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Abstract- In a network forensic system, there are huge 

amounts of data that should be processed, and the data 

contains redundant and noisy features causing slow 

training and testing processes, high resource consumption 

as well as poor detection rate. In this paper, a schema is 

proposed to reduce the data of the forensics using manifold 

learning. Manifold learning is a popular recent approach to 

nonlinear dimensionality reduction. Algorithms for this 

task are based on the idea that the dimensionality of many 

data sets is only artificially high. In this paper, we reduce 

the forensic data with manifold learning, and test the result 

of the reduced data. 

 

Index Terms -- Data Reduction, Network Forensics, Manifold 

Learning, LLE 

I INTRODUCE 
With the enormous growth of computer networks 

usage and the huge increase in the number of 
applications running on top of it, network security is 
becoming increasingly more important. All the computer 
systems suffer from security vulnerabilities which are 
both technically difficult and economically costly to be 
solved by the manufacturers. Network forensics is the act 
of capturing, recording, and analyzing network audit 
trails in order to discover the source of security breaches 
or other information assurance problems. The term 
network forensics was introduced by the computer 
security expert Marcus Ranum in the early 90’s [1], and 
is borrowed from the legal and criminology fields where 
“forensics” pertains to the investigation of crimes. 

According to Simson Garfinkel, network forensic 
systems can be implemented in two ways: “catch it as 
you can” and “stop look and listen” systems [2]. 

Most network forensic systems are based on audit 
trails. Systems relying on audit trails try to detect known 
attack patterns, deviations from normal behavior, or 
security policy violations. They also try to reduce large 
volumes of audit data to small volumes for interesting 
data. One of the main problems with these systems is the 
overhead, which can become unacceptably high. To 
analyze logs, the system must keep information 
regarding all the actions performed, which invariably 
results in huge amounts of data, requiring disk space and 
CPU resources. Next, the logs must be processed to 
convert them into a manageable format, and then 
compared with the set of recognized misuse and attack 
patterns to identify possible security violations. Further, 
the stored patterns need to be continually updated, which 
would normally involve human expertise. An intelligent, 
adaptable and cost-effective tool that is capable of this is 
the goal of the researchers in cyber forensics. 

II MANIFOLD LEARNING AND KDDCUP’99 DATA SET 
A. KDD CUP’ 99 Data Set  

In 1998, the United States Defense Advanced 
Research Projects Agency (DARPA) funded an 
“Intrusion Detection Evaluation Program (IDEP)” 
administered by the Lincoln Laboratory at the 
Massachusetts Institute of Technology. The goal of this 
program was to build a data set that would help evaluate 
different intrusion detection systems (IDS) in order to 
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assess their strengths and weaknesses. The objective was 
to survey and evaluate research in the field of intrusion 
detection. The computer network topology employed for 
the IDEP program involved two sub networks: an 
“inside” network consisting of victim machines and an 
“outside” network consisting of simulated real-world 
Internet traffic. The victim machines ran Linux, 
SunOSTM, and SolarisTM operating systems. Seven weeks 
of training data and two weeks of testing data were 
collected. Testing data contained a total of 38 attacks, 14 
of which did not exist in the training data. This was done 
to facilitate the evaluation of potential IDSs with respect 
to their anomaly detection performance. Three kinds of 
data was collected: transmission control protocol (TCP) 
packets using the “tcpdump” utility, basic security 
module (BSM) audit records using the Sun SolarisTM 
BSM utility, and system file dumps. This data set is 
popularly known as DARPA 1998 data set [3]. 

One of the participants in the 1998 DARPA IDEP [4], 
used only TCP packets to build a processed version of 
the DARPA 1998 data set [3]. This data set, named in the 
literature as KDD intrusion detection data set [5], was 
used for the 1999 KDD Cup competition, which allowed 
participants to employ it for developing IDSs. Both 
training and testing data subsets cover four major attack 
ategories:  Probing (information gathering attacks), 
Denial-of-Service (deny legitimate requests to a system), 
User-to-Root (unauthorized access to local super-user or 
root), and Remote-to-Local (unauthorized local access 
from a remote machine). Each record consists of 41 
features [7], where 38 are numeric and 3 are symbolic, 
defined to characterize individual TCP sessions. 
B. Manifold Learning  

The articles in Science [7,8] proposed to recover a 
low-dimensional parameterization of high dimensional 
data by assuming that the data lie on a manifold M which, 
viewed as a Riemannian sub manifold of the ambient 
Euclidean space, is globally isometric to a convex subset 
of a low dimensional Euclidean space. This bold 
assumption has been surprisingly fruitful, although the 
extent to which it holds is not fully understood. 

