
I.J. Modern Education and Computer Science, 2015, 2, 1-7
Published Online February 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2015.02.01

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 1-7

An Evolving Neuro-Fuzzy System with Online

Learning/Self-learning

Yevgeniy V. Bodyanskiy
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,

Email: bodya@kture.kharkov.ua

Oleksii K. Tyshchenko and Anastasiia O. Deineko
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,

Email: {lehatish, anastasiya.deineko}@gmail.com

Abstract—A new neuro-fuzzy system’s architecture and

a learning method that adjusts its weights as well as

automatically determines a number of neurons, centers’

location of membership functions and the receptive

field’s parameters in an online mode with high processing

speed is proposed in this paper. The basic idea of this

approach is to tune both synaptic weights and

membership functions with the help of the supervised

learning and self-learning paradigms. The approach to

solving the problem has to do with evolving online neuro-

fuzzy systems that can process data under uncertainty

conditions. The results proves the effectiveness of the

developed architecture and the learning procedure.

Index Terms—Computational intelligence, evolving

neuro-fuzzy system, online learning/ self-learning,

membership function, prediction/forecasting, machine

learning.

I. INTRODUCTION

Nowadays artificial neural networks (ANNs) are

widely used in Data Mining tasks, prediction tasks,

identification and emulation tasks etc. under conditions of

uncertainty, nonlinearity, stochasticity and chaoticity,

various kinds of disturbance and noise [1-10]. They are

universal approximators and are able to learn using data

which characterize the object under study. If data should

be processed in a sequential online mode, a convergence

rate of a learning process comes to the forefront, which

significantly limits the ANNs’ class suitable for work

under these conditions. ANNs, which use kernel

activation functions (radial basis, bell-shaped, potential),

are very effective from the speed optimization point of

view in the learning process. Radial-basis neural

networks (RBFN) are widely used, their output signal

depends linearly on synaptic weights. It allows to use

adaptive identification algorithms like the recurrent least-

squares method, the Kaczmarz (Widrow-Hoff) algorithm

etc. for their learning. However, the RBFN is exposed to

the so-called ―curse of dimensionality‖ which means that

when the input space dimensionality increases, there’s an

exponential growth of the adjustable parameters’

(weights’) amount.

Neuro-fuzzy systems (NFSs) have more potential

compared to neural networks [11-16], which combine

learning capabilities, universal approximating properties

and linguistic transparency of the results. The most

popular NFSs are ANFIS and TSK-systems, whose

output signal depends linearly on synaptic weights, that

allows to use optimal linear identification adaptive

algorithms for their learning. At the same time, to avoid

gaps in the input space generated by scatter partitioning

[17] which is used in ANFIS and TSK-systems, the

parameters’ tuning of membership functions is performed

in the NFS’s first hidden layer. The back propagation

algorithm is used for this purpose which is implemented

with the help of multi-epochs learning [18]. Online tuning

doesn’t work in this case.

The idea of evolving computational systems is very

popular nowadays with Data Mining scientists [19-26].

Both the system’s architecture and the amount of

adjustable parameters are growing rapidly while

processing data. To control the RBFN activation

functions’ parameters (centers and matrix receptive fields)

in an online mode, it was proposed in [27-29] to use the

self-organizing Kohonen map [30], which provides these

parameters’ tuning in the self-learning process in an

online mode. So the basic idea of this approach is to tune

both synaptic weights and membership functions with the

help of the supervised learning and self-learning

paradigms.

The approach to solving the problem has to do with

evolving online neuro-fuzzy systems that can process

data under uncertainty conditions. It seems appropriate to

extend this approach to an adaptive parameter tuning of

membership functions in neuro-fuzzy systems.

The proposed tuning procedure of activation functions’
parameters and their quantity was used in the proposed

evolving neuro-fuzzy architecture. The tuning procedure

works in an online mode. The proposed computational

system was tested in forecasting tasks. The error was

rather low (for a synthetic dataset: a training error was

0.02%, a test error was 1.5%; for a real-world dataset: a

training error was 4.4%, a test error was 5.4%).

The remainder of this paper is organized as follows:

Section 2 gives a neuro-fuzzy system’s architecture and a

learning procedure of output layer parameters. Section 3

mailto:anastasiya.deineko

2 An Evolving Neuro-Fuzzy System with Online Learning/Self-learning

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 1-7

describes membership functions’ self-learning in the first

hidden layer. Section 4 presents time-series forecasting

with the help of the proposed neuro-fuzzy system.

