R is not built around monads, libraries like purrr enable a functional programming approach, providing an
elegant way to manipulate data.

4.5 Yoneda Lemma in Hask

So far, we have seen how category theory can be applied to functional programming. Conversely, functional
programming provides a rich setting where category theory finds practical applications in computer science. It also
helps students deepen their understanding of category theory. For instance, students often face challenges when trying
to grasp the Yoneda Lemma, as discussed in various online forums [12, 13]. These challenges are shared by educators
tasked with teaching category theory to students who have a purely computer science-oriented background. Writing out

Volume 11 (2025), Issue 3 15

Bridging Category Theory and Functional Programming for Enhanced Learning

the Yoneda Lemma in the context of the Hask category can help make these ideas clearer. Consider the functor
H:Hask — Set. For each type T in Hask, the functor H(T) assigns the set of all Haskell functions from Integer to T. In
other words:

H(T) = {f:Integer — T|fisaHaskellfunction} (25)
For example:
H (Bool)isthesetoffunctionsInteger — Bool (26)
which could include functions like:
_(True ifn>0
fo = {False otherwise @7)
or
f () = Trueforalln (28)
H (Int)isthesetoffunctionsInteger — Int (29)

For each Haskell function g: T — U, the functor H assigns a function
H(g):H(T) » H(U) (30)
which maps a function f: Integer — T to a new function H(g)(f): Integer — U defined by:
H@ () = g(f(m) (1)
Suppose T = Bool and U = Int:
g(True) =1, g(False) =0 (32)

Now, for any f: Integer — Bool, the functor H maps this to a new function

H(g)(f): Integer — Int (33)
where:
H(9) (@) = g(F () (34)
For example, if £(n) = (n > 0), then:
H(9)(P)®) = g(f () = g(n > 0) (35)
So:
HNOW={; 20 (36)

Let X: Hask — Set be a set-valued functor that associates to a type T in Hask the set of elements of type T
X(T) = {x|x is anelement of typeT} (37)
For each Haskell function f: T — U, the functor X maps this function to a function X(f): X(T) - X(U) defined by:
X(Hx) = fx) (38)

for every x € X(T).

16 Volume 11 (2025), Issue 3

Bridging Category Theory and Functional Programming for Enhanced Learning

The Yoneda Lemma states that the set of natural transformations from H'™'®ge’ tg X is in bijection with
X(Integer) = Z. This is a powerful result, as it simplifies the problem of finding natural transformations: instead of
considering all types T, it suffices to understand the transformation on just the object Integer. Thus, category theory is a
very beautiful story. Told through Hask, this story becomes very entertaining.

Now, let’s construct a natural transformation from H'™t€eT to X for each integer n € Z. For each n € Z, we
construct a natural transformation ,,: H™*&e" — X By the Yoneda Lemma, such a natural transformation corresponds
to an element of X (Integer), and since X (Integer) = Z, each n € Z gives rise to a natural transformation n,,.

For each type T € Hask, the component of the natural transformation n,, at T, denoted n,,(T), is a function:

Ny (T): H"*e8¢T(T) = Hom(Integer, T) — X (T) (39)
This function maps any Haskell function f: Integer — T to the element f(n) € X(T). In other words:

(M) =) (40)

To verify that n,, is a natural transformation, we must show that for every morphism g:T — S in Hask, the
following diagram commutes:

Hlnteger(T) M X(T)
L Hineeer (g) 1 X(9) (41)

Hlnteger(s) ﬂn(s)a X(S)

This means that for every f: Integer — T, we need to show:

X(@) @ (T)(F)) = 1 (SHH™ET(g)(f)) (42)

Substituting the definitions of n,, and H'™*8¢r(g), we get:

X(@FM) = (g°fHn) (43)

Since (g o f)(n) = g(f (n)), the diagram commutes, proving that n,, is indeed a natural transformation.
5. Conclusion

Category theory and functional programming are essential fields in both mathematics and computer science.
However, category theory remains under-represented in many academic programs, while functional programming is
often taught without a strong theoretical foundation. This paper introduces a pedagogical framework that bridges these
two domains, making abstract concepts such as monads and the Yoneda Lemma more accessible to undergraduate
students.

By integrating theoretical principles with practical programming, we offer an innovative approach that allows
students to engage with complex ideas early in their academic journey. This interdisciplinary method not only
strengthens students’ understanding of functional programming but also deepens their comprehension of category
theory’s abstract principles.

