
I.J. Mathematical Sciences and Computing, 2015, 4, 11-20
Published Online November 2015 in MECS (http://www.mecs-press.net)

DOI: 10.5815/ijmsc.2015.04.02

Available online at http://www.mecs-press.net/ijmsc

A Natural Language Query Builder Interface for Structured

Databases Using Dependency Parsing

Rohini Kokare
a*

, Kirti Wanjale
b

a
ME Computer Student, VIIT, Department of Computer Engineering, Pune-411048, India
b
Associate Professor, VIIT, Department of Computer Engineering, Pune-411048, India

Abstract

A natural language query builder interface retrieves the required data in structured form from database when

query is entered in natural language. The user need not necessarily have sufficient technical knowledge of

structured query language statements so nontechnical users can also use this proposed model. In natural

language parsing, getting highly accurate syntactic analysis is a crucial step. Parsing of natural languages is the

process of mapping an input string or a natural language sentence to its syntactic representation. Constituency

parsing approach takes more time for parsing. So, natural language query builder interface is developed in

which the parsing of natural language sentence is done by using dependency parsing approach. Dependency

parsing technique is widespread in natural language domain because of its state-of-art accuracy and efficiency

and also it performs best. In this paper, the buffering scheme is also proposed for natural language statements

which will not load the whole sentence if it was done previously. Also there was a need of generalized access

to all tables from database which is handled in this system.

Index Terms: Natural Language Query Builder Interface (NLQBI), Natural Language Processing (NLP),

Dependency parsing, Structured Query Language (SQL), POS (Part Of Speech) tagging.

© 2015 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research

Association of Modern Education and Computer Science

1. Introduction

Since the end of 1960’s there have been a large number of researches done regarding the theories and

implementations of NLQBI’s. Asking question to databases in natural language is very convenient and easy

method of accessing data especially for casual users who do not understand complex database query languages.

As the usage of databases has spread widely, the concept of user interface presented new challenges to the

designers. The main goal of this system is to provide communication between user and computer without

recalling any sort of database query syntax.

* Corresponding author. Tel.: +91 8888003378;

E-mail address: rohinikokare@gmail.com

12 A Natural Language Query Builder Interface for Structured Databases Using Dependency Parsing

Constituency parsing and dependency parsing are the two parsing techniques broadly used in natural

language processing. In constituency parsing, the parse tree breaks a sentence into sub-phrases. Non-terminals

in the tree are types of phrases, the terminals are the words in the sentence, and the edges in constituency

parsing are unlabeled. For example consider a simple sentence "John sees Bill", a constituency parse would be

as in fig 1.

Fig. 1. Constituency parsing for sentence “John sees Bill”

Whereas, a dependency parse connects words according to their relationships. Each vertex in the tree

represents a word, child nodes are words that are dependent on the parent, and edges are labeled by the

relationship. A dependency parse of same sentence "John sees Bill", would be as shown in figure 2.

Fig. 2. Dependency parsing for sentence “John sees Bill”

But constituency parsing takes a lot of time to parse the words of the sentence. So there was a need to

develop a NLQBI which will extract POS and process the query in less time. The parser of the proposed natural

language query builder interface is developed using dependency parsing method. Dependency parsing is a

technique where a sentence is given in natural language as an input and produces output in the form of

dependency tree. Dependency parsing has proved useful in many applications like question-answering,

machine translation, information extraction and natural language generation. Dependency structures contain

much of predicate argument information. The basic notation of dependency is based on the idea of lexical items

linked by binary asymmetric relations called as dependencies which focus on relations between words.

Dependency parsing presents a number of advantages when compared to syntactic parsing or phrase

structured parsing. Dependency parsing has three main advantages. The very first, dependency links that are

formed between two words of the sentence are close to semantic relationships needed for the next step of

interpretation. Second, the dependency tree contains one node which represents one word, instead of mid-level

nodes that represents words as in constituent trees, making the task of parsing more straightforward. Third,

dependency parsing lends itself to word-at-a-time operation, i.e., parsing can be done by accepting and

 A Natural Language Query Builder Interface for Structured Databases Using Dependency Parsing 13

attaching words as entered by user. That means it does not wait for complete sentence to be loaded for parsing.

