
I.J. Modern Education and Computer Science, 2015, 2, 1-7 
Published Online February 2015 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2015.02.01 

Copyright © 2015 MECS                                                        I.J. Modern Education and Computer Science, 2015, 2, 1-7 

An Evolving Neuro-Fuzzy System with Online 

Learning/Self-learning 
 

Yevgeniy V. Bodyanskiy 
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,  

Email: bodya@kture.kharkov.ua 

 

Oleksii K. Tyshchenko and Anastasiia O. Deineko 
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, 

Email: {lehatish, anastasiya.deineko}@gmail.com 

 

 

Abstract—A new neuro-fuzzy system’s architecture and 

a learning method that adjusts its weights as well as 

automatically determines a number of neurons, centers’ 

location of membership functions and the receptive 

field’s parameters in an online mode with high processing 

speed is proposed in this paper. The basic idea of this 

approach is to tune both synaptic weights and 

membership functions with the help of the supervised 

learning and self-learning paradigms. The approach to 

solving the problem has to do with evolving online neuro-

fuzzy systems that can process data under uncertainty 

conditions. The results proves the effectiveness of the 

developed architecture and the learning procedure. 

 

Index Terms—Computational intelligence, evolving 

neuro-fuzzy system, online learning/ self-learning, 

membership function, prediction/forecasting, machine 

learning. 
 

I.  INTRODUCTION 

Nowadays artificial neural networks (ANNs) are 

widely used in Data Mining tasks, prediction tasks, 

identification and emulation tasks etc. under conditions of 

uncertainty, nonlinearity, stochasticity and chaoticity, 

various kinds of disturbance and noise [1-10]. They are 

universal approximators and are able to learn using data 

which characterize the object under study. If data should 

be processed in a sequential online mode, a convergence 

rate of a learning process comes to the forefront, which 

significantly limits the ANNs’ class suitable for work 

under these conditions. ANNs, which use kernel 

activation functions (radial basis, bell-shaped, potential), 

are very effective from the speed optimization point of 

view in the learning process. Radial-basis neural 

networks (RBFN) are widely used, their output signal 

depends linearly on synaptic weights. It allows to use 

adaptive identification algorithms like the recurrent least-

squares method, the Kaczmarz (Widrow-Hoff) algorithm 

etc. for their learning. However, the RBFN is exposed to 

the so-called ―curse of dimensionality‖ which means that 

when the input space dimensionality increases, there’s an 

exponential growth of the adjustable parameters’ 

(weights’) amount.  

Neuro-fuzzy systems (NFSs) have more potential 

compared to neural networks [11-16], which combine 

learning capabilities, universal approximating properties 

and linguistic transparency of the results. The most 

popular NFSs are ANFIS and TSK-systems, whose 

output signal depends linearly on synaptic weights, that 

allows to use optimal linear identification adaptive 

algorithms for their learning. At the same time, to avoid 

gaps in the input space generated by scatter partitioning 

[17] which is used in ANFIS and TSK-systems, the 

parameters’ tuning of membership functions is performed 

in the NFS’s first hidden layer. The back propagation 

algorithm is used for this purpose which is implemented 

with the help of multi-epochs learning [18]. Online tuning 

doesn’t work in this case. 

The idea of evolving computational systems is very 

popular nowadays with Data Mining scientists [19-26]. 

Both the system’s architecture and the amount of 

adjustable parameters are growing rapidly while 

processing data. To control the RBFN activation 

functions’ parameters (centers and matrix receptive fields) 

in an online mode, it was proposed in [27-29] to use the 

self-organizing Kohonen map [30], which provides these 

parameters’ tuning in the self-learning process in an 

online mode. So the basic idea of this approach is to tune 

both synaptic weights and membership functions with the 

help of the supervised learning and self-learning 

paradigms. 

