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Abstract: In this study the authors investigated the connections between the training processes of unsupervised neural 

network models with self-encoding and regeneration and the information structure in the representations created by 

such models. We propose theoretical arguments leading to conclusions, confirmed by previously published 

experimental results that unsupervised representations obtained under certain constraints in training compliant with 

Bayesian inference principle, favor configurations with better categorization of hidden concepts in the observable data. 

The results provide an important connection between training of unsupervised machine learning models and the 

structure of representations created by them and can be used in developing new methods and approaches in self-learning 

as well as provide insights into common principles underlying the emergence of intelligence in machine and biologic 

systems.  

 

Index Terms: Artificial Neural Networks; Unsupervised Learning; Self-learning Systems; General Learning, Bayesian 

Inference. 

 

 

1.  Introduction 

In a number of previously published results [1,2,3], an interesting effect was observed: exposing certain models of 

unsupervised learning, such as autoencoder neural networks, to large sets of real-world data, with no supervision in 

training, or in fact, any other form of a prior knowledge of the semantics or content, the law, parameters and 

characteristics of distribution, similarity relationships, etc. under certain conditions may lead to the emergence of a 

concept-sensitive structures in the representations created by the model. This effect will be called unsupervised concept 

categorization. 

A.  Literature Review 

In a number of works in the recent years important connections were established between several principles 

proposed as the foundation of machine learning: the principle of Bayesian inference and methods based on it [4]; the 

principle of minimization of free energy in energy-based learning [5,6]; and the bottleneck principle [7].  

An important conclusion from these results for unsupervised learning is the equivalence of these principles in 

application to training of models with self-encoding and regeneration. Specifically, it follows from these results that 

models trained with Bayesian methods such as commonly used stochastic gradient methods [8] to minimize the loss of 

regeneration of the original data will also produce, as the consequence of the equivalence [4], configurations with the 

lowest free energy of the learning model. This observation is important because energy parameters of the models and 

characteristics of distributions in the representations created by such models can be closely related  

An important application of these principles in self-learning systems that do not depend on extensive prior 

knowledge of the domain are unsupervised models with self-encoding and regeneration, of which autoencoder models 

represent a subclass. A general structure of such models is illustrated in Fig.1. 
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Fig.1. Self-encoding generative model 

Characteristic for these models is the presence of two essential components: the encoder, that performs 

transformation from the space of input, or observable data to the representation space of the model; and the generator 

that reproduces, or generates an image in the observable space from a representation sample. The process of 

unsupervised, or self-supervised training then attempts to reduce the cost function of the difference between the original 

distribution and its regeneration by the model. 

Well-known examples of such models are Restricted Boltzmann machines and Deep Belief Networks [9,10] as 

well as autoencoder neural networks [11,12,13]. In the latter models the encoding and generating components are 

combined into a single feed-forward network, with a training process for both encoding and generative parts based on 

minimization of the deviation of regenerated distribution form the original one via one of the loss backpropagation 

methods, such as stochastic gradient descent methods [14,15] and others. 

In the experimental field, a number of significant results in unsupervised learning have been obtained as well. In 

Le et al. [1], a massive deep and sparse autoencoder model was trained with a large array of images (over 10 million of 

raw images) with the observed effect of the emergence of concept-sensitive neurons activated by images in a certain 

higher-level concept without any prior knowledge of the content or semantics of the data.  

In [2], a spontaneous formation of grid-like navigation cells, similar to those observed in mammals was detected in 

navigation modeling experiments with a recurrent neural network with deep reinforcement learning. 

The emergence of a higher-level concept correlated structure (unsupervised information landscape) was observed 

directly in [3] in representations created in unsupervised learning by deep autoencoder models with Internet via 

visualization of concept distributions in the representation space.  

In addition, a substantial improvement in the performance of supervised classification with features obtained with 

different models of unsupervised learning (unsupervised feature learning) has now become a common practice in 

machine learning [16-18]. 

These results, observed in independent studies with data of different types and nature may spark a question: is the 

effect of native categorization in unsupervised learning coincidental with specific models or learning scenarios, or can 

in be caused by some underlying principles of processing information that can be common for a range of learning 

systems, both artificial and biologic. 