It improves the overall system.

The challenge was a buffering scheme that has to be applied to the natural language statements. The

statements which are already given as input to the system will not parse it again. It will save all statements and

corresponding SQL statement which was previously generated. It will directly fetch the SQL statement if the

same statement is given as input by the user.

The objectives were set after doing the survey of existing natural language query builder systems and finding

the gaps between them. This is discussed in section II B. The objectives are to extract the dependencies, noun

phrases, and generate the parse tree. The logical query is the generated which is further translated to SQL

syntax. The SQL query is then given to underlying database to retrieve the results. The system is also

benchmarked against the constituency parsing technique. The buffering scheme is implemented so that the

overall performance of the system is significantly improved.

A constituency parsing is also implemented to compare results with dependency parsing and their results are

discussed in section 5.

Rest of the paper is organized as follows: Section 2 presents the related work which includes survey and

existing NLQBI’s. In section 3, detailed description of the proposed system is mentioned. Section 4 describes

the implementation details and results. And finally section 6 concludes the paper.

2. Related Work

2.1. Literature Survey

Mo Shen et al. [2] proposed a dependency grammar, in which predicate-argument structures are encoded to

build modelled syntax. New reranking approach was proposed for dependency parsing that can utilize complex

sub tree representations. The limitation of this system is that it prohibits incorporation of information from

large-scale structured data and it was not used for developing a query builder. Emily Pitler et al.[5] proposed a

graph-based algorithm for non-projective parsing with higher order features. But it has limitations that it does

not give faster variants for third-order graph-based projective parsing and also was not meant for developing a

query builder. Fei Li et al.[6] proposed a system called NaLIR. In this, for each ambiguity, system generates

multiple likely interpretations for the user to choose from, which resolves ambiguities interactively with the

user. The limitations were that there was lack of reusability of queries and hence was less precise. This system

does not use dependency parsing approach. Zhenghua Li et al.[7] proposed a joint models for dynamic

programming based decoding algorithms which can incorporate rich POS tagging and syntactic features .

Limitations of this approach are firstly, average perceptron to learn the feature weights of the joint models are

used, which equally treats the POS and syntactic features. Training procedures should be better in this case.

Secondly, it is not implemented for query builder. Chen D et a[8] proposed a novel dependency parser using

neural network classifier for use in greedy dependency parsers using sparse indicator features in both accuracy

and speed. A limitation of this system is that it only relies on small number of dense features and was not used

for query builder. Alessandra Giordani et al. [13] proposed a system that translate natural language query to

SQL query by reranking with an SVM-ranker based on tree kernels. Here also this system does not use

dependency parsing. Miguel Llopis et al. [14] proposed a natural language query builder interface using

ontology based approach. The main drawback of using this kind of resolution is its low precision. Abhijeet

Gupta et al.[15] proposed the syntactic parser that uses the Computational Paninian Grammar (CPG)

framework. Limitations of this system is that aggregation operators and Join are not supported also the

dependency relations are syntactico-semantic in nature. Michael Minock et.al[17] proposed a natural language

query builder interface where queries are modelled in a higher-order Codd’s tuple calculus and use

synchronous grammars which is extended with lambda functions to represent semantic grammars.

