
I.J. Modern Education and Computer Science, 2017, 2, 47-54
Published Online February 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.02.06

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 2, 47-54

A New Method for Graph Queries Processing

without Index Reconstruction on Dynamic Graph

Databases

Hamed Dinari
Web and Search Engine Laboratory, School of Computer Engineering, Iran University of Science and Technology

(IUST), Narmak, Tehran, Iran

Email: dinari@comp.iust.ac.ir, dinari.hamed@yahoo.com

Abstract—Graphs play notable role in daily life. For

instance, they are used in variety fields such as social

networks, malware detection, and biological networks.

Graph data processing performed to extract useful

information is known as graph mining. A critical field of

graph mining is graph containment problem, in which all

graphs containing the query are returned by a graph

query q. Scanning the whole database (graph query as a

subgraph) for a query is a time consuming process. To

improve query performance, an inverted index is

constructed on the graph database and then the query is

performed based on the query. The problem in this

process is that when a graph is added to or removed from

a database, the inverted index must be reconstructed. The

present study proposes a method in which index updating

is not needed upon a change in the database. This feature

enables simultaneous inverted index updating and

querying. The assessment results showed optimum and

satisfactory performance of the proposed method.

Index Terms—Graph query processing, Graph mining,

Data mining, Dynamic graph database.

I. INTRODUCTION

Graph is a general data structure used to model

complicated and schema less structures. For instance,

utilization of graph can be seen in areas such as food

chain, UML diagram, software engineering, social

networks [1,2,3], ERD diagrams in database [4], gas,

water, electricity, and communication, telephone,

technology transportation networks, and XML

documents [5,6,7]. Graph database system is a database

system used to manage graph data. The action of

searching a database for preferred models is known as

graph mining [8,9,10,11]. Given the wide range of graph

mining applications (e.g. detecting anomalies in network

[12], Internet links analysis [13, 14], graph query

indexing [8,12,13,14], and medicine [15,16]), great deal

of research works have been done on graphs. An

interesting matter as to graph mining is graph

containment problem. For instance, suppose
 be a graph database with

independent graphs, then query needs to search all

graphs in the database. One of early solutions to do this is

to test the whole database with regard to isomorphism,

which is not effective as with increase the number of

graphs, demand for memory and response time increase

exponentially. To deal with this, new methods tried to

conduct the query in two steps.

1. Index Construction: the database is scanned and a

set of features needed to determine and prune a

portion of the database where the answer of query

probably is not there is determined. The closer the

set of the candidates to the final answer, the higher

the performance of the query. This step is offline

to be ready to response.

2. Candidate Verification: the candidate graphs

obtained in the previous stage are tested as to

isomorphism and if the graph is contain the query

add to answer set. The paper is arranged as follows:

firstly related works are described also definition

of the terms and concepts of graph mining (which

is not recommend for experienced readers).

Section three represents architecture of the

proposed method in more detail. Section four

discusses the results obtained by the proposed

method. The last section concludes the article with

conclusion and suggestions for future works.

II. RELATED WORKS

There have been in [17] paths were used to constructed

the index however, demand for memory was not

optimum with increase of index volume and the best

performance of the proposed method was obtained with

small databases. Frequent subtrees [18] were used in [19]

to constructed the index and consequently, considerable

increase in tree mining was obtained. Still, the proposed

method had the disadvantage of failing to prune the

search space as the tree structure is simpler than graph.

Frequent subgraphs were used in [20] and closed frequent

subgraphs [21] were used in [4] to construct the index.

Their results show that considerable decrease in query

time was obtained when the query was indexed. On the

other hand, accurate query processing method failed to

function properly with large databases, which led to

48 A New Method for Graph Queries Processing without Index Reconstruction on Dynamic Graph Databases

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 2, 47-54

introduction of similar graph queries [8]. The one

challenge faced with by all these methods is that the

index must be reconstructed when the database is updated

and index construction is time consuming. The proposed

method in this paper suits both static and dynamic

databases. The main idea is to use Positional Inverted

Index (P.I.I) used by search engines. The proposed

method relies on hashing technique to implement and

store required features, which gives the inverted index

opportunity to be updated. In addition, the index can be

updated as fast as possible when the graph database is

changing, which avoids necessity of totally index

reconstruction. Regarding query processing is

parallelizable, multithread and vertex invariant

techniques are employed to improve checking the

candidates [22]. These techniques improve speed of

isomorphism test on the subgraphs.

