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Abstract — Cognitive radio is an efficient technique for 
realization of dynamic spectrum access. Since in the 
cognitive radio network (CRN) environment, the 
secondary users (SUs) are susceptible to the random 
jammers, the security issue of the SU’s channel access 
becomes crucial for the CRN framework. The rapidly 
varying spectrum dynamics of CRN along with the 
jammer’s actions leads to challenging scenario. 
Stochastic zero-sum game and Markov decision process 
(MDP) are generally used to model the scenario 
concerned. To learn the channel dynamics and the 
jammer’s strategy the SUs use reinforcement learning 
(RL) algorithms, like Minimax-Q learning. In this paper, 
we have proposed the multi-agent multi-band 
collaborative anti-jamming among the SUs to combat 
single jammer using the Minimax-Q learning algorithm. 
The SUs collaborate via sharing the policies or episodes. 
Here, we have shown that the sharing of the learned 
policies or episodes enhances the learning probability of 
SUs about the jammer’s strategies but reward reduces as 
the cost of communication increases. Simulation results 
show improvement in learning probability of SU by 
using collaborative anti-jamming using Minimax-Q 
learning over single SU fighting the jammer scenario. 
 
Index Terms — Cognitive radio networks, Stochastic 
game theory, Collaborative games, Markov decision 
process, Reinforcement learning  
 

I. INTRODUCTION 

Cognitive radio (CR) concept was proposed in [1] to 
resolve the problem of spectrum scarcity by exploiting 
the spectrum holes by the secondary users (SUs). The 
cognitive radio network (CRN) as proposed in [1] and [2] 
solves the conflicting situation between limited spectrum 
utilization and the increasing demand for spectrum 
resources. It exploits the spectrum holes by enabling the 
SUs to sense, select the free channel, collaborate with 

the other SUs, access the free channels and free the 
channels whenever the primary user (PU) needs those 
channels. Main research concerns till now were spectrum 
sensing, sharing and accessing procedures. 

These works have assumed that SUs are greedy for 
spectrum holes and cooperate among themselves to fulfil 
their common objective. This assumption ignores the 
jammer’s attack on SU scenario. In order to provide 
secure spectrum sharing in CRN, the random jammer’s 
attack has to considered and modelled. Markov Decision 
Process (MDP) in CRN was introduced in [3] as it can 
easily model the competitive behaviour of SUs in the 
limited spectrum scenario of CRN. Stochastic games in 
CRN, is given in [4], [5] and [6], where a game was 
designed between the jammers and the SUs and zero-
sum game condition also fetched the games’ boundary 
conditions. The same framework is extended for MDP in 
[7] and [8], where competitive interaction among agents 
was considered in detail. In [8] and [9] MDP is used for 
the reinforcement learning (RL), this RL technique make 
the SUs learn the policies adopted by jammer. So, after 
learning the jammers’ policy the SUs can predict jammer 
next action and plan their next course of action to 
combat the jammers. The reinforcement learning concept 
as introduced in (RL) [10], [11] and [12] has been used 
in the anti-jamming scenario, was introduced in [13] and 
[14]. Jammers attack in CRN can be modelled as zero-
sum stochastic game framework. A zero-sum anti-
jamming game is developed in [15] and the extension of 
QV learning is covered in [16] and [12]. One more 
advanced and online reinforcement algorithm is 
Minimax-Q learning is coined in [17] where there is an 
improvement in the learning probability of the SUs can 
be achieved as compared with the simple QV 
reinforcement learning algorithm. In the framework as 
developed in [15] quality of channel, availability of 
spectrum and the observation of attackers’ actions define 
the state of game. The SU’s actions, jammer’s actions 
PU presence or absence, channels utilization gains and 
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switching between jammed and un-jammed channels are 
modelled. This work has considered the SUs as 
independent agents learning independently without any 
collaboration with the other SUs. An improvement in the 
learning probability can be achieved by using the 
collaboration concept given in [18] and [19]. Here, 
collaboration is achieved via sharing the learned policies 
or episodes. In this paper, we propose the collaborative 
multi-agent multi-band anti-jamming game that involves 
the sharing of the local statistics, i.e., the number of 
jammed data or control channels or the number of 
unjammed data or control channels. To achieve the 
collaboration, this information is shared in the CRN with 
the neighbouring agents. The independent SUs will use 
the same decision policy by using Minimax-Q learning 
algorithm. In the proposed game each agent updates the 
Q-matrix for the same policy independently but now the 
rate of update gets multiplied by the number of 
collaborating SUs simultaneously. This sharing of the 
learned policies or episodes enhances the learning 
probability of SUs about the jammer’s strategies. 

