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Abstract— The purpose of this paper is to prove a 

common fixed theorem for R-weakly commuting 

mappings via an implicit relation in fuzzy metric space. 

While proving our result, we utilize the idea of property 

(E.A.) due to Aamri and El. Moutawakil [1] together 

with common (E.A.) property due to Liu, Wu and Li [2]. 
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I. INTRODUCTION 

In 1986, Jungck [3] introduced the notion of 

compatible maps for a pair of self mappings. However, 

the study of common fixed points of non-compatible 

maps is also very interesting. Aamri and El. 

Moutawakil [1] generalized the concept of non-

compatibility by defining the notion of property (E.A) 

and in 2005, Liu, Wu and Li [2] defined common (E.A) 

property in metric spaces and proved common fixed 

point theorems under strict contractive conditions. 

Jungck and Rhoades [4] initiated the study of weakly 

compatible maps in metric space and showed that every 

pair of compatible maps is weakly compatible but 

reverse is not true. In the literature, many results have 

been proved for contraction maps satisfying property 

(E.A.) in different settings such as probabilistic metric 

spaces [5, 6]; fuzzy metric spaces [7, 8, 9, 10, 11].  

In this paper, employing the common (E.A) property, 

we prove a common fixed theorem for R-weakly 

commuting mappings via an implicit relation in fuzzy 

metric space.  

II. PRELIMINARIES 

Definition 2.1. [12]  A binary operation * : [0,1]×[0,1] 

  [0,1] is continuous t-norm if  *  satisfies  the 

following conditions: 

(i) * is commutative and associative; 

(ii) * is continuous; 

(iii) a * 1 = a for all [0,1];a  

(iv) a * b  c * d whenever a  c and b  d for all 

, , , [0,1].a b c d   

Kramosil I and Michalek J.[13] introduced the 

concept of fuzzy metric spaces as follows: 

Definition 2.2[13]: The 3-tuple (X, M, *) is called a 

fuzzy metric space (shortly, FM-space) if X is an 

arbitrary set, * is a continuous t-norm and M is a fuzzy 

set in X
2
 × [0, ∞) satisfying the following conditions: 

(FM-1) M(x, y, 0) = 0, 

(FM-2) M(x, y, t) = 1, for all 0t   if and only if x = y, 

(FM-3) M(x, y, t) = M(y, x, t), 
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(FM-4) M(x, y, t) * M(y, z, s) ≤ M(x, z, t + s) 

(Triangular inequality)   and 

(FM-5) M(x, y, .) : [0, 1) → [0, 1] is left continuous 

for all , ,x y z X  and , 0s t  . 

Note that M(x, y, t) can be thought of as the degree of 

nearness between x and y with respect to t. 

We can fuzzify examples of metric spaces into fuzzy 

metric spaces in a natural way: 

Let (X, d) be a metric space. Define a * b = a + b for 

all a, b in X. Define M(x, y, t) = t /(t + d(x, y)) for all x, 

y in X and t > 0.Then (X, M, *) is a fuzzy metric space 

and this fuzzy metric induced by a metric d is called the 

Standard fuzzy metric.  

Consider M to be a fuzzy metric space with the 

following condition: 

(FM-6)   limt→∞M(x, y, t) = 1 for all x, y in X and  0t  . 

Definition 2.3[13]: Let (X, M, *)  be fuzzy metric 

space. Then 

(a) a sequence { }nx  in X is said to be Cauchy 

sequence if, for all 0t   and 0p  , 

lim ( , , ) 1n p n
n

M x x t



  

and 

(b) a sequence { }nx  in X is said to be convergent to 

a point x X  if, for all 0t  , 

lim ( , , ) 1n
n

M x x t


 . 

Definition 2.4[13]: A fuzzy metric space (X, M, *) is 

said to be complete if and only if every Cauchy 

sequence in X is convergent. 

Example 2.1[13]:  Let    1 : 0X n n N    

and let * be the continuous t-norm and defined by 

*a b ab for all , [0,1]a b . For each 0t   

and ,x y X , define M, by 

( , , )

t
, t > 0,

t+ x-y

0 t =0

M x y t




 



  

Clearly, (X, M, *)  is complete fuzzy metric space.  

Definition 2.5[11]: A pair of self mappings (A, S) of 

a  fuzzy metric space (X, M, *)  is said to be commuting   

if 

M( ASx , SAx , t )  = 1  for all x X . 

Definition 2.6[11]: A pair of self mappings (A, S) of 

a  fuzzy metric space (X, M, *) is said to be weakly 

commuting if   M( ASx , SAx , t )  ≥ M(Ax, Sx, t)  for all    

x X and   t > 0.  