2.2. Existing Natural Language Query Builder Interfaces

14 A Natural Language Query Builder Interface for Structured Databases Using Dependency Parsing

Akshay G. Satav et.al[3] proposed a system in which Word Pair Mining Technique is used for spelling

correction and syntactic parsing is done. Verena Rieser et.al[4] proposed a framework for adaptive natural

language generation was developed where the problem is formulated as stochastic incremental planning under

uncertainty, which can be approached using reinforcement learning methods. This system is applied for spoken

dialogue system. Pranali P. Chaudhari[9] developed an interface where dictionary updating with synonyms of

the words is the main feature along with SQL translation. Syntactic parsing technique is used. But only

implementation of aggregate functions and combination of two or more operations has been executed. Ashish

Kumar et.al[10] developed a Natural Language Interface to Database systems (NLIDB) through which user can

interact with the database in a more convenient and flexible way. The technique used was syntactic parsing

technique. The drawback of this system is that long questions were not allowed and proper error messages were

not displayed in case of query failure. Gauri Rao et.al[16] proposed a system which provides search interface

and reduces the part of user for recalling the tedious syntax of databases, this system allows user to get the

database information in his/her language. Semantic grammar technique is used for developing this system. The

drawback of this system was that user has to fire queries in WH type question; it also could not automate the

related words for table and column names.

3. Proposed System

The proposed system architecture is as shown in fig 3.

Fig. 3. System Architecture

The user will enter the query in natural language sentence. In morphological analysis, the entered sentence is

then checked for the stop words and punctuation marks which are removed. After that the tokens are separated.

The next step is syntactic analysis in which the sentence is then converted into a tree structured form using

dependency parsing. The nouns, adjectives etc are related to each other in the form of binary asymmetrical

links. These all links form a dependency structure. The dependency parse tree is then generated. This selected

parse tree is then checked for the meanings in the semantic analysis phase. It is then converted to logical query.

The query is mapped with the database tables and attributes with the extracted meaningful tokens in the first

phase. After that, the query is translated to SQL syntax by replacing the tokens with table names or attribute

names which is then sent to database. Database then fetches the exact results to the user.

3.1. Dependency Parsing

 A Natural Language Query Builder Interface for Structured Databases Using Dependency Parsing 15

The basic notation of dependency is based on the idea of lexical items linked by binary asymmetric relations

called dependencies which focus on relations between words. A dependency relation holds between a head

(also called governor) and a dependent (also called modifier) of each pair of word in a sentence. The words of

the sentence are connected by typed dependency relations. The arcs (links) indicate certain grammatical

relation between words. Each word depends on exactly one parent. The tree starts with a root node.

Dependency also resolves ambiguity. A dependency analysis of simple sentence as an example is given in fig4.

Fig. 4. Dependency Structure

As an illustration of this structure representation, consider the fig 4, the nodes are the word tokens of the

sentence (annotated with parts-of speech) and the arcs are labelled with grammatical functions.

The noun extraction which is mapped to database concepts like table names and column names is done by

using dependency parsing. The dependency tree is generated from the sentence. The grammatical structure and

typed dependencies are used to map the governing and/or dependent tokens to the columns of the table in

database. The grammatical structure of a sentence is generated from the Penn Treebank language pack. Penn

Treebank is a parsed corpus of words consisting of over 4.5 million American English words. This mapping is

done in a generalized manner which means all tables and respective columns of tables can be accessed from

database. This extraction is not limited to any specific table in database. The tagged words are used to get the

noun phrase from the input sentence. Accordingly the tables and its columns are extracted. After noun

extraction the natural language sentence is converted to SQL syntax statement.

3.2. Buffering

The buffering scheme is applied to the natural language statements. The input natural language sentence and

its corresponding SQL converted statement is saved in a buffer. In this scheme, it will check if the buffer is

empty. If so it will scan the statement and do the whole process of parsing and save the statement and input

sentence in buffer. If the buffer has some statements, it will check if the input sentence is present in the buffer.

If it is present in the buffer, the corresponding matching SQL statement is directly fetched form the buffer itself.

It will not parse and load the sentence if it is present in the buffer. If the input sentence is the new sentence then

only it will do the process of parsing. Buffering will directly fetch the SQL statement, if the same statement is

given as input by the user. Thus getting the statements from buffer does not take extra time irrespective of the

size of statement and hence it gives the best performance. Otherwise parsing the sentence again and converting

it into SQL will take significant time period for fetching the results and also the parsing time depends on the

size of the input sentence. Hence this buffering scheme will reduce time for frequently asked queries.