Each manifold learning algorithm attempts to preserve 
a different geometrical property of the underlying 
manifold. Local approaches (e.g. LLE [9], Laplacian 
Eigenmaps [10], LTSA [11]) aim to preserve the local 

geometry of the data. They are also called spectral 
methods, since the low dimensional embedding task is 
reduced to solving a sparse eigenvalue problem under the 
unit covariance constraint. However, due to this imposed 
constraint, the aspect ratio is lost and the global shape of 
the embedding data can not reflect the underlying 
manifold. In contrast, global approaches like Isomap [9] 
attempt to preserve metrics at all scales and therefore 
give a more faithful embedding. 

III  DATA REDUCTION 
A.  Locally Linear Embedding Algorithm  

The LLE algorithm is based on simple geometric 
intuitions. Suppose the data consist of  N 

real-valued vectors
→

iX , each of dimensionality D, 

sampled from some smooth underlying manifold. 
Provided there is sufficient data m(such that the manifold 
is well-sampled), we expect each data point and its 
neighbors to lie on or close to a locally linear patch of 
the manifold. We can characterize the local geometry of 
these patches by linear coefficients that reconstruct each 
data point from its neighbors. In the simplest formulation 
of LLE, one identifies k nearest neighbors per data point, 
as measured by Euclidean distance. The algorithm can be 
described as: 

 
Fig 1 Locally Linear Embedding 

1. Find K nearest neighbors of each vector, Xi, in RD as 
measured by Euclidean distance. 
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2. Compute the weights Wij that best reconstruct Xi from 
its neighbors. 

∑≈ j jiji XWX  

3. Compute vectors Yi in Rd reconstructed by the weights 
Wij. Solve for all Yi simultaneously. 
   The algorithm can be described as Fig 1: 

To compute the N x N weight matrix W we want to 
minimize the following cost function: 

2

)( ∑ ∑
→→

−=
i

jj iji XWXWε                 (1) 

Where Wij =0 if Xj is not one of the K nearest neighbors 
of Xi and the rows of the W sum to 1. 
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Fig 2 show the relations of the Xi and his neighbors. 

 

Fig 2 K nearest neighbors  

At last, we get: 

      ∑=
j

jjYWy              (3) 

B Variable K-nearest neighbor LLE 
        In this section, we will introduce the key step in 
LLE, finding the k nearest neighbors. In traditional LLE 
algorithm, the k is invariable, which is suit for the 
homogeneous distribution manifold. For the manifold 
flow, namely, the data is a flow and the distribution is 
heterogeneity, in order to remain the topology of the data, 
the k should be changed with the distribution. 
   Curvature is a good way to describe the changing of 
the manifold. 

Let C be a plane curve (the precise technical 
assumptions are given below). The curvature of C at a 

point is a measure of how sensitive its tangent line is to 
moving the point to other nearby points. There are a 
number of equivalent ways that this idea can be made 
precise. 

One way is geometrical. It is natural to define the 
curvature of a straight line to be identically zero. The 
curvature of a circle of radius R should be large if R is 
small and small if R is large. Thus the curvature of a 
circle is defined to be the reciprocal of the radius: 

              
R

k
1

=                  (4) 

Given any curve C and a point P on it, there is a 
unique circle or line which most closely approximates 
the curve  

 

Fig 3 Curvature of the plane curve 
near P, the osculating circle at P. The curvature of  C  
at P is then defined to be the curvature of that circle or 
line. The radius of curvature is defined as the reciprocal 
of the curvature. 

Another way to understand the curvature is physical. 
Suppose that a particle moves along the curve with unit 
speed. Taking the time s as the parameter for C, this 
provides a natural parameterization for the curve. The 
unit tangent vector T (which is also the velocity vector, 
since the particle is moving with unit speed) also 
depends on time. The curvature is then the magnitude of 
the rate of change of T. Symbolically, 

         
ds

dT
k =                  (5) 

For a plane curve given parametrically in Cartesian 
coordinates as γ(t) = (x(t),y(t)), the curvature is 
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Where primes refer to derivatives with respect to 
parameter t. The signed curvature k is(7) 
For the less general case of a plane curve given explicitly 
as y = f(x), and now using primes for derivatives with 
respect to coordinate x , the curvature is (8) 
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and the signed curvature is 
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This quantity is common in physics and engineering; for 
example, in the equations of bending in beams, the 1D 
vibration of a tense string, approximations to the fluid 
flow around surfaces (in aeronautics), and the free 
surface boundary conditions in ocean waves. In such 
applications, the assumption is almost always made that 
the slope is small compared with unity, so that the 
approximation: 

   
2

2

dx

yd
k =                        (10) 

For a parametrically defined space curve in 
three-dimensions given in Cartesian coordinates by γ(t) = 
(x(t),y(t),z(t)), the curvature is 
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From the definition of curvature, we can see that, the 
greater of k, the more complicated of the topology, 
namely, for point of curve C(marked as p), if the 
curvature of p is greater, we can get that the topology of 
points around p is complicated.  