This paper is organized as follows. In section II, we 
have covered the system model along with the basic 
assumptions involved. In section III, we have given the 
Minimax-Q learning algorithm and collaborative multi-
agent multi-band anti-jamming game that involves the 
sharing of the local statistics, i.e., the number of jammed 
data or control channels or the number of un-jammed 
data or control channels. In section IV, we have 
presented the simulation results and in section V 
conclusion is given. 
 

II. SYSTEM MODEL 

In this section, we give all the assumptions and 
notations for the given stochastic game model in brief. 
Further details of the game scenario are given in [15]. 
We assume that all the SUs are under the control of a 
single secondary base station and the jammer can only 
jam the SUs. Moreover, the jammer can jam at most N 
channels in each time slot due to limited number of 
antenna channels and transmit power. Here, the 
dynamics of channel, PU’s presence or absence, SUs 
actions and channel utilization gain has been modelled as 
in [15] and we have used the same developed system 
model. The basic analytical expressions involved are as 
follows [15]. The SUs’ motto is to get an optimal policy 
with maximum expected summation of discounted 
reward 
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To reduce the complexity, equation for updating the Q-
function has been modified as 
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αt stands for the learning rate decays for the time by 

αt+1 = µαt with 0 < µ< 1. The action set at={at
1 ,at

2 ,...,at
L}. 

The actions of the jammer are formulated as at
J={at

1,J , 
at

2,J ,...,at
L,J}. The states of the anti-jamming game at time 

t is defined as st ={st
1, st

2 ,…, st
L} and sl

t={Pl
t, gl

t, Jl,C
t, 
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t }. The transition probability is expressed 
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The cumulative average reward per iteration as given 
by the equation  
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at
l= (at

l,C1 , at
l,D1 , at

l,C2 , at
l,C2) where action at

l,C1 
(or at

l, D1) stands for the fact the secondary network will 
transmit control (or data) messages in at

l,C1 (or at
l,D1 ) 

channels by uniformly selecting from the earlier un-
jammed channels, and action at

l,C2 (or at
l,D2 ) means that 

the secondary network will transmit control (or data) 
messages in at

l,C2 (or at
l,C2) channels uniformly selected 

from the previously jammed channels with(at
l,J1) or (at

l,J2) 
means that the attackers will jam (at

l,J1)or (at
l,J2) channels 

uniformly selected from the previously un-attacked (or 
attacked) channels at current time t. Detailed 
mathematical formulation is given in [15]. 

 

III. MINIMAX-Q LEARNING ALGORITHM & 
COLLABORATIVE MULTI-AGENT MULTI-BAND 

ANTIJAMMING 

Minimax-Q learning algorithm for the single 
independent SU combatting the jammer as given in [15]. 

1) STEP 1 
At state st,  t = 0,1, … 

– if state st has not been observed previously, add st to 
shist, 
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– generate action set A(st), and AJ (st) of the attackers; 
– initialize ( , , )t t t

jQ s a a ←1, for all a ε  A(st), aJ ε  AJ 
(st) 
– initialize V (st)  ←  1; 
– initialize π (st , at) ←  1/|A(st)| , for all a ε  A(st); 
otherwise, use previously generated A(st),  AJ (st), 

( , , )t t t
jQ s a a , V (st), and π (st); 

2) STEP 2 Choose an action at at time t: 
– with probability pexp, return an action uniformly at 
random; 
– otherwise, return action at with probability π (st, a) 
under current state st. 

3) STEP 3 Learn: 
Assume the attackers take action at

J , after receiving 
reward ( , , )t t t

jr s a a for moving from state st to st+1 by 
taking action at 
– Update Q-function ( , , )t t t

jQ s a a according to (3:9); 
– Update the optimal strategy π* (st,a) by 
π *(st ) ←

( ) ( ) ( ) 
 arg max min ( , , ),t t

j

tt
s js

t t
a

s a Q s a a
π π

π∑  
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tt t t
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Q a aa ssπ∑ ;  

–Update αt+1 ←  αt *µ; 
– Go to step 1 until converge.  
where, π (st )denotes state policy, ( , , )t t t

jr s a a is reward of 
the game. A(st) and AJ (st) denote SU’s and jammer’s 
actions set. 