4. Implementation

This proposed system is implemented in java technology. MySQL is used as underlying database. We used

Eclipse Java EE IDE Indigo Service Release tool for implementation in windows OS. Database connection is

16 A Natural Language Query Builder Interface for Structured Databases Using Dependency Parsing

done by using JDBC library. Algorithm for the proposed system and results for dependencies are discussed as

follows:

4.1. Algorithm

Algorithm 1: NLQBI using Dependency Parsing

If the buffer is empty do the following

{

1. Tokenization: Split the input sentence into various tokens.

2. Stanford Parser is used to perform the parsing and generate parse tree.

3. The grammatical relations are extracted by using Stanford Typed Dependencies.

4. The nouns and prepositions are extracted from grammatical relations.

5. Semantic analysis is performed using the type of grammatical relations.

6. The tokens and the nouns are mapped to the database entities like tables and columns.

7. The input natural language query is mapped initially to an intermediate query by mapping rules for

the various tables, columns and literals.

9. It is then converted into SQL query language.

10. The SQL Query is sent to database and executed there.

11. Finally the results are fetched to the user.

}

Else check if input sentence is already there in buffer

 If yes, take the corresponding SQL statement and directly go to step 10.

Else start from step 1.

4.2. Results

This system is tested for various natural language queries which are provided by technical as well as non-

technical people. The results are evaluated. The output of the query is checked with the actual records at

database side and verified for correctness of results. Dependency extraction and POS tagging are the important

steps in the parsing. For example consider the sentence: “show all students whose marks greater than 30”. The

dependency representation and POS tagged words for this sentence can be given as shown in table 1.

The types of queries supported by this system are conditional queries (WHERE clause, greater than, less than,

equal to), range queries (BETWEEN, AND, OR clause), aggregation queries (SUM, COUNT, MIN, MAX,

AVG), ORDER BY. The exact meaning of all the dependencies and its usage is well described by Marie-

Catherine et.al [18].

Table 1. Mapping of POS and Typed Dependencies

Typed Dependencies Tagged Part of Speech

det(students-3, all-2)

dobj(show-1, students-3)

poss(marks-5, whose-4)
rcmod(students-3, marks-5)

mwe(than-7, greater-6)

quantmod(30-8, than-7)
num(marks-5, 30-8)

NN show

DT all

NNS students
WP$ whose

NNS marks

JJR greater
IN than

CD 30

 A Natural Language Query Builder Interface for Structured Databases Using Dependency Parsing 17

The tables and attributes are mapped to the database by using tokens as shown in table 2. Tokenization of

input natural language sentence is done and these tokens are then checked if those are column names or table

names. Accordingly, the column names and table names are extracted. This mapping produces generalized

access to all the tables in database. Also, if the tokens are NNS or NNP are also examined and mapped as

shown in table 2 i.e. if the token is “students”, it is mapped to “student” table of database. So user can access

any table from the database. After mapping the SQL query is constructed. The constructed SQL query for

above example is: “select * from student where marks>30”. This is then sent to database for results.

Table 2. Mapping of Nouns and Attributes with Database

Tokens Database Type

Students Student Table

Marks Marks Column

5. Experimental Evaluations

In order to evaluate the effectiveness of our system, we have applied the following experiments:

1. Accuracy in query interpretation

2. Comparison in constituency and dependency parsing

3. Compatibility

5.1. Accuracy in Query Interpretation

The experiments we present here are based on the corpus of series of questions gathered from the technical

as well as non-technical people. This corpus consists of natural language statements. To determine logical

query equivalence, queries were marked as correct if their parse to logical form was equivalent to the manually

constructed correct result. Accordingly, the system accuracy was calculated. System accuracy A can be

calculated as shown in equation 1 below.

 (1)

This system produced an accuracy rate of 91.66%.