Conclusions and future work are given in the final section.

II. A NEURO-FUZZY SYSTEM’S ARCHITECTURE AND A

LEARNING PROCEDURE OF OUTPUT LAYER PARAMETERS

The proposed system’s architecture (shown in fig.1)

consists of five sequentially connected layers.

A  1n  dimensional vector of input signals

1 2() ((), (),..., ())T

nx k x k x k x k (here 1,2,...k  is current

discrete time) is fed to the input (zero) layer of the neuro-

fuzzy system to be processed. The first hidden layer

contains nh (h for each input) membership functions

()il x , 1,2,..., ;i n 1,2,...,l h and carries out the input

space fuzzification. The second hidden layer provides the

membership levels’ aggregation calculated in the first

layer and consists of h multiplication blocks. The third

hidden layer is a layer of synaptic weights to be defined

during a learning process. The fourth layer is formed by

two adders and calculates sums of the output signals of

the second and third layers. And, finally, normalization is

fulfilled in the fifth (output) layer, which results in an

output signal ŷ calculation.

Thus, if a vector signal  x k is fed to the NFS’s input

the first hidden layer elements calculate membership

levels   0 1li x k  , thus traditional Gaussian functions

are commonly used as membership functions

  
  

2

2
exp

2

i li

li i

i

x k c
x k



 
  
 
 

 (1)

where
lic ,

i are centers’ parameters and width

parameters correspondingly. It should be noticed that the

preliminary data normalization on a certain interval, for

example,  1 1,ix k   simplifies calculations, since the

width parameters
i can be accepted equal for all the

inputs, i.е.
i  .

Aggregated values   
1

n

li i

i

x k


 are calculated in the

second hidden layer, thus the Gaussian functions with the

same width parameters  are

  
  

 

2

2
1 1

2

2

exp
2

exp
2

n n
i li

li i

i i

l

x k c
x k

x k c






 

 
   
 
 

 
  
 
 

 

 (2)

(here  1 2, ,...,
T

l l l l nc c c c), i.е. signals at the outputs of

the multiplication blocks of the second hidden layer are

similar to the signals at the neurons’ outputs of the

RBFN’s first hidden layer.

Fig 1. The neuro-fuzzy system’s architecture

The third hidden layer outputs are   
1

n

l li i

i

w x k




(here ,lw 1,2,...,l h are synaptic weights to be defined),

the fourth hidden layer outputs are   
1 1

nh

l li i

l i

w x k
 

  and

  
1 1

nh

li i

l i

x k
 

 and, finally, the system’s output (the

fifth layer) is

  
  

  

  

  

     

1 1

1 1

1

1

1 1

1

ˆ

nh

l li i

l i

nh

li i

l i

n

li ih
i

l nh
l

li i

l i

h
T

l l

l

w x k

y x k

x k

x k

w

x k

w x k w x k









 

 

 





 



 

 

 

 










 (3)

Where

  
  

  

1

1 1

,

n

li i

i

l nh

li i

l i

x k

x k

x k









 





 1 2, ,...,

T

hw w w w

            1 2, ,..., .
T

hx k x k x k x k   

 An Evolving Neuro-Fuzzy System with Online Learning/Self-learning 3

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 1-7

It’s easy to notice that the proposed system implements

a nonlinear mapping of the input space into a scalar

output signal like the normalized RBFN [31]. The

proposed system in its architecture matches the zero-

order Takagi-Sugeno-Kang system, i.е. the Wang –

Mendel architecture [15].

As already mentioned, to tune the NFS’s synaptic

weights, one can use the well-known adaptive algorithms

of identification/learning like the exponentially weighted

recurrent least-squares method

   
         

       

    

      
       

  

   
         

       

1 1
1

1

1

ˆ1
,

1

1 11
1 ,

1

0 1

T

T

T

T

T

P k y k w k y x k
w k w k

x k P k x k

x k w k

P k y k y k
x k

x k P k x k

P k x k x k P k
P k P k

x k P k x k

  




  

 

   



   
    

 

   


 


 


  
       

  


 (4)

(here  y k is a reference learning signal,  is a

forgetting parameter of outdated information), or the one-

step gradient Kaczmarz-Widrow-Hoff algorithm (it’s

optimal in speed):

   

      

  
  2

1

1
,

T

w k w k

y k w k x k
x k

x k






  

 


 (5)

a learning algorithm which possesses both tracking and

smoothing properties [32, 33]

   

            

      

1

2

1

1 ,

1 ,0 1

T

w k w k

p k y k w k x k x k

p k p k x k

 

  




  


  


     


 (6)

and similar procedures, including the well-known linear

identification procedures [31].