In traditional LLE algorithm, for very point in 
manifold, the k is unchanged. The schema didn’t 
considered change of the manifold. If the points of 
manifold are homogenous, the unchanged k will get a 
good result. But for the heterogen- eity distribution data 

flow, the unchanged k cannot assure the topology of the 
local area. 

Although, the curvature is a good way to describe the 
change of the curve, but with the increase the dimensions 
of the data, the curvature is not easy to get; in order to 
simple the process of guaranteeing the topology of the 
original data, a novel schema based density is 
introduced. 
C Density based LLE 
  Analyzing the data, we use a simple way to replace the 
curvature, density around point c.  
   For a constant range around point p, we count the 
number of the instances of the range. The more instances 
indicated that the more complicated topology, namely, 
we should choose a greater K for point p in LLE 
algorithm. The algorithm of computing variable 
K-nearest neighbor can be described as: 
Step 1 computing the mean density (MD) of whole 
dataset; 
Step 2 given a nearest neighbors K and local range R; 
Step 3 for point p in dataset d, we compute the density of 
p using range R(marked as LD), 
Step 4 the variable K is: 

              
MD

KLD
Vk

∗
=            (12) 

IV DATA REDUCTION 
    In this section, we reduce the data using the normal 
LLE and variable k LLE; 
A Data Processing of the Data Set 

In section 2, we know that each record of the Data 
set consists of 41 features where 38 are numeric and 3 
are symbolic, at the same time, the dimension of each 
features are different. For example, the follow is a 
normal record: 
0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,
0.00,0.00,0.00,0.00,1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.0
0,0.00,0.00,0.00,0.00. 

The first feature is “Length (# of seconds) of the 
connection”, the fifth feature is “data bytes from source 
to destination”, the seventh feature is a flag that “1 if 
connection is from/to the same host/port; 0 otherwise”. 
In order to find the attack data in the data set, we should 
apply the clustering algorithm on the data set. Before 
clustering, we must pre-process the data set: 
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1 Replacing the Symbolic with Numeric 
The Fig2(Type of the protocol, e.g. tcp, udp, 

etc.),feature 3(Network service on the destination, e.g., 
http, telnet, etc.), feature 4(Normal or error status of the 
connection) features of the record are symbolic, there are 
three type of the protocol, 66 type of network service and 
11 type of status in the data set. A simple way is used to 
replace the symbolic, 1 replace “tcp”, 2 replace “udp” 
and 3 replace “icmp”. the next 2 features with the same 
way. So we get the numerical record: 
0,1,21,10,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.0
0,0.00,0.00,0.00,1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.
00,0.00,0.00,0.00. 
2 Standardizing the Data Set 

In the data set, the value of sixth features is much 
larger than the value of the second feature, which will 
affect the clustering, so we should eliminate the effect of 
the dimension. 
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i
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=                     (12) 

Formula (4) is a way to standardize the data set, 
which make the average is zero and the variance is one. 
With the (4), we can get the record:  
-0.0354,-0.7746,0.7746,0,-0.3502,0.5836,0,0,0,-0.0614,0
,0.7746,0,-0.0354,0,0,0,0,0,0,0,0,-0.8880,-0.9775,-0.077
2,-0.0765,0,0,0,0,-0.3165,-1.3338,-28.2666,0,0,-0.5937,-
0.4939,-0.1131,-0.2107. 
B. Data Reduction with LLE 

With the previous works, we can get the algorithm 
of data reduction. The algorithm described as follow: 

Input: Dataset S n×D, number of neighbors K, 
dimension of reduction d 

Output: Dataset of reduction Y 
Step 1: replaces the symbolic with numeric in 

Dataset S; 
Step 2: standardizing the Dataset S with (12); 
Step3: Computing reconstruction weights, for each 

point xi in S, set 
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           (13) 

Step4: Compute the low-dimensional embedding. 
• Let U be the matrix whose columns are the 
eigenvectors of (I − W)T (I − W) with nonzero 

accompanying eigenvalues. 
• Return Y: = [U]n×d. 
C Data Reduction with Variable K LLE 
The variable K LLE can improve the effect of 

changing topology. The algorithm can be described as: 
Input: Dataset S n×D, Mean number of neighbors K, 

dimension of reduction d 
Step 1: replaces the symbolic with numeric in 

Dataset S; 
Step 2: standardizing the Dataset S with (12); 
Step 3: computing the Mean density of the DataSet; 
Step3: Computing reconstruction weights, for each 

point xi in S, set 
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Step4: Compute the low-dimensional embedding. 
• Let U be the matrix whose columns are the 
eigenvectors of (I − W)T (I − W) with nonzero 
accompanying eigenvalues. 
• Return Y: = [U]n×d. 