5.2. Comparison Between Constituency and Dependency Parsing

The time evaluation was done and compared by using two techniques dependency parsing technique and

constituency parsing technique. The parameters evaluated are, time for POS tagging, time for SQL translation

and total time with query results. This is shown in table 3 which is measured in seconds. Form this table we can

see that time required for dependency parsing is much less as compared to constituency parsing technique. The

Typed dependencies extraction of dependency parsing is more efficient and hence increases the overall system

performance.

18 A Natural Language Query Builder Interface for Structured Databases Using Dependency Parsing

Table 3. Time for POS tagging, SQL Translation and Total time of system

 # Time for

POS Tagging

Time for SQL

Translation

Total Time with

Query Results

Dependency

Parsing

0.5947 4.8522 5.4803

Constituency
Parsing

15.9467 16.23 17.3393

Graphically this evaluation is as shown in figure 5. Hence, dependency parsing is much faster technique than

constituency parsing.

0

5

10

15

20

POSTime TotalTime

Dependency

Constituency

Fig. 5. Dependency and Constituency Parsing Comparison

We saw that dependency approach takes less time for generating natural language query results. But our

proposed buffering scheme still improves the overall system performance. The time required for retrieving

query results from database using buffering scheme is around 2.5658e-5 seconds which is much less than any

other approach. Hence, dependency parsing technique along with buffering scheme makes system more

efficient in terms of performance.

5.3. Compatibility

We tested our approach with different operating environments i.e. windows OS and Unix OS. In our tested

environment, our system doesn’t affect the working applications. When this system is executed and query is

entered, during query processing, database connection is established. This connection and processing of system

does not affect other running processes, this shows compatibility of the system.

6. Conclusions

In this paper a natural language query builder interface is proposed which will be used by all types of users

(technical, non-technical). So NLQBI with dependency parsing will become more efficient, accurate and user

friendly. Also there was need of different parsing techniques like dependency parsing which improves the

overall system performance as compared to constituency parsing. Dependency parsing also resolves ambiguity.

This proposed system adds an innovative feature like buffering and generalized access to all database tables.

The buffering scheme applied to the natural language statements will significantly reduce the parsing time for

previous statements that are given as input. Due to this scheme, the system will not parse the statements again

 A Natural Language Query Builder Interface for Structured Databases Using Dependency Parsing 19

and improve the performance. At the end we can conclude that the proposed system is a medium of

communication between user and database and fetches the results of users query in structured form.

The future scope of this approach is to support complex queries, nested queries and complex join operations

which will make this system much stronger.

Acknowledgement

Inspiration and guidance are invaluable in every aspect of life, especially in the fields of academics, which I

have received from my respected guide Prof. Mrs. K. H. Wanjale. I would like to thank her for her endless

contributions of time, effort, valuable guidance and encouragement she has given me.

I would also like to thank external guide Mr. Vishal Macchewad for giving me sponsorship project in Tata

Consultancy Services Ltd., the guidance and timely support rendered during the course of the work.

References

[1] Rohini Kokare, Kirti Wanjale, “A Survey of Natural Language Query Builder Interface for Structured

Databases using Dependency Parsing”, International Journal of Computer Application, Pages 9-14, 18

December 2014.

[2] Mo Shen, Daisuke Kawahara, and Sadao Kurohashi, “Dependency Parse Reranking with Rich Subtree

Features”, IEEE Transactions on Audio, Speech, and Language Processing, vol.22, no.7, July 2014.

[3] Akshay G. Satav et al., “A Proposed Natural Language Query Processing System”, International Journal

of Science and Applied Information Technology, Volume 3, No.2, 2014.

[4] Verena Rieser, Oliver Lemon, and Simon Keizer, “Natural Language Generation as Incremental Planning

Under Uncertainty: Adaptive Information Presentation for Statistical Dialogue Systems”, IEEE/ACM

transactions on audio, speech and language processing, Vol. 22, No.5, May 2014.