It’s interesting to note that the procedure (6) is

associated with the algorithm (4) by the ratio

   ,p k Tr P k (7)

when 0  it gets the form of the algorithm (5).

III. MEMBERSHIP FUNCTIONS’ SELF-LEARNING IN THE

FIRST HIDDEN LAYER

The membership functions’ tuning process in the first

hidden layer can be illustrated by a two-dimensional

input vector       1 2,
T

x k x k x k and five membership

functions    , 1,2,3,4,5; 1,2li ix k l i   at every

input. In this case, the NFS contains 10nh  membership

functions. Centers’ initial positions  0lic are evenly

distributed along axes
1x and

2x , a distance between

them is defined according to this relation

  max min 2
0 0,5

1 1

i ix x

h h


   

 
 (8)

for 1 1ix   .

This situation is illustrated in fig.2.

In the case of the multi-dimensional input vector

  nx k R , centers  0lic are evenly distributed along

the hypercube axes  1,1
n

 .

The first vector
1x is fed to the system input (in fig.2 –

      1 21 1 , 2
T

x x x). There are centres-"winners"

 * 0lic on each axis, and they are the closest ones to

 1ix in the sense of a distance

   1 0li i lid x c  , (9)

i.е.

   *

1 20 argmin , ,...,li i i hic d d d . (10)

Fig 2. Membership functions’ self-learning at the first step

Let’s notice that this procedure is in fact an

implementation of the competitive process according to Т.

Kohonen [30] but there’s a slight difference that the

«winner» on each axis can belong to membership

functions with different indexes l . These «winners» in

fig.2 are  *

41 0c and  *

42 0c .

Then these «winners» catch up to the input signal’s

components  1ix according to the Kohonen self-learning

method «The winner takes all» (WTA), which can be

written down for the situation in fig.2 in the form

4 An Evolving Neuro-Fuzzy System with Online Learning/Self-learning

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 1-7

 

        

 

* *0 1 1 0

1 4,

0 , 1,2,3,5;

li li i li

li

li

c x c

c for the winner l

c otherwise l

  


 
 


 (11)

and in a common case:

 

        

 

* *1 1

1,2,..., ; 1,2,..., n;

1 .

li li i li

li

li

c k k x k c k

c k for the winner l h i

c k otherwise

    


  
 


 (12)

At the same time a value

 
1

li

li

k
k

  (13)

can be accepted as a learning step parameter in the

simplest case where
lik is an amount of times when

 lic k was a «winner» that corresponds to the popular К-

means clusterization method (stochastic approximation in

the case of online processing).

In a common case, one can use an estimate which was

proposed for the traditional Kohonen map [34]:

 

   

1

2

,

1 , 0 1.

li li

li li i

k p

p k p k x



 

 


    

 (14)

It can be noticed that the proposed approach is a

modification of the Kohonen self-learning method but the

difference is a traditional self-learning procedure is

implemented on the hypersphere  
2

1x k  , in our

case – on the hypercube  1,1
n

 (the hypersphere

  1,
q

x k q ).

The combined learning/self-learning architecture of the

neuro-fuzzy system is shown in fig.3.

Fig 3. A combined learning/self-learning procedure

The functioning process of the system is performed in

the following way. When an input vector  x k is fed, the

correction of membership functions   li ix k is carried

out at first in the self-learning block, which means that

centers  lic k are calculated. Then the neuro-fuzzy

system’s output layer synaptic weights  w k are

calculated on the grounds of clarified membership

functions and a previously calculated synaptic weights’

vector  1w k  with the help of the supervised learning

algorithms ((4), (5) or (6)).