A. Collaborative Anti-jamming Game 
This framework has been used with the collaborative 

learning where SUs communicate with each other to 
combat the jammer. The collaboration can be achieved 
by the three approaches via sharing the test statistics or 
sensation, via sharing the iterative episodes or via 
sharing the learned optimal policy. The additional 
statistics shared by the agents are useful when used 
efficiently to speed up the learning, sharing of the 
learned optimal policy can be judicial, but this 
improvement is at the cost of the communication. Here, 
the collaboration has been achieved by sharing the 
learned optimal policy. Although these joint tasks slow 
the learning process initially, but it outperforms the 
independent agents. The proposed multi-agent  multi-
band collaborative anti-jamming game in which each SU 
uses the single user Minimax-Q reinforcement learning 
algorithm and same decision policy. Although each SU 
updates same policy independently, the rate of updating 
the policy is multiplied by the number of SUs 
collaborating. It involves the sharing of the local 
statistics, i.e., the number of jammed data or control 
channels or the number of un-jammed data or control 
channels. This information is shared in the CRN with the 
neighbouring agents for the collaboration. Each agent 
updates the Q-matrix for the same policy independently 
but the rate of updating the Q-matrix gets multiplied by 
the number of collaborating agents simultaneously. 
Agents performing same task can differ as the 

exploration of the state space differs. In this way they 
complement each other, i.e., policy learnt by one can be 
beneficial for other. It is an independent decision process. 
This collaborative game between the jammer and the 
SUs are as depicted. In Fig. 1 Single SU game without 
collaboration is clearly illustrated. In Fig. 2 two SUs 
game with collaboration between two agents is shown. 
Finally, in Fig. 3 three SUs game with collaboration 
between three agents. 

 

 
Fig. 1 Single SU game without collaboration 

 
Fig. 2 Two SUs game with collaboration between two agents 

 
Fig. 3 Three SUs game with collaboration between three agents 

 

IV. SIMULATION RESULTS 

Now, we give the simulation results to evaluate the 
performance of the proposed collaborative anti-jamming 
strategy of the SU. 

A. Anti-jamming for single licensed band 
Here, one licensed band is available to the SU, i.e, L = 

1 and the other simulation parameters are taken from 
[15]. Fig. 4 depicts the learning probability of the 
jammer for no collaboration condition in the state (0, 1, 0, 
2). The learning probability is about 0.35 and the number 
of iterations required to learn are about 430. The 
different coloured curves show the different strategies of 
the jammer. Here, the jammer has eight different 
strategies as listed in the Fig. 4. Out of these eight 
strategies (2, 0) is having the highest learning probability. 
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In Fig. 5 the learning probability of single SU is shown 
for the state (0, 1, 0, 2) for no collaboration scenario. 
The learning probability of SU is 0.5 and the number of 
iterations required to learn the jammer’s policy are 430. 
The different coloured curves show the different 
strategies of the SU. Here, the SU has 52 different 
strategies so cannot be listed in the Fig. 5. Strategy (0, 3, 
2, 0) is having the highest learning probability. Fig. 6 
depicts the cumulative average reward curve of SU for 
the state (0, 1, 0, 2) for no collaboration scenario. This 
reward is highest of all three scenario considered 
because reward decreases as the cost of communication 
required for the collaborative anti-jamming game 
increases. Fig. 7 shows the learning probability of the 
jammer, where two SUs are collaborating for the state (0, 
1, 0, 2). The learning probability is about 0.2 and the 
number of iterations required to learn are about 350. 

 

 
Fig. 4 Learning probability curve for jammer of the state (0,1,0,2), 

single SU, no collaboration, L=1 
 

 Fig. 5 Learning probability curve for SU of the state (0,1,0,2), single 
SU, no collaboration, L=1 

 
Out of eight strategies of the jammer (1, 2) is having 

the highest learning probability. In Fig. 8 the learning 
probability of the SUs is shown for the state (0, 1, 0, 2), 
where two SUs are collaborating. The learning 
probability is 0.96 and the number of iterations required 
to learn the jammer’s policy are 340. Out of the 52 
strategies of SU (0, 1, 2, 0) is having the highest learning 
probability. Fig. 9 depicts the cumulative average reward 
curve for SU for the state (0, 1, 0, 2) where the 
collaboration between two SUs is employed. The reward 

is less than the no collaboration case and more than the 
three SUs collaborating scenario considered. Fig. 10 
depicts the learning probability of the jammer, where 
three SUs are collaborating for the state (0, 1, 0, 2). The 
learning probability is about 0.33 and the number of 
iterations required to learn are about 430. Out of the 
eight strategies of SU (1, 1) is having the highest 
learning probability. In Fig. 11 the learning probability 
of the SUs is shown for the state (0, 1, 0, 2).  