[5] Emily Pitler, “A Crossing-Sensitive Third-Order Factorization for Dependency Parsing”, Transactions of

the Association of Computational Linguistics, Volume 2, Issue 1, 2014.

[6] Fei Li, H. V. Jagadish, “Constructing an Interactive Natural Language Interface for Relational Databases”,

Proceedings of the VLDB Endowment, Vol. 8, No. 1, pages 73-84, 2014.

[7] Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, and Wenliang Chen, “Joint Optimization for Chinese

POS Tagging and Dependency Parsing”, IEEE Transactions on Audio, Speech, and Language Processing,

vol.22, no.1, Jan 2014.

[8] Chen, D, Manning C, “A fast and accurate dependency parser using neural networks”, In Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 740–750,

Doha, Qatar, Association for Computational Linguistics, 2014.

[9] Pranali P. Chaudhari, “Natural Language Statement to SQL Query Translator”, International Journal of

Computer Applications (0975 – 8887),Vol 82, No5, November 2013.

[10] Ashish Kumar, Kunwar Singh, “Natural Language Interface to Databases: Development Techniques”,

Elixir International Journal, 2013.

[11] Martins, M. Almeida, and N. A. Smith, “Turning on the turbo: Fast third-order non-projective turbo

parsers”, In Proceedings of ACL (Short Papers), pages 617–622, 2013.

[12] Bohnet and J. Kuhn, “The best of both worlds – a graph-based completion model for transition-based

parsers”, In Proceedings of EACL, pages 77–87, 2012.

[13] Alessandra Giordani and Alessandro Moschitti, “Translating Questions to SQL Queries with Generative

Parsers Discriminatively Reranked”, Proceedings of COLING 2012: Posters, pages 401–410, 2012.

[14] Miguel Llopis, Antonio Ferrández, "How to make a natural language interface to query databases

accessible to everyone: An example", Computer Standards & Interfaces, Elsevier, October 2012.

20 A Natural Language Query Builder Interface for Structured Databases Using Dependency Parsing

[15] Abhijeet Gupta, Arjun Akula, Deepak Malladi, Puneeth Kukkadapu, Vinay Ainavolu, Rajeev Sangal, “A

Novel Approach Towards Building a Portable NLIDB System Using the Computational Paninian

Grammar Framework”, 2011.

[16] Gauri Rao et al., “Natural Language Query Processing using Semantic Grammar”, International Journal

on Computer Science and Engineering, Vol. 02, No. 02, Pages 219-223,2010.

[17] Michael Minock,Peter Olofsson, Alexander Näslund, "Towards Building Robust Natural Language

Interfaces to Databases", Natural Language and Information Systems Lecture Notes in Computer Science,

Springer, Volume 5039, 2008, pp 187-198, 2008.

[18] Marie Catherine de Marneffe. Christpher D Manning, “Standford Typed Dependencies Manual”, 2008.

[19] I. Androutsopoulos, G.D. Ritchie, and P. Thanisch, Natural Language Interfaces to Databases – An

Introduction, Journal of Natural Language Engineering 1 Part 1 (1995), 29–81.

Authors’ Profiles

Rohini B. Kokare is a post graduate student, pursuing masters degree for computer

engineering in Vishwakarma Institute of Information Technology (VIIT), affiliated to

Savitribai Phule Pune University, Pune. Her research area is natural language processing.

Mrs. Kirti Wanjale is currently working as an Associate Professor in the Department of

Computer Science in Vishwakarma Institute of Information Technology (VIIT), affiliated to

Savitribai Phule Pune University, Pune. She has 14 years of teaching experience. She is

currently pursuing PhD. She has presented papers in many national and international

conferences and published articles in many international journals. Her research area is image

processing.

How to cite this paper: Rohini Kokare, Kirti Wanjale,"A Natural Language Query Builder Interface for

Structured Databases Using Dependency Parsing", International Journal of Mathematical Sciences and

Computing(IJMSC), Vol.1, No.4, pp.11-20, 2015.DOI: 10.5815/ijmsc.2015.04.02