Definition 1. Dynamic graph: A graph in which the

edges are added or removed over time so that its structure

changes permanently.

Definition 2. Transactional graph database: The data

are represented as a set of several independent graphs

(e.g. protein, amino acids, and chemical/biological

informatics databases). Fig. 1. illustrates a graph database

comprised of 4 graphs.

Definition 3. Query processing: Assume
 as a graph database includes graphs,

then a graph query processing is defined: a graph query

is given, all , where is a subgraph of , are

returned as a member of answer set. Fig 1. illustrates a

graph database and Fig 1d. represents a graph query that

returns {a, b} as the answer set.

Fig.1. Graph database including 3 graphs (a,b,c) and (d) a graph query

III. Proposed Method

The proposed method for graph query processing is

comprised of two parts:

A. Index construction

B. Query processing

The index is used to prune part of the search space that

does not contain the query answer. To construct the index,

the graph database is scanned and, then, a set of features

of the database is extracted and stored. The main idea

have to use the well-known positional inverted index

used in search engines (Fig 2). In short,

are the key terms obtained from the graph database. To

accelerate obtaining the key terms, hashing technique

was used. Each node in the positing list, implemented

using linked list, is comprised of two parts: 1.

that represents graph number (), and 2. Position that

represents frequency of each edge and other features of

the graph. Two hashing tables were used here to improve

access to the features, one to store the edges and another

to store neighborhood of each node. In addition, column-

based technique (when key/value technique in a hashing

table is not the answer to the problem, value section can

be implemented as key/value) was used to implement the

tables and multithread and thread pooling techniques

were used to improve query processing. Following parts

discuss each step of index construction and query

processing in detail.

A. Index Construction

The index construction is capable of being updated in

case of change in the graphs of the database. Two

hashing tables, implemented using column-based

techniques, are used to construct the index. So that, one

table constructs an inverted index on the edges and

another constructed as inverted index on each node and

the neighbors. figure 3 illustrates general architecture of

the index. Detailed explanations of each section are

brought in what follows.

Fig.2. Positional Inverted Index (P.I.I) structure in search engines

Fig.3. Index construction architecture

 A New Method for Graph Queries Processing without Index Reconstruction on Dynamic Graph Databases 49

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 2, 47-54

A.1 Construction of Table 𝜑

The table is used to store the edges and graph number.

The table indicates number of each edge in each graph

and number edges of each graph. Fig 4. illustrates a

transactional graph database with 2 graphs and table 𝜑 is

filled out like Table 1. according to Fig 4. According to

Table 1, edge AB in graph No1 extends between vertex

No.1 and 3 and between vertexes 1 and 4 in graph No 2.

In addition, it is clear that edge AC occurs two times in

graph No.2 between vertexes 1 – 3 and 2 – 3.

Table 1. Table 𝜑

Key(Edges) Key(graph id) Values(labels)

AA
1 1,2

2 1,2

AB
1 1,3

2 1,4

AC
1 1,4

2 1,3#2,3

BC 2 3,4

CD 2 3,5

AD 2 1,5

Fig.4. A transactional graph database with two graphs

A.2 Construction of Table 𝜔

The table is used to store each node along with its

neighbors. An advantage of the table is that it can

determine the number of nodes of a graph, frequency of

each node in a graph, and number of neighbors of each

node. Table 2 indicates how a table ω is filled out based

on database of Fig 4.

Table 2. Table ω

Key (graph
ids)

Key
(nodes)

Value(Neighbors)

1

‗A‘ ‗A‘%‘A‘#‘B‘#‘C‘

‗B‘ ‗A‘#‘C‘

‗C‘ ‗A‘#‘B‘

2

‗A‘ ‗A‘#‘B‘#‘C‘#‘D‘%‘A‘#‘C‘

‗B‘ ‗A‘

‗C‘ ‗A‘#‘A‘#‘D‘

‗D‘ ‗A‘#‘C‘

For instance, according to table ω, one may say that

graph No.1 has two nodes so that one has as its

neighbor and another has , , and as its neighbors

(# is separator of the neighbors of each node). In the case

of dynamic graphs, a thread is used to update the tables

and a trigger is used to update the database. Algorithm 1

illustrates how the index is constructed.

B. Query Processing

The constructed index is used to prune the search

space and improve performance of query processing.

General architecture of the query processing is illustrated

in Fig 5.

Fig.5. General architecture of query processing

Immediately after placing a query request at the input,

frequency of each edge in the query is computed.