The approach to solving the problem has to do with 

evolving online neuro-fuzzy systems that can process 

data under uncertainty conditions. It seems appropriate to 

extend this approach to an adaptive parameter tuning of 

membership functions in neuro-fuzzy systems. 

The proposed tuning procedure of activation functions’ 
parameters and their quantity was used in the proposed 

evolving neuro-fuzzy architecture. The tuning procedure 

works in an online mode. The proposed computational 

system was tested in forecasting tasks. The error was 

rather low (for a synthetic dataset: a training error was 

0.02%, a test error was 1.5%; for a real-world dataset: a 

training error was 4.4%, a test error was 5.4%).
 

The remainder of this paper is organized as follows: 

Section 2 gives a neuro-fuzzy system’s architecture and a 

learning procedure of output layer parameters. Section 3 
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describes membership functions’ self-learning in the first 

hidden layer. Section 4 presents time-series forecasting 

with the help of the proposed neuro-fuzzy system. 

Conclusions and future work are given in the final section. 

 

II.  A NEURO-FUZZY SYSTEM’S ARCHITECTURE AND A 

LEARNING PROCEDURE OF OUTPUT LAYER PARAMETERS 

The proposed system’s architecture (shown in fig.1) 

consists of five sequentially connected layers.  

A  1n  dimensional vector of input signals 

1 2( ) ( ( ), ( ),..., ( ))T

nx k x k x k x k  (here 1,2,...k   is current 

discrete time) is fed to the input (zero) layer of the neuro-

fuzzy system to be processed. The first hidden layer 

contains nh  ( h  for each input) membership functions 

( )il x , 1,2,..., ;i n  1,2,...,l h  and carries out the input 

space fuzzification. The second hidden layer provides the 

membership levels’ aggregation calculated in the first 

layer and consists of h  multiplication blocks. The third 

hidden layer is a layer of synaptic weights to be defined 

during a learning process. The fourth layer is formed by 

two adders and calculates sums of the output signals of 

the second and third layers. And, finally, normalization is 

fulfilled in the fifth (output) layer, which results in an 

output signal ŷ  calculation.  

Thus, if a vector signal  x k  is fed to the NFS’s input 

the first hidden layer elements calculate membership 

levels   0 1li x k  , thus traditional Gaussian functions 

are commonly used as membership functions 
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where 
lic , 

i  are centers’ parameters and width 

parameters correspondingly. It should be noticed that the 

preliminary data normalization on a certain interval, for 

example,  1 1,ix k    simplifies calculations, since the 

width parameters 
i  can be accepted equal for all the 

inputs, i.е. 
i  .  

Aggregated values   
1

n

li i

i

x k
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  are calculated in the 

second hidden layer, thus the Gaussian functions with the 

same width parameters   are 
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(here  1 2, ,...,
T

l l l l nc c c c ), i.е. signals at the outputs of 

the multiplication blocks of the second hidden layer are 

similar to the signals at the neurons’ outputs of the 

RBFN’s first hidden layer. 

 

 
Fig 1. The neuro-fuzzy system’s architecture 

The third hidden layer outputs are   
1

n

l li i

i

w x k


  

(here ,lw  1,2,...,l h  are synaptic weights to be defined), 

the fourth hidden layer outputs are   
1 1

nh

l li i

l i
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 

   and 
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nh
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l i

x k
 

  and, finally, the system’s output (the 

fifth layer) is 
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Where 
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It’s easy to notice that the proposed system implements 

a nonlinear mapping of the input space into a scalar 

output signal like the normalized RBFN [31]. The 

proposed system in its architecture matches the zero-

order Takagi-Sugeno-Kang system, i.е. the Wang – 

Mendel architecture [15]. 