 

 
Fig. 6 Cumulative average reward curve for SU for the state (0,1 ,0, 2), 

single SU, no collaboration, L=1 
 

 
Fig. 7 Learning probability curve for jammer of the state (0, 1, 0, 2), 

two SUs collaborating, L=1 
 

The learning probability is 0.99 and the number of 
iterations required to learn the jammer’s policy are 200. 
Out of the 52 strategies of the SU (0, 4, 2, 0) is having 
the highest learning probability. Fig. 12 depicts the 
cumulative average reward curve for SU for the state (0, 
1, 0, 2) where three SUs are collaborating. This reward is 
the smallest of the three scenario considered. So, more 
the number of agents collaborating more the cost of 
communication and lesser is the cumulative average 
reward. 
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Fig. 8 Learning probability curve for SU of the state (0, 1, 0, 2), two 

SUs collaborating, L=1 
 

 
Fig. 9 Cumulative average reward curve for SU for the state (0, 1, 0, 2), 

two SUs collaborating, L=1 
 

 
Fig. 10 Learning probability curve for jammer of the state (0, 1, 0, 2), 

three SUs collaborating, L=1 

 
Fig. 11  Learning probability curve for SU of the state (0, 1, 0, 2), three 

SUs collaborating, L=1 
 

 
Fig. 12 Cumulative average reward curve for SU for the state (0, 1, 0,  

2), three SUs collaborating, L=1 
 

 
Fig. 13  Learning probability curve for SU of the state (0, 6, 1, 

1 ,0 ,6 ,1, 1), single SU, no collaboration, L=2 
 
B. Anti-jamming for two licensed band 

Here, L = 2 and other parameters are taken from [15]. 
Fig. 13 the learning probability of single SU is shown for 
the state (0, 6, 1, 1, 0, 6, 1, 1) for no collaboration case. 
The learning probability is 0.5 and the number of 
iterations required to learn the jammer’s policy are 100. 
Fig. 14 and Fig. 16 shows the cumulative average reward 
curve of SU for the, state (0, 6, 1, 1, 0, 6, 1, 1), for no 
collaboration and three SUs collaborating scenario 
respectively. The reward for no collaboration is more as 
compared to the collaboration case as the cost of 
communication required for the collaborative anti-
jamming game is more. In Fig. 15 the learning 
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probability of the SUs is shown for the state (0, 6, 1, 1, 0, 
6, 1, 1), where three SUs, are collaborating. The learning 
probability of the SUs is 0.97 and the number of 
iterations required to learn the jammer’s strategies are 
about 80. 

 

 
Fig.  14 Cumulative average reward curve for SU for the state(0, 6, 1, 1, 

0, 6, 1, 1), single SU, no collaboration, L=2. 
 

Fig. 17 depicts the consolidated view of multi-agent 
scenario for the multi-band collaborative anti-jamming 
game so that a clear comparison can be done and results 
can be analysed. 
 

 
Fig. 15  Learning probability curve for SU of the state (0 ,6, 1, 1, 0, 6, 

1, 1), three SUs collaborating, L=2 

 
Fig. 16 Cumulative average reward curve for SU for the state 

(0, 6, 1, 1, 0, 6, 1, 1), three SUs collaborating, L=2 
 

V. CONCLUSION 

In this paper, we have considered the random 
jammer’s attack on secondary users (SUs) in cognitive 
radio network (CRN). We have proposed the multi-agent 
multi-band collaborative anti-jamming using 
reinforcement learning, where SUs collaborate with each 
other to combat single random jammer. Minimax-Q 
learning is used by the SUs independently to make 
individual decision then they collaborate to learn about 
the single jammer’s strategies. This paper demonstrates 
that in the multi-agent multi-band collaborative 
reinforcement learning agents (SUs) can learn faster 
about the jammer’s strategies and converge sooner than 
independent agents via sharing the learned policies. But 
this improvement in the learning probability is at the cost 
of increased communication. 

The proposed collaborative game framework can be 
extended to model various anti-jamming mechanisms in 
other layers of a CRN, as it can model the dynamics 
because of the environment and the cognitive attackers 
as well. This collaborative approach can be 
advantageous for the other layers defence mechanism as 
well. 
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Fig. 17 Consolidated view of multi-agent scenario, L=1 
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