Afterward, frequency of query edges in the graph

database is computed based on the data of Table φ and in

turn graph-id is obtained. Afterward, the set of the graphs

in which the query can be performed is obtained for each

element of the obtained set based on table ω and

comparing the nodes of a graph (neighbor of the nodes

and their labels) and the query. Finally, isomorphism test

Algorithms 1 BuildIndex()
Input: Graph Dataset 𝐷

Output: 𝜶 and 𝜷 tables

1. for each graph 𝑔𝑖 in D

2. for each edge 𝑒𝑗 in 𝑔𝑖

3. if(𝛼 contains (𝑒𝑗))

4. if(𝛼.get(𝑒𝑗).contains(𝑖))

5. add label of 𝑒𝑗 into 𝛼

6. else

7. add 𝑖 and label of 𝑒𝑗 into 𝜶

8. else

9. add 𝑒𝑗, 𝑖 and label of 𝑒𝑗 into 𝛼

10. 𝑠𝑡𝑎𝑟𝑡𝑗= get start point of 𝑒𝑗

11. 𝑒𝑛𝑑𝑗= get end point of 𝑒𝑗

12. if(𝛽 contains (𝑖))
13. if(𝜷.get(𝑖).contain(𝑠𝑡𝑎𝑟𝑡𝑗))

14. add 𝑒𝑛𝑑𝑗 to neighbors of 𝑠𝑡𝑎𝑟𝑡𝑗

15. else

16. add 𝑠𝑡𝑎𝑟𝑡𝑗 to 𝛽 and 𝑒𝑛𝑑𝑗 as neighbor of

𝑠𝑡𝑎𝑟𝑡𝑗

17. else

18. add 𝑖 to 𝛽, 𝑠𝑡𝑎𝑟𝑡𝑗 and 𝑒𝑛𝑑𝑗 as neighbor‘s

𝑠𝑡𝑎𝑟𝑡𝑗

50 A New Method for Graph Queries Processing without Index Reconstruction on Dynamic Graph Databases

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 2, 47-54

is carried out on the set of the graphs. Here, multi-threat

technique is used so that candidate id-graph set is

distributed over threads implemented independently

(thread pooling technique) and the threads perform

isomorphism test using vertex invariant technique [25].

In general, two threads that are implemented

independently are used, one for updating the index

(Tables ω and Table φ) and one for collecting queries

from inputs and processing. Processing time is obtained

as equation.(1).

 = +| |*| | (1)

Where, is the query time between tables ω and

φ , | | is number of candidate graphs that need

isomorphism test, and is the required time of

isomorphism test. Query processing algorithm is

illustrated in Algorithm 2. In Fig 6 a general architecture

of dynamic graph query processing is indicated, when

graph database is changed or update (graphs/edges is

removed or inserted) a trigger updates the index. Update

the index and query processing performed

simultaneously.

Fig.6. dynamic graph query processing architecture

IV. EXPERIMENTS AND EVALUATION

The proposed method is implemented in Java,

Netbeans IDE6.9, Microsoft Windows 7. The datasets

were generated by an algorithm for generating real

databases. Fig 7. and Fig 8. illustrate features of the

databases. Fig 7. shows the nodes and their frequency

and Fig. 8 illustrates the edges and their frequency in

different datasets. The datasets features are listed in

Tables 3, 4.

In this paper graph queries processing (graph query as

a subgraph) was performed on a transactional graph

database .That is because the database is used in different

areas; for instance, in the case of ―malware detection‖

[23,24,25] several malware are taken as input. By

extracting the APIs from the codes (the malware are run

in sandbox or VM (Virtual Machine) environment to

Algorithm 2 Query Processing()

Input: query 𝒒 and, , 𝜷 table

Output: set of graphs contains 𝑞

1. for each edge 𝑒𝑖 in 𝑞

2. send 𝑒𝑖 into 𝛼 table and store set of candidate

IDs in candidate[i]

3. calculate intersection of candidate[i] and put it in

SetCandidate1

4. set Temp=SetCandidate1

5. for each 𝐼𝐷𝑖 in SetCandidate1

6. for each node in 𝑞

7 calculate frequency of each nodes

8. if(number of node 𝑛𝑖 in graph[𝐼𝐷𝑖] less than or

equal to number of nodes 𝑛𝑖 in 𝑞)

9. if (node 𝑛𝑖 has neighbors that 𝑞 has same

neighbor)

10. no actions

11. else

12. remove 𝐼𝐷𝑖 from Temp

13. else

14. remove 𝐼𝐷𝑖 form Temp

15. for each 𝐼𝐷𝑗 in Temp

16. if (graph[𝐼𝐷𝑗] contains 𝑞)

17. add 𝐼𝐷𝑗 into Results

 A New Method for Graph Queries Processing without Index Reconstruction on Dynamic Graph Databases 51

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 2, 47-54

avoid damages to the system) after retrieval, the APIs of

the malware‘s codes as ―control flow graph‖ is extracted.