As already mentioned, to tune the NFS’s synaptic 

weights, one can use the well-known adaptive algorithms 

of identification/learning like the exponentially weighted 

recurrent least-squares method  
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(here  y k  is a reference learning signal,   is a 

forgetting parameter of outdated information), or the one-

step gradient Kaczmarz-Widrow-Hoff algorithm (it’s 

optimal in speed): 
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a learning algorithm which possesses both tracking and 

smoothing properties [32, 33] 

 

   

            

      

1

2

1

1 ,

1 ,0 1

T

w k w k

p k y k w k x k x k

p k p k x k

 

  




  


  


     


     (6) 

 

and similar procedures, including the well-known linear 

identification procedures [31]. 

It’s interesting to note that the procedure (6) is 

associated with the algorithm (4) by the ratio  

 

   ,p k Tr P k                                 (7) 

 

when 0   it gets the form of the algorithm (5). 

 

III.  MEMBERSHIP FUNCTIONS’ SELF-LEARNING IN THE 

FIRST HIDDEN LAYER 

The membership functions’ tuning process in the first 

hidden layer can be illustrated by a two-dimensional 

input vector       1 2,
T

x k x k x k  and five membership 

functions    , 1,2,3,4,5; 1,2li ix k l i    at every 

input. In this case, the NFS contains 10nh   membership 

functions. Centers’ initial positions  0lic  are evenly 

distributed along axes 
1x  and 

2x , a distance between 

them is defined according to this relation  
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for 1 1ix   . 

This situation is illustrated in fig.2. 

In the case of the multi-dimensional input vector 

  nx k R , centers  0lic  are evenly distributed along 

the hypercube axes  1,1
n

 . 

The first vector 
1x  is fed to the system input (in fig.2 – 

      1 21 1 , 2
T

x x x ). There are centres-"winners" 

 * 0lic  on each axis, and they are the closest ones to 

 1ix  in the sense of a distance 

 

   1 0li i lid x c  ,                        (9) 

 

i.е. 

 

   *

1 20 argmin , ,...,li i i hic d d d .             (10) 

 

  
Fig 2. Membership functions’ self-learning at the first step 

Let’s notice that this procedure is in fact an 

implementation of the competitive process according to Т. 

Kohonen [30] but there’s a slight difference that the 

«winner» on each axis can belong to membership 

functions with different indexes l . These «winners» in 

fig.2 are  *

41 0c  and  *

42 0c .  

Then these «winners» catch up to the input signal’s 

components  1ix  according to the Kohonen self-learning 

method «The winner takes all» (WTA), which can be 

written down for the situation in fig.2 in the form
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and in a common case: 
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At the same time a value 
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1
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k
k

                                (13) 

 

can be accepted as a learning step parameter in the 

simplest case where 
lik  is an amount of times when 

 lic k  was a «winner» that corresponds to the popular К-

means clusterization method (stochastic approximation in 

the case of online processing). 

In a common case, one can use an estimate which was 

proposed for the traditional Kohonen map [34]: 
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It can be noticed that the proposed approach is a 

modification of the Kohonen self-learning method but the 

difference is a traditional self-learning procedure is 

implemented on the hypersphere  
2

1x k  , in our 

case – on the hypercube  1,1
n

  (the hypersphere 

  1,
q

x k q  ). 

The combined learning/self-learning architecture of the 

neuro-fuzzy system is shown in fig.3. 

 

 
Fig 3. A combined learning/self-learning procedure 

The functioning process of the system is performed in 

the following way. When an input vector  x k  is fed, the 

correction of membership functions   li ix k  is carried 

out at first in the self-learning block, which means that 

centers  lic k  are calculated. Then the neuro-fuzzy 

system’s output layer synaptic weights  w k  are 

calculated on the grounds of clarified membership 

functions and a previously calculated synaptic weights’ 

vector  1w k   with the help of the supervised learning 

algorithms ((4), (5) or (6)). 