Definition 2.7[11]: A pair of self mappings (A, S) of 

a fuzzy metric space (X, M, *)  is said to be compatible 

if  limn→∞M(ASxn, SAxn, t) = 1 for all   t > 0, whenever 

{xn} is a sequence in X such that  limn→∞Axn =  limn→∞ 

Sxn  = u for some u in X.  

Definition 2.8[10]: Let (X, M, *) be a fuzzy metric 

space. A and S be self maps on X. A point x in X is 

called a coincidence point of A and S iff Ax = Sx. In this 

case, w = Ax = Sx  is called a point of coincidence of  A 

and S. 

Definition 2.9[10]: A pair of self mappings (A, S) of 

a fuzzy metric space (X, M, *) is said to be weakly 

compatible if they commute at the coincidence points  

i.e., if  Au = Su for some u X , then ASu = SAu. 

It is easy to see that two compatible maps are weakly 

compatible but converse is not true. 

Definition 2.10 [1]: A pair of self mappings (A, S) of 

a fuzzy metric space (X, M, *) is said to satisfy the 

property (E.A) if there exist a sequence { }nx  in X such 

that  lim limn n
n n

Ax Sx z
 

   for some z X . 

Example 2.2[1]:  Let X =[0,∞). Consider (X, M, *) be 

a fuzzy metric space as in Example 2.1.  



46 A Common Fixed Point Theorem for R-Weakly Commuting Maps Satisfying Property (E.A.)  

in Fuzzy Metric Spaces Using Implicit Relation 

Copyright © 2012 MECS                                                  I.J. Modern Education and Computer Science, 2012, 11, 44-50 

Define A, S : X →X by  Ax = 
x

5
and Sx =

2x

5
 for all 

x X . Clearly, for sequence   1
nx

n
 , A and S 

satisfies property (E.A). 

Definition 2.11 [2]: Two pairs (A, S) and (B, T) of 

self mappings of  a fuzzy metric space (X, M, *) 
 
are 

said to satisfy the common (E.A) property if there exist 

two sequences { }nx and { }ny  in X such that  

lim lim lim limn n n n
n n n n

Ax Sx By Ty z
   

     

for some z X . 

Example 2.3[2]: Let X = [-1, 1]. Consider (X, M, *) 

be a fuzzy metric space as in Example 2.1. Define self 

mappings A, B, S and T on X as 

3, 3, ,Ax x Bx x Sx x Tx x       for all 

x X . Then, with sequences    1
nx

n
  and 

   1
ny

n
  in X, one can easily verify that  

lim lim lim lim 0n n n n
n n n n

Ax Sx By Ty
   

    . 

Therefore, pairs (A, S) and (B, T) satisfies the common 

(E.A.) property. 

Definition 2.12[11]: A pair of self mappings (A, S) of 

a fuzzy metric space (X, M, *) is said to be R-weakly 

commuting if there exist R > 0 such that   

( , , ) ( , , )M ASu SAu t M Au Su t R . 

III. MAIN RESULTS 

Implicit relations play important role in establishing 

of common fixed point results. 

Let M4 be the set of all real continuous functions 

 
4

: 0,1  R, non-decreasing in the first argument 

and satisfying the following conditions:  

(A) ( ,1, ,1) 0 1,u u u      

(B) ( ,1,1, ) 0 1u u u      

(C) ( , ,1,1) 0 1u u u      

Example 3.1: Define  
4

: 0,1 R   as 

1 2 3 4 1 2 3 4( , , , ) 14 12 6 8t t t t t t t t     .  Clearly,   

satisfies all conditions (A), (B) and (C). Therefore, 

4.M   

We begin with following observation: 

Lemma 3.1: Let  iA , S and T be self mappings of a 

fuzzy metric space (X, M, *)  satisfying the following: 

(3.1)  the pair 
0( , )A T  satisfies the E.A. property; 

(3.2)  for any x, y in X,   in M4 and and for all 

0t   there exists (0,1)k such that, 

0

0

( , , ), ( , , ),
0;

( , , ), ( , , )

i

i

M A x A y kt M Sx Ty t

M Sx A x t M Ty A y kt

 

 
 

 

(3.3) ( ) ( )iA X T X  or 
0 ( ) ( ).A X S X  

Then the pairs ( , )iA S and 
0( , )A T  share the 

common (E.A.) property. 

Proof: As the pair 0( , )A T satisfies E.A. property, 

then there exist a sequence { }nx  in X such that 

0lim limn n
n n

A x Tx z
 

   for some z X . Since 

0 ( ) ( )A X S X ,  hence         for each { }nx , there 

exist { }ny  in X such that 
0 n nA x Sy . Therefore, 

0lim lim limn n n
n n n

A x Sy Tx z
  

   . Now, we claim 

that lim i n
n

A y z


 .  