To implement this strategy, we successfully introduced a new course titled Category Theory and Functional
Programming into the curriculum of the National Engineer’s Degree in Computer Science: Artificial Intelligence [14].

The interdisciplinary nature of this framework has the potential to contribute to innovative teaching strategies,
collaborative learning, and interdisciplinary projects. Although pedagogical at its core, this study also highlights the
practical application of theoretical frameworks in addressing real-world computational challenges, such as big data and
database structures.

Moving forward, future research could explore further integration of category theory into computer science
education and its application across various disciplines. A significant challenge is using Haskell to understand advanced
concepts of category theory, as discussed in [15, 16, 17].

References

[1] S. MacLane, Category Theory for the Working Mathematician, 2nd ed. Springer-Verlag, 1998.
[2] T. Leinster, Basic Category Theory. Cambridge University Press, 2014.

[3] D. I. Spivak, Category Theory for the Sciences. The MIT Press, 2014.

[4] B. Milewski, Category Theory for Programmers. Leanpub, 2019.

Volume 11 (2025), Issue 3 17

(5]

(6]
[7]
(8]
[9]
[10]
[11]
[12]

[13]
[14]
[15]
[16]

[17]
(18]

Bridging Category Theory and Functional Programming for Enhanced Learning

D. Jiang, “Teaching Partial Order Relations: A Programming Approach,” Int. J. Educ. Manag. Eng. (IJEME), vol. 14, no. 1, pp.
25-32, 2024, doi: 10.5815/ijeme.2024.01.03.

F. Kadhi, Basic Principles in Numerical Analysis. Andalus Publishing House, Hail, 2005.

F. Kadhi, The Appropriate Explanation for Computer Mathematics. Rushd Bookstore, Riyadh, 2005.

R. P. Dobrow, Introduction to Stochastic Processes with R. Wiley, 2016.

W. J. Braun and D. J. Murdoch, A First Course in Statistical Programming with R, 3rd ed. Cambridge University Press, 2021.
Y. Boughanmi, “Categorical Modeling of Databases,” Master’s thesis, Data Science track, ENSI, Feb. 04, 2022.

Online Haskell Compiler. https://onecompiler.com/haskell/42utp6rzq (accessed Oct. 2024).

Discussion on Lemme de Yoneda, Les-Mathématiques.net. https://les-mathematiques.net/vanilla/discussion/987027/lemme-de-
yoneda (accessed Oct. 2024).

Discussion on Yoneda Lemma, Mathematics Stack Exchange. https://math.stackexchange.com/questions/tagged/yoneda-
lemma (accessed Oct. 2024).

National School of Computer Science, Tunisia, Category Theory and Functional Programming. https://ensi.rnu.tn/fra/plaquette-
pedagogique/ (accessed Oct. 2024).

M. Ghazel and F. Kadhi, “Reedy Diagrams in V-Model Categories,” Appl. Categ. Struct., vol. 27, pp. 549-566, 2019, doi:
10.1007/s10485-019-09566-w.

F. Kadhi, “Lemme de Yoneda pour les foncteurs a valeurs monoidales,” arXiv, 2024, doi: 10.48550/arXiv.2410.07766.

F. Kadhi, “Optimisation Abstraite,” arXiv, 2024, doi: 10.48550/arXiv.2410.07734.

F. Kadhi, “Accessible Bridge Between Category Theory and Functional Programming,” in Conference SMT 2023, arXiv, 2024,
doi: 10.48550/arXiv.2410.07918.

Authors’ Profiles

Dr. Fethi Kadhi is an Assistant Professor at the National School of Computer Science (ENSI), University of
Manouba, Tunisia. In addition to his teaching duties, he holds several leadership roles within the university’s
research groups and laboratories. Notably, he led the Department of Image and Mathematical Modeling at ENSI
and coordinated with other departments to establish two Master’s degree programs. Dr Kadhi earned his B.S. in
Mathematics and his M.S. in Optimization Theory from the Faculty of Sciences of Tunis, where he later
completed his Ph.D. in Applied Mathematics. His research interests are interdisciplinary, encompassing
Optimization, Dynamical Systems, Computer Science, and Category Theory.

How to cite this paper: Fethi Kadhi, "Bridging Category Theory and Functional Programming for Enhanced Learning",
International Journal of Mathematical Sciences and Computing(lJMSC), Vol.11, No.3, pp. 1-18, 2025. DOI:
10.5815/ijmsc.2025.03.01

18

Volume 11 (2025), Issue 3