 

IV.  TIME-SERIES FORECASTING WITH THE HELP OF THE 

PROPOSED NEURO-FUZZY SYSTEM 

In our experiment we used a signal generated by the 

Mackey-Glass equation [35] which is a non-linear 

differential equation 

 

1 n

xdx
x

dt x





  


                     (15) 

 

where , ,n   are some coefficients, x  is a value of a 

variable x  in the  t   th time moment. The equation 

produces a number of periodic and chaotic values 

depending on parameters. In this work, these values were 

calculated with the help of the 4-th order Runge-Kutta 

method. 

 

 
Fig 4. The Mackey-Glass time-series 

1600 values were generated with the help of the 

Mackey-Glass equation during a simulation procedure. 

These values were normalized and fed to the neuro-fuzzy 

system input. The sample was divided into a training set 

and a test set in the ratio 2:3. The learning results are 

shown in Fig.5: 

 

 
Fig 5. The neuro-fuzzy system’s learning results
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The learning error was about 0,02%. This high results’ 

accuracy is explained by stationary properties of the 

Mackey-Glass time-series. 

Then the system was transferred to a prediction mode. 

Prediction of the time-series values was fulfilled in an 

online mode, and elaboration of adjustable parameters in 

the network in a prediction mode was not carried out. The 

forecasting results are shown in Fig.6: 

 

 
Fig 6. The prediction results of the Mackey-Glass time-series 

The error was 1.5% in a prediction mode.  

To implement the experiment on real data, a sample 

that contains 2611 observations which characterize 

electricity consumption in Ukraine (December 1
st
 2008 – 

May 25
th

 2014, monthly) is used. To build a predictor 

model based on the proposed neural network’s 

architecture data preprocessing was carried out in the 

form shown in Tab.1 where  1x k  is the amount of 

consumed electric power for the next month,  2x k  is 

the amount of consumed electric power in the current 

month,  3x k  is a seasonal component and the amount of 

consumed electric power 12 months ago. 

Table 1. Electricity consumption in Ukraine (October 2013 – May 2014) 

 Oct 2013 Nov 2013 Dec 2013 Jan 2014 

x1(k) 558275 543247 541478 582639 

x2(k) 565640 558275 543247 541478 

x3(k) 550135 534579 573978 589912 

 Feb 2014 Mar 2014 Apr 2014 May 2014 

x1(k) 583798 579065 578932 575576 

x2(k) 582639 579065 583798 578932 

x3(k) 594405 568605 573412 598185 

 

 
Fig 7. The graphical display of electricity consumption data 

The electricity consumption data were normalized and 

fed to the neuro-fuzzy network’s input. The network was 

launched in a learning mode initially.  

We obtained the results which are shown in Fig.8: 

 

 
Fig 8. The neuro-fuzzy system’s results in a learning mode 

The result error on a training set was 4,43%.  

Then our system was launched in a prediction mode. It 

should be noticed that the prediction results’ validation 

was performed in such a way: the system returned a result 

vector whose values were in the range [0,1] as well as the 

input vector’s values, and then values of this output 

vector with the help of the quadratic error criterion were 

compared to actual values. Which means that the values 

predicted by the network itself were used as history. A 

number of forecasted points was limited to 14. The 

prediction results are shown in Fig.9: 

 

 
Fig.9. The prediction results of electricity consumption. 

The error is 5,37%. We should notice that the total 

error at various time intervals was from 3 to 7%. At the 

beginning of the experiment centers’ recalculation wasn’t 

performed after every new value had come to the 

system’s input, and the error was up to 20%. After the 

centers’ values were recalculated, a function was rapidly 

leaving the local extremum area. This led to a sharp 

decrease of the result error. 

 

VI.  CONCLUSION 

The approach, which combines training of both  

synaptic weights and membership functions’ centers and 

which is based on both supervised learning and self-

learning, is proposed in this paper. The main advantage of 

the proposed approach is that it can be used in an online 

mode, when a training set is fed to a system’s input 
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sequentially, and its volume is not fixed beforehand. The 

results can be used for solving a wide class of Dynamic 

Data Mining problems. 
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