IV. TIME-SERIES FORECASTING WITH THE HELP OF THE

PROPOSED NEURO-FUZZY SYSTEM

In our experiment we used a signal generated by the

Mackey-Glass equation [35] which is a non-linear

differential equation

1 n

xdx
x

dt x





  


 (15)

where , ,n  are some coefficients, x is a value of a

variable x in the  t   th time moment. The equation

produces a number of periodic and chaotic values

depending on parameters. In this work, these values were

calculated with the help of the 4-th order Runge-Kutta

method.

Fig 4. The Mackey-Glass time-series

1600 values were generated with the help of the

Mackey-Glass equation during a simulation procedure.

These values were normalized and fed to the neuro-fuzzy

system input. The sample was divided into a training set

and a test set in the ratio 2:3. The learning results are

shown in Fig.5:

Fig 5. The neuro-fuzzy system’s learning results

 An Evolving Neuro-Fuzzy System with Online Learning/Self-learning 5

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 1-7

The learning error was about 0,02%. This high results’

accuracy is explained by stationary properties of the

Mackey-Glass time-series.

Then the system was transferred to a prediction mode.

Prediction of the time-series values was fulfilled in an

online mode, and elaboration of adjustable parameters in

the network in a prediction mode was not carried out. The

forecasting results are shown in Fig.6:

Fig 6. The prediction results of the Mackey-Glass time-series

The error was 1.5% in a prediction mode.

To implement the experiment on real data, a sample

that contains 2611 observations which characterize

electricity consumption in Ukraine (December 1
st
 2008 –

May 25
th

 2014, monthly) is used. To build a predictor

model based on the proposed neural network’s

architecture data preprocessing was carried out in the

form shown in Tab.1 where  1x k is the amount of

consumed electric power for the next month,  2x k is

the amount of consumed electric power in the current

month,  3x k is a seasonal component and the amount of

consumed electric power 12 months ago.

Table 1. Electricity consumption in Ukraine (October 2013 – May 2014)

 Oct 2013 Nov 2013 Dec 2013 Jan 2014

x1(k) 558275 543247 541478 582639

x2(k) 565640 558275 543247 541478

x3(k) 550135 534579 573978 589912

 Feb 2014 Mar 2014 Apr 2014 May 2014

x1(k) 583798 579065 578932 575576

x2(k) 582639 579065 583798 578932

x3(k) 594405 568605 573412 598185

Fig 7. The graphical display of electricity consumption data

The electricity consumption data were normalized and

fed to the neuro-fuzzy network’s input. The network was

launched in a learning mode initially.

We obtained the results which are shown in Fig.8:

Fig 8. The neuro-fuzzy system’s results in a learning mode

The result error on a training set was 4,43%.

Then our system was launched in a prediction mode. It

should be noticed that the prediction results’ validation

was performed in such a way: the system returned a result

vector whose values were in the range [0,1] as well as the

input vector’s values, and then values of this output

vector with the help of the quadratic error criterion were

compared to actual values. Which means that the values

predicted by the network itself were used as history. A

number of forecasted points was limited to 14. The

prediction results are shown in Fig.9:

Fig.9. The prediction results of electricity consumption.

The error is 5,37%. We should notice that the total

error at various time intervals was from 3 to 7%. At the

beginning of the experiment centers’ recalculation wasn’t

performed after every new value had come to the

system’s input, and the error was up to 20%. After the

centers’ values were recalculated, a function was rapidly

leaving the local extremum area. This led to a sharp

decrease of the result error.

VI. CONCLUSION

The approach, which combines training of both

synaptic weights and membership functions’ centers and

which is based on both supervised learning and self-

learning, is proposed in this paper. The main advantage of

the proposed approach is that it can be used in an online

mode, when a training set is fed to a system’s input

6 An Evolving Neuro-Fuzzy System with Online Learning/Self-learning

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 1-7

sequentially, and its volume is not fixed beforehand. The

results can be used for solving a wide class of Dynamic

Data Mining problems.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers

for their careful reading of this paper and for their helpful

comments.

REFERENCES

[1] A. Cichocki, R. Unbehauen, Neural Networks for

Optimization and Signal Processing. Stuttgart: Teubner,

1993.

[2] S. Haykin, Neural Networks: A Comprehensive

Foundation. Upper Saddle River, New Jersey: Prentice

Hall, 1999.