Then, according to graph mining algorithms such as

gspan [18] frequent subgraphs are mined and indexed

[4,19,14]. The obtained index is used to detect the

malware (as a signature) .The point here is that,

however, when a new malware is introduced, the

index needs to be thoroughly updated as the mining

algorithm of subgraphs needs to repeat the mining of the

frequent subgraphs. This is a serious disadvantage taking

into account the rate of generation of malwares. This

explains the reason for proposing the method. because

the proposed method relies on hashing technique to

construct the index, GraphGrep [17] hashing-based

technique was selected for comparison. GraphGrep

method extracts and stores all the possible paths up to a

specific length. Thereby, finding all paths needs

considerable time and memory for large transaction

graph databases. In addition ,when an edge of the graph

is removed (e.g. a malware modifies its structure), the

previously stored paths must be updated as well (there

are many paths in the index including the removed

edge). Moreover, by adding new edge to graph, all the

possible paths up to a specific length needs to be

extracted and added to the index. This brings high

demand for memory need to store the index ,while

updating the index is time consuming. Therefore, it was

omitted from the assessments as the databases used for

assessment were too large and time consuming for

GraphGrep to generate index and answer the queries. On

the other hand, the proposed method utilizes a proper

data structure based on the idea of search engines so that

only each edge of the input graph is read for construct the

index. In addition, the index can be updated with time

complexity of O(1) when new graphs are added or

removed from the database. On one hand, GraphGrep

method uses the paths to prune the state space and on the

other hand the paths, which is the simplest data structure,

is not effective in pruning the unwanted graphs, which

are not part of the query. It also fails to detect closed

loops and rings. Candidate verification stage also needs

long time to perform isomorphism test. The proposed

method uses invariant vertex technique [22] for

isomorphism test, which is more effective comparing

with previous methods that rely on adjacency matrix for

isomorphism test. The reason that the diagrams are

pointy at specific values (peak of diagrams) is that degree

and label of nodes of the queried graphs are uniform and

carrying out isomorph test on the query based

increases isomorphism time. However, after distribution,

degree and the labels are no longer uniform and

thus ,time of isomorphism test is attenuated. Regarding

assessments, diagrams are snapshots that are taken at the

time of implementation as they are changing permanently.

Clearly, the changes on GraphGrep are not displayed

as updating the database using GraphGrep is too slow.

The point is that GraphGrep is actually designed for

static environments and does not suit for dynamic

environments.

Table 3. the nodes and their frequencies

Table 4. the edges and their frequency

Fig 7. illustrated index construction time. clearly,

increase of database size leads the increase of time.

However, the performance of the index construction

shows great improvement thanks to hashing technique.

Fig.7. Index construction time

0

1

2

3

4

5

6

10 20 30 40 50In
d

ex
 C

o
n
st

ru
ct

io
n
 T

im
e

(s
ec

)

Dataset Size (K)