IV EXPERIMENT AND RESULTS 
In order to test the validity of the reduction, the 

clustering algorithm is used to analyze the original data 
set and the reduction dataset. 

We extract part records of DoS,PROBE,R2L,U2R 
and NORMAL in the data set from original dataset 
randomly, 5 test dataset were gotten, namely, NORMAL 
and DoS, NORMAL and PROBE, NORMAL and R2L, 
NORMAL and U2R, DoS,PROBE,R2L,U2R and 
NORMAL, each dataset contain 11204 records. 
A. Evaluating Standard 

There are 5 targets for the test, rate of reduction 
(RoR), time of decting (ToD), true positive rate(TPR), 
false positive rate(FPR) and omission rate(OR) 

sizetotal
reductionofsizeRoR
 

  
=  

numtotal
recordsattacktrueTPR

 
   detected

=  

numtotal
recordsattackfalseFPR

 
  

=  

numtotal
notdidbutrecordsattacktrueOR

 
detected      

=

There are two parameters in the test are changed, the 
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nearest neighbors K and the dimension of reduction d. 
B. Test Result 
 We use the win 7 and the CPU is Intel(R) Core(TM) 

i5 2.40gHz, the computer is Dell. 
At first, we use the schema introduced in section 3 to 

reduce the dimensional for the data set. With the 
experiments, we chose 30,35,40,50,60,70 as the nearest 
neighbors, the time consume is show in table 1. 

Table 1 Reduction Time 

nearest neighbors 
K 

Reduction Time(S)

30          3 

35          4 

40          5.25 

50          7.61 

60          10.88 

      70          13.55 

When we got the reduction data, we use the Fuzzy 
c-means (FCM) to cluster the data. We apply the FCM 
on the data set of NORMAL and DoS, NORMAL and 
PROBE. Fig 3-6 is the result of the experiment. 

Table 2 the result of the data reduction 
RoR K TPR(%) FPR(%) OR(%)

3/41 30 100 1.8 0 

35 99.8 0 0.2 

40 100 3.8 0 

50 99.6 2.8 0.4 

60 99.6 2.8 0.6 

70 99.6 3.4 0.4 

4/41 30 100 1 0 

35 99.8 2.8 0.2 

40 99.6 3.4 0.4 

50 99.4 2.8 0.6 

60 99.4 2.8 0.6 

70 99.6 3 0.4 
5/41 30 99 0.6 1 

35 99.6 2.2 0.4 
40 99.6 3.2 0.4 
50 99 2.8 1 
60 98.6 3.2 1.4 
70 98.8 2.8 1.2 

6/41 30 98.4 0.2 1.6 

35 99.6 1.8 0.4 
40 99 3.4 1 
50 98.8 1.8 1.2 
60 98.8 3.2 1.2 

70 98.6 3 1.4 

7/41 30 97.4 0.2 2.6 

35 98.8 1.4 1.2 
40 98.4 2.2 1.6 
50 98.8 2 1.2 
60 96.8 2.8 3.2 
70 96.8 3 3.2 

8/41 30 95.2 0 4.8 
35 96.8 2 3.2 
40 96.2 2 3.8 
50 97.4 2 2.6 
60 96.8 2.2 3.2 
70 95.6 2.2 4.4 

 

 
Fig 5 TPR of the DoS Attack
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Fig 6 FPR of the DoS Attack 

 
 

Fig 7 TPR of the Probe Attack 

 
 

Fig 8 FPR of the Probe Attack 
Fig 4 show that, for DoS attack, we can reduction 

41 dimensional to 3 dimensional, which can assume the 
true positive rate more than 99%, and the reduction rate 

is 92.3%(1-3/41). With the increase the dimensional, the 
positive rate is decreased. Fig 5 show that the large 
reduction dimensional, the low false positive rate, 
Combining with Fig 3 and Fig 6, reducing the 41 
dimensional to 4 is a good schema, which similarity to 
the schema proposed in[12]. 

Fig 7 shows that, for Probe Attack, when the 
dimensional reduced to 3,4,5,6 dimensional, the true 
positive rates are almost the same. Fig 8 shows that the 
large reduction dimensional, the low false positive rate. 
We can get that reducing the 41 dimensional to 6 is a 
best way, and the reduction rate is 85.36 %( 1-6/41). 

V FUTURE WORK 
Manifold learning is a good way to reduce the 

dimensional, especially, the manifold learning can 
maintain the topology of the data set, which can supply 
rich information for the data clustering, and the way is 
better than the schema using feature selection [12]. 

The LLE algorithm is a time consume way, the 
future work is to reduce the time consume. 
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