Suppose that lim i n
n

A y z


 , then applying 

inequality (3.2), we obtain  

0

0

( , , ), ( , , ),
0

( , , ), ( , , )

i n n n n

n i n n n

M A y A x kt M Sy Tx t

M Sy A y t M Tx A x kt

 

 
 
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which on making n   reduces to  

(lim , , ), ( , , ),
0

(lim , , ), ( , , )

i n
n

i n
n

M A y z kt M z z t

M A y z t M z z kt






 
  
 
 

 

As     is non-decreasing in the first argument, we 

have 

(lim , , ),1,
0

(lim , , ),1

i n
n

i n
n

M A y z t

M A y z t






 
  
 
 

 

Using (B), we get (lim , , ) 1i n
n

M A y z t


 . Hence 

(lim , , ) 1i n
n

M A y z t


 . Therefore, lim i n
n

A y z


 . 

Hence, the pairs ( , )iA S and 
0( , )A T  share the 

common (E.A.) property. 

Theorem 3.1: Let  iA , S and T be self mappings of 

a fuzzy metric space (X, M, *)  satisfying the conditions 

(3.1), (3.2), (3.3) of  lemma 3.1 and the pairs 

( , )iA S and 
0( , )A T  are R-weakly commuting. If 

range of one of S and T is closed subspace of X then 

 iA , S and T have a unique common fixed point. 

Proof: By lemma 3.1, the pairs ( , )iA S and 

0( , )A T  share the common (E.A.) property, i.e. there 

exist two sequences { }nx  and { }ny  in X such that 

lim lim lim limn n n n
n n n n

Ax Sx By Ty z
   

     for 

some z X . Suppose that S(X) is a closed subset of X, 

therefore, there exists a point u X  such that   z = Su. 

We claim that Aiu = z. If Aiu ≠ z, then by (3.2), take         

x = u, y = xn ,  

 

0

0

( , , ), ( , , ),
0

( , , ), ( , , )

( , , ), ( , , ),
0

( , , ), ( , , )

( , , ),1, ( , , ),1 0

i n n

i n n

i

i

i i

M Au A x kt M Su Tx t

M Su Au t M Tx A x kt

n

M Au z kt M z z t

M z Au t M z z kt

M Au z kt M Au z t







 
 

 



 
 

 



 

 

0

0

( , , ), ( , , ),
0

( , , ), ( , , )

( , , ), ( , , ),
0

( , , ), ( , , )

( , , ),1, ( , , ),1 0

i n n

i n n

i

i

i i

M Au A x kt M Su Tx t

M Su Au t M Tx A x kt

n

M Au z kt M z z t

M z Au t M z z kt

M Au z kt M Au z t







 
 

 



 
 

 



 

As    is non-decreasing in the first argument, we 

have 

( ( , , ),1, ( , , ),1) 0i iM Au z t M Au z t    

and using (A), we get ( , , ) 1iM Au z t  . 

Hence ( , , ) 1iM Au z t  . Therefore, Aiu = z = Su 

which shows that u is a coincidence point of the pair (A, 

S). 

Since, ( ) ( )iA X T X , there exists v X  such 

that   Tv = z  = Aiu = Su. Now, we show that  A0v = z.  

If  A0v  ≠ z, then by using inequality (3.2), take   x = 

yn , y = v , we have 

0

0

0

0

( , , ), ( , , ),
0;

( , , ), ( , , )

( , , ), ( , , ), ( , , ),
0;

( , , )

i n n

n i n

M A y A v kt M Sy Tv t

M Sy A y t M Tv A v kt

n

M z A v kt M z z t M z z t

M z A v kt





 
 

 



 
 

 

 

Using (B), we get 0( , , ) 1M z A v kt  .  

Hence 0( , , ) 1M z A v kt  . Therefore, A0v = z = Tv 

which shows that v is a coincidence point of the pair    

(A0, T). Since, Ai and S are pointwise R-weakly            

commuting,   there exist R > 0 such that  

( , , ) ( , , ) 1.i i iM A Su SAu t M Au Su t R    

This gives, AiSu = SAiu = AAiu = SSu. 

Similarly, as A0 and T are pointwise R-weakly 

commuting, we have A0Tv = TA0v and A0Tv = TA0v = 

A0A0v = TTv. 

Take x = Aiu , y = v in (3.2), we have 
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 

0

0

( , , ), ( , , ),
0;

( , , ), ( , , )

( , , ), ( , , ),1,1 0;

i i i

i i i

i i i i

M A Au A v kt M SAu Tv t

M SAu A Au t M Tv A v kt

M A Au Au kt M SSu Au t





 
 

 



 

As    is non-decreasing in the first argument, we 

have 

( ( , , ), ( , , ),1,1) 0;i i i iM A Au Au t M SSu Au t   

Using (C), we get ( , , ) 1i i iM A Au Au t  .   