PGQP

Dataset Size

50K 40K 30K 20K 10K

#Freq #Freq #Freq #Freq #Freq Nodes

61617 49348 37019 24673 12288 A

61407 49089 36726 24491 12166 G

61701 49455 37061 24612 12279 F

61357 49097 36874 24580 12372 E

61513 49071 36661 24329 12288 D

61607 49177 36932 24713 12355 C

61273 48988 36793 24661 12266 B

Dataset Size

50K 40K 30K 20K 10K

#freq #freq #freq #freq #freq Edge

16090 12821 9679 6479 3259 EE

32206 25699 19094 12704 6364 BD

32243 25741 19116 12890 6374 BC

15717 12551 9465 6322 3147 BB

31795 25261 19034 12638 6416 CG

32594 26041 19483 13021 6608 CF

32049 25592 19172 12760 6343 FG

16157 13021 9674 6422 3154 FF

31971 25572 19162 12909 6500 CE

32605 26053 19521 12939 6544 CD

16204 12818 9518 6382 3159 CC

32335 25763 19212 12814 6304 AG

32262 25873 19308 12799 6348 AF

32101 25565 19094 12653 6287 DG

16119 12810 9629 6403 3159 GG

32098 25786 19358 12918 6626 AE

32284 25733 19205 12737 6453 DF

32010 25600 19029 12544 6243 AD

32163 25610 19219 12743 6512 DE

32385 25957 19528 13084 6607 AC

15926 12668 9391 6159 3092 DD

32239 25686 19264 12861 6362 AB

16035 12819 9678 6430 3163 AA

32154 25703 19312 12959 6421 BG

32135 25669 19221 12827 6310 BF

31891 25439 19010 12613 6256 EG

31702 25462 19151 12668 6363 EF

31892 25460 19065 12802 6377 BE

52 A New Method for Graph Queries Processing without Index Reconstruction on Dynamic Graph Databases

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 2, 47-54

Fig 8, Fig 9, and Fig 10 illustrates query processing

time. All the queries are selected randomly and some of

them have equal size though with different structure.

Fig.8. Query processing on (a) 25k left, (b) 30k right

Fig.9. Query processing on (a) 35k left, (b) 40k right

Fig. 10. Query processing on (a) 45k left,(b) 50k right

0

10

20

30

40

50

60

2 4 6 8 10 12

R
es

p
o

n
se

 T
im

e(
se

c)

Query Size

PGQP

0

10

20

30

40

50

60

70

2 4 6 8 10 12

R
es

p
o

n
se

 T
im

e(
s)

Query Size

PGQP

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12

R
es

p
o

n
se

 T
im

e(
se

c)

Query Size

PGQP

0

10

20

30

40

50

60

70

2 4 6 8 10 12

R
es

p
o

n
se

 T
im

e(
se

c)

Query Size

PGQP

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9 101112

PGQP

R
es

p
o

n
se

 T
im

e(
s)

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12

R
es

p
o

n
se

 T
im

e(
s)

Query Size

PGQP

 A New Method for Graph Queries Processing without Index Reconstruction on Dynamic Graph Databases 53

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 2, 47-54

V. CONCLUSION, FUTURE WORKS

A short introduction to application of graphs was

provided first. Given the weight of graph processing

regarding graph mining methods, the pertinent concepts

and topics were discussed. An obstacle in the way of

graph query processing is that the index of database

should be reconstructed each time the graph is changed.

To solve this, Positional Inverted Index (P.I.I) used by

search engines was proposed. So that the index tables can

be updated when the database graphs are dynamic with

no need to reconstruct the index. This approach led to

considerable increase in query processing performance.

Taking into account that graph processing have wide

range of applications in different fields, the proposed

method can the used for designing online malware

detection applications. So that by adding a new virus to

the dataset, the signature (i.e. index) does not need

reconstruction.

REFERENCE

[1] Wasserman, S., Faust, K., and Iacobucci. "Social network

analysis: Methods and applications". Cambridge

university Press, 1994.

[2] S.Misra, R.Barthwal, M.S.Obaidat. "Communication

Detection in an Integrated Internet of Things and Social

Network Architecture" Communication QOS, Reliability

and Modeling Syposium, no. IEEE, pp. 2787-2805. 2012.

[3] L.YAN, J.WANG. "Extracting regular behaviors from

social media networks," in Third International

Conference on Multimedia Information Networking and

Security, 2011.

[4] Cheng, James, Y.Ke, W.Ng, and An Lu. "FG-Index:

Towards Verification-Free Query Processing on Graph

Databases," in international conference on Management

of data, Beijing, pp. 857-872, 2007.

[5] Ivancsy,I. Renata, I.Vajk. "Clustering XML documents

using frequent subtrees," Advances in Focused Retrieval,

vol. 3, pp. 436-445, 2009.

[6] J.Yuan, X.Li, L.Ma. "An Improved XML Document

Clustering Using Path Features" in Fifth International

Conference on Fuzzy Systems and knowledge

Discovery,vol 2, 2008.

[7] Rajaraman, J.D.Ullman. "Mining of Massive Datasets",

2nd editon, 2012.

[8] C.C.Aggarwal,Wang, Haixun. "Managing and Mining

Graph Data". Springer, 2010

[9] J.Han, M.Kamber. "Data Mining Concepts and

Techniques" USA: Diane Cerra, 2006.

[10] H.dinari, H.naderi. "A survry of frequent subgraphs snd

subtree mining methods", International Journal of

Computer Science and Business Informatics(IJSCBI), vol.