[3] R.J. Schalkoff, Artificial Neural Networks, New York:

The McGraw-Hill Comp., 1997.

[4] D. Graupe, Principles of Artificial Neural Networks

(Advanced Series in Circuits and Systems). Singapore:

World Scientific Publishing Co. Pte. Ltd., 2007.

[5] K. Suzuki, Artificial Neural Networks: Architectures and

Applications. NY: InTech, 2013.

[6] G. Hanrahan, Artificial Neural Networks in Biological and

Environmental Analysis. NW: CRC Press, 2011.

[7] K.-L. Du and M.N.S. Swamy, Neural Networks and

Statistical Learning. London: Springer-Verlag, 2014.

[8] S.F. Lilhare and N.G. Bawane, ―Artificial Neural Network

Based Control Strategies for Paddy Drying Process‖, in

Int. J. Information Technology and Computer Science, vol.

6, no. 11, 2014, pp.28-35, doi: 10.5815/ijitcs.2014.11.04.

[9] M. Abo-Zahhad, S.M. Ahmed, and S.A. Abd-Elrahman,

―Integrated Model of DNA Sequence Numerical

Representation and Artificial Neural Network for Human

Donor and Acceptor Sites Prediction‖, in Int. J.

Information Technology and Computer Science, vol. 6, no.

8, 2014, pp.51-57, doi: 10.5815/ijitcs.2014.08.07.

[10] M.L. Pai, K.V. Pramod, and A.N. Balchand, ―Long Range

Forecast on South West Monsoon Rainfall using Artificial

Neural Networks based on Clustering Approach‖, in Int. J.

Information Technology and Computer Science, vol. 6, no.

7, 2014, pp.1-8, doi: 10.5815/ijitcs.2014.07.01.

[11] L. Rutkowski, Computational Intelligence. Methods and

Tehniques. Berlin-Heidelberg: Springer-Verlag, 2008.

[12] J.-S. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and

Soft Computing: A Computational Approach to Learning

and Maching Intelligence. Upper Saddle River, N.J.:

Prentice Hall, 1997.

[13] C.L. Mumford and L.C. Jain, Computational Intelligence.

Berlin: Springer-Verlag, 2009.

[14] R. Kruse, C. Borgelt, F. Klawonn, C. Moewes, M.

Steinbrecher, and P. Held, Computational Intelligence. A

Methodological Introduction. Berlin: Springer-Verlag,

2013.

[15] L.-X. Wang and J.M. Mendel, ―Fuzzy basis functions,

universal approximation and orthogonal least squares

learning‖, in IEEE Trans. on Neural Networks, vol. 3,

1993, pp. 807-814.

[16] K.J. Cios and W. Pedrycz, Neuro-fuzzy algorithms.

Oxford: IOP Publishing Ltd and Oxford University Press,

1997.

[17] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of

Statistical Learning. Data Mining, Inference and

Prediction. Berlin: Springer, 2003.

[18] S. Osowski, Sieci neuronowe do przetwarzania informacji.

Warszawa: Oficijna Wydawnicza Politechniki

Warszawskiej, 2006.

[19] N. Kasabov, Evolving Connectionist Systems. London:

Springer-Verlag, 2003.

[20] E. Lughofer, Evolving Fuzzy Systems – Methodologies,

Advanced Concepts and Applications. Berlin-Heidelberg:

Springer-Verlag, 2011.

[21] Ye. Bodyanskiy, P. Grimm and N. Teslenko, ―Evolving

cascaded neural network based on multidimensional

Epanechnikov’s kernels and its learning algorithm,‖ in Int.

J. Information Technologies and Knowledge, vol. 5, no. 1,

2011, pp. 25-30.

[22] P. Angelov, D. Filev, and N. Kasabov, Evolving

Intelligent Systems: Methodology and Applications. New

York: John Wiley and Sons, 2010.

[23] N. Kasabov, Evolving Connectionist Systems: The

Knowledge Engineering Approach, London: Springer-

Verlag, 2007.

[24] N.K. Kasabov, ―Evolving fuzzy neural networks for

supervised/unsupervised online knowledge-based

learning‖, in IEEE Transactions on Systems, Man and

Cybernetics, Part B: Cybernetics, no. 31(6), 2001, pp.

902-918.