This gives, ( , , ) 1i i iM A Au Au t  .  

Therefore, AiAiu = Aiu. Hence, Aiz =  z = Sz. 

Similarly, by putting, y = A0v, x = u in (3.2), we get 

 

0 0 0

0 0 0

0 0 0 0 0 0

( , , ), ( , , ),
0;

( , , ), ( , , )

( , , ), ( , , ),1,1 0;

i

i

M Au A A v kt M Su TA v t

M Su Au t M TA v A A v kt

M A v A A v kt M A v A A v t





 
 

 



 

As     is non-decreasing in the first argument, we 

hav

0 0 0 0 0 0

0 0 0

( ( , , ), ( , , ),1,1) 0;

( , , ) 1;

M A v A A v t M A v A A v t

M A v A A v t

 


 

therefore, 0 0 0( , , ) 1;M A v A A v t    

This gives,   A0v = A0A0v.     

                    A0z = z = Tz. 

Hence, Aiz = A0z = Sz = Tz, and z is common fixed 

point of   Ai, A0, S and T.  

Uniqueness: Let z and w be two common fixed points 

of Ai, A0, S and T. If z ≠ w, then by using inequality 

(3.2), we have 

 

 

0

0

( , , ), ( , , ),
0,

( , , ), ( , , )

( , , ), ( , , ),
0,

( , , ), ( , , )

( , , ), ( , , ),1,1 0,

( , , ), ( , , ),1,1 0.

i

i

M A z A w kt M Sz Tw t

M Sz A z t M Tw A w kt

M z w kt M z w t

M z z t M w w kt

M z w kt M z w t

M z w t M z w t









 
 

 

 
 

 





 

Using (C) and (F), we have ( , , ) 1M z w t  .  

Hence, ( , , ) 1M z w t  . 

Therefore, z = w  

By choosing Ai, A0, S and T suitably, one can derive 

corollaries involving two or more mappings. As a 

sample, we deduce the following natural result for a 

pair of self mappings by setting Ai = A0 and T = S in 

above theorem: 

Corollary 3.1. Let {Ai} and S be self mappings of a 

fuzzy metric space (X, M, *)  
 
satisfying the following: 

(3.4) the pair (Ai, S) satisfies the E.A. property; 

(3.5) for any x, y in X,   in M4 and for all 0t  , 

( , , ), ( , , ),
0;

( , , ), ( , , )

i i

i i

M A x A y kt M Sx Sy t

M Sx A x t M Sy A y t

 

 
 

  

(3.6)  S(X) is a closed subset of  X. 

Then, {Ai} and S have a point of coincidence each. 

Moreover, if the pairs (Ai, S) is weakly compatible, then 

{Ai}and S have a unique common fixed point. 

By taking Ai = A0 = A and T = S in theorem 3.1, we 

get 

Corollary 3.2. Let A and S be self mappings of a 

fuzzy metric space (X, M, *)  
 
satisfying the following: 

(3.7) the pair (A, S) satisfies the E.A. property; 

(3.8) for any x, y in X,   in M4 and for all 0t  , 

( , , ), ( , , ),
0;

( , , ), ( , , )

M Ax Ay kt M Sx Sy t

M Sx Ax t M Sy Ay t

 

 
 

  

(3.8)  S(X) is a closed subset of  X. 

Then, A and S have a point of coincidence each. 

Moreover, if the pairs (A, S) is weakly compatible, then 

A  and  S  have a unique common fixed point. 

The following example illustrates Theorem 3.1. 
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Example 3.2. Let (X, M, *) be a fuzzy metric space 

where X = [0, 2) and define  
4

: 0,1  R as  

1 2 3 4 1 2 3 4( , , , ) 14 12 6 8t t t t t t t t     .  Clearly,   

satisfies all conditions (A), (B) and (C). Therefore, 

4.M   Define A, B, S and T by 

Aix =A0x = 1, 

1

( ) 2
,

3

x Q

S x
x Q




 




,     

1

( ) 1

3

x Q

T x
x Q




 




 

and   ( , , )
t

M x y t
t x y


 

 for all x, y in X = [ 0, 

2 ) and 0t  .Then with sequences 
1

nx
n

 
 

 
 and 

1
ny

n

 
 

 
 in X, we have 

0lim lim lim lim 1i n n n n
n n n n

A x Sx A y Ty
   

    in 

X  

which shows that pairs (Ai, S) and (A0, T) share the 

common (E.A.) property. By a routine calculation, one 

can verify the condition (3.2). Thus, all the conditions 

of Theorem 3.1 are satisfied and x = 1 is the unique 

common fixed point of Ai, A0, S and T. 
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