14(1), 39-57, 2014.

[11] S.Sakr, E.Pardede. "Graph Data Management:

Techniques and Applications". United States of America:

Information Science Reference (an imprint of IGI Global),

2012.

[12] Peng, Tao, et al "A Graph Indexing Approach for

Content-Based Recommendation System" in IEEE

Second International Conference on Multimedia and

Information Technology (MMIT),pp. 93-97, 2010.

[13] Yildirim, Hilmi, and M.J.Zaki. "Graph indexing for

reachability queries", in 26th International Conference on

Data Engineering Workshops (ICDEW), pp. 321-324,

2010.

[14] Swati C. Manekar, M.Narnaware. "Indexing Frequent

Subgraphs in Large graph Database using Parallelization"

International Journal of Science and Research

(IJSR),2(no 5), pp. 426-430, 2013.

[15] Ranu, Sayan, and Ambuj K. Singh. "Indexing and mining

topological patterns for drug discovery" in Proceedings of

the 15th International Conference on Extending Database

Technology, pp. 562-565, 2012.

[16] Kramer, S, De Raedt, L, and Helma, C, "Molecular

feature mining in HIV data", in In Proc. of the 7th ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD-01),pp.136–143, 2001.

[17] Giugno, Rosalba, and D.Shasha. 2002. "Graphgrep: A fast

and universal method for querying graphs," in IEEE

Proceedings 16th International Conference on Pattern

Recognition, vol. 2, pp. 112-115, 2002.

[18] Yan, Xifeng, and Jiawei Han. "gspan: Graph-based

substructure pattern mining" in IEEE International

Conference on Data Mining (ICDM), pp. pp. 721-724,

2002.

[19] He, Huahai, Ambuj K. Singh. "Closure-tree: An index

structure for graph queries," in 22nd International

Conference on Data Engineering (ICDE), pp. 38-48, 2006.

[20] Yan, Xifeng, S.Philip Yu, and J.Han. "Graph indexing: a

frequent structure-based approach" in ACM SIGMOD

international conference on Management of

data(SIGOM), pp. 335-346, 2004.

[21] Yan, Xifeng, X. Zhou, and J.Han."Mining closed

relational graphs with connectivity constraints", in ACM

SIGKDD international conference on Knowledge

discovery in data mining (SIG), pp. 324-333, 2005.

[22] M.Kuramochi, and G.Karypis, and et al. "An efficient

algorithm for discovering frequent subgraphs" IEEE

Transactions on Knowledge and Data Engineering, vol. 9,

pp. 1038-1054, 2004.

[23] Christodorescu, M., Jha, S., Seshia, S. A., Song, & Bryant.

"Semantics-aware malware detection" IEEE Symposium

on Security and Privacy, pp. 32-46, 2005

[24] Elhadi, Ammar AE, Mohd A. Maarof, and Ahmed H.

Osman ."Malware detection based on hybrid signature

behaviour application programming interface call graph"

American Journal of Applied Sciences, Vol. 9(no.3), 2012.

[25] Hu, Xin, Tzi-cker Chiueh, and Kang G. Shin. "Large-

scale malware indexing using function-call graphs" in

16th ACM conference on Computer and communications

security. pp. 611-620, 2009.

[26] G.XU, Y.zhang, L.li. "Web mining and Social

Networking". melbourn: Springer, 2010.

[27] Ko, Calvin. "Logic induction of valid behavior

specifications for intrusion detection", in In IEEE

Symposium on Security and Privacy (S&P), pp. 142–155,

2000.

[28] Berendt, Hotho, and Stumme. "semantic web mining," in

Conference International Semantic Web (ISWC), pp. 264–

278, 2002.

54 A New Method for Graph Queries Processing without Index Reconstruction on Dynamic Graph Databases

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 2, 47-54

Authors’ Profiles

Hamed Dinari received his B.SC. Degree in

Computer Engineering (Software) from

University of Ilam, Ilam, IRAN, and M.SC.

in Computer Engineering (Software) from

Iran University of Science and Technology

(IUST), Tehran, IRAN, in 2012, 2014

respectively. His research interests are

mostly about Database Systems, Data Mining, Graph Mining ,

and indexing.

How to cite this paper: Hamed Dinari,"A New Method for Graph Queries Processing without Index Reconstruction on

Dynamic Graph Databases", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.2,

pp.47-54, 2017.DOI: 10.5815/ijmecs.2017.02.06