[25] N.K. Kasabov and Q. Song, ―DENFIS: Dynamic evolving

neural-fuzzy inference system and its application for time-

series prediction‖, in IEEE Transactions on Fuzzy Systems,

no. 10(2), 2002, pp. 144-154.

[26] E. Lughofer, ―FLEXFIS: A robust incremental learning

approach for evolving TS fuzzy models‖, in IEEE

Transactions on Fuzzy Systems, no. 16(6), 2008, pp. 1393-

1410.

[27] Ye.V. Bodyanskiy and A.A. Deineko, ―Adaptive learning

of the RBFN architecture and parameters‖, in System

Technologies, vol.4, no. 87, 2013, pp. 166-173. (in

Russian).

[28] Ye.V. Bodyanskiy and A.A. Deineko, ―The evolving

radial-basis neural network and its learning with the help

of the Kohonen map‖, in Proc. Sci. Conf. «Information

Technologies in Metallurgy and Mechanical Engineering»,

2013, pp. 75-77. (in Russian).

[29] J.A. Torres, S. Martinez, F.J. Martinez, and M. Peralta,

―The problem of organizing and partition large data sets in

learning algorithms for SOM-RBF mixed structure‖, in

Proc. 5th Int. Joint Conf. on Computational Intelligence,

2013, pp. 497-501.

[30] T. Kohonen, Self-Organizing Maps. Berlin: Springer-

Verlag, 1995.

[31] O. Nelles, Nonlinear System Identification. Berlin:

Springer, 2001.

[32] Ye. Bodyanskiy, V. Kolodyazhniy, and A. Stephan, ―An

adaptive learning algorithm for a neuro-fuzzy network‖, in

Computational Intelligence. Theory and Applications, B.

Reusch, Ed. Berlin – Heidelberg – New York: Springer,

2001, pp. 68-75.

[33] P. Otto, Ye. Bodyanskiy, and V. Kolodyazhniy, ―A new

learning algorithm for a forecasting neuro-fuzzy network‖,

in Integrated Computer-Aided Engeneering, vol. 10, no. 4,

2003, pp. 399-409.

[34] Ye.V. Bodyanskiy and О.G. Rudenko, Artificial Neural

Networks: Architectures, Learning, Applications. Kharkiv:

ТЕLЕТЕH, 2004. (in Russian)

[35] M.C. Mackey and L. Glass, ―Oscillation and chaos in

physiological control systems‖, in Science, no. 197, 1977,

pp. 238-289.

 An Evolving Neuro-Fuzzy System with Online Learning/Self-learning 7

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 1-7

Authors’ Profiles

Yevgeniy Bodyanskiy. graduated from Kharkiv National

University of Radio Electronics in 1971. He got his PhD in

1980. He obtained an academic title of the Senior Researcher in

1984. He got his Dr.habil.sci.ing. in 1990. He obtained an

academic title of the Professor in 1994.

Prof. Bodyanskiy has been the professor of Artificial

Intelligence Department at KhNURE, the Head of Control

Systems Research Laboratory at KhNURE. He has more than

600 scientific publications including 40 inventions and 10

monographs. His research interests are hybrid systems of

computational intelligence: adaptive, neuro-, wavelet-, neo-

fuzzy-, real-time systems that have to do with control,

identification, and forecasting, clustering, diagnostics and fault

detection.

Prof. Bodyanskiy is an IEEE Senior Member and a member

of 4 scientific and 7 editorial boards.

Oleksii Tyshchenko graduated from Kharkiv National

University of Radio Electronics in 2008. He got his PhD in

Computer Science in 2013. He is currently working as a Senior

Researcher in Control Systems Research Laboratory at Kharkiv

National University of Radio Electronics. His current research

interests are Evolving, Reservoir and Cascade Neuro-Fuzzy

Systems.

Anastasiia Deineko graduated from Kharkiv National

University of Radio Electronics in 2011. She is a PhD student in

Computer Science at Kharkiv National University of Radio

Electronics. Her current interests are Time Series Forecasting,

Evolving Neuro-Fuzzy Systems.

How to cite this paper: Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko, Anastasiia O. Deineko,"An Evolving

Neuro-Fuzzy System with Online Learning/Self-learning", IJMECS, vol.7, no.2, pp.1-7, 2014.DOI:

10.5815/ijmecs.2015.02.01