B. Problem Statement 

While the effect of unsupervised categorization by higher-level concepts was observed in several works previously, 

there is not yet a clear understanding of its nature and the underlying cause, nor is it clear whether it is specific to the 

reported experiments or has more general applicability. For these reasons, investigating and understanding the nature of 

this effect can be of interest and significant benefit to the field of unsupervised machine learning and general learning. 

Based on the empirical observations cited above the hypothesis of the study can be formulated as follows:  

Unsupervised Categorization Conjecture: training of unsupervised models with self-encoding (from observable 

space to representation) and regeneration (from representation to the observable space) with a training procedure 

compliant with the principle of Bayesian inference and satisfying the conditions of constant accuracy; generalization; 

and compression; statistically prefers representations with better geometrical categorization of hidden concepts in the 

representation created as a result of training. 

Proving the conjecture would be of interest for several reasons. Importantly, it would provide a theoretical 

foundation for the effect of unsupervised categorization observed in several previously published works; as well it 

would explain the improvement in classification performance after pre-processing of data with unsupervised feature 

selection.  

And not in the least, it could offer insights for a natural mechanism of formation of abstract higher-level concepts 

as a result of training with optimization of generative capacity of self-learning models.  
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C. Methodology 

In the research we use theoretical analysis of the geometrical parameters of distributions in the representations of 

unsupervised models created in unsupervised training with minimization of generative deviation from the perspective of 

minimization of generative error and free energy function.  

In the experimental section of the work we present the results of experiments in self-learning with unsupervised 

representations, comparing them with raw, unprocessed input data. Both theoretical and experimental results provide 

strong support for the hypothesis of the study. 

2.  Theoretical Analysis of Unsupervised Categorization 

We will begin the approach to the proof of the unsupervised categorization conjecture with some key definitions. 

A.  Definitions 

Data: general input data is parametrized by observable parameters {xi} in the observable space X. In unsupervised 

training models create representations of the observable data parametrized by the representation parameters (or 

coordinates) {ri} in the representation space R. 

Hidden (or native) concepts: we will consider the case where the data contains significant presence of similar (in 

certain, unknown to the model explicitly way) samples from the set of hidden concepts { Hk } possibly with some 

contribution of non-categorized data, or noise. Note that neither of: the set of hidden concepts; the relationship of 

similarity for any such concept; distribution characteristics of concepts Hk or any other prior knowledge about the 

hidden concepts is not available to the models before or in the process of unsupervised training. 

Categorization: by good geometric categorization in the representation space is meant the pattern of distributions 

of hidden concepts in the representation space where concept regions are compact and well-separated from each other, 

that is, 1) the average size / volume of a concept region is minimized:  

 

 Vol(Hi) -> min                                                                            (1) 

 

and 2) the overall volume of the overlap between different concept regions:  

 

O = ∑ Oij = ∑R(Hi )∩ R(Hj )→ min                                                          (2) 

B.  Categorisation in Supervised Learning 

Supervised learning is a special case of general learning where the set of concepts in the observable data is known 

a priori as classes, and models are trained to match the prediction to a pre-known label with a variety of common 

methods. 

In this approach classification can be considered as a case of explicit categorization and a lemma stating that the 

conditions of good classification and categorization by the known set of classes are equivalent can be proven: 

Lemma 1 (of supervised categorization): if a well-categorized representation of data D can be achieved by a 

certain model M0 for the given set of classes { C }, then there exists a model M1 with a matching accuracy of 

classification from D into { C } and vice versa. 

Proof: According to the definition, if a categorized representation of D exists and provided by a certain model M0 

the class distribution regions {CR} in the representation space R represent compact and separated set of manifolds in R. 

Then, according to the results on universal approximation of feed-forward neural networks [19], there exists a neural 

network M’ that maps class distribution regions {CR} to the set of classes {C} with any given accuracy A. An example 

of such a network though may not be the minimal or most efficient one, is a multi-dimensional step function 

approximation. 

Then, by adding the feed-forward networks M0 and M’ output-to-input as (M0, M’) one can obtain a mapping of 

the original data D to the set of classes {C} with the matching accuracy and the proof of the first part of the lemma is 

complete. 

The second part is then straightforward: if a model M1 exists that maps D to {C} with a given accuracy, then it the 

classification transformation T: D  {C} itself can be considered as a well-categorized representation of D, and the 

representation space R in this case will be identical to the space of known classes {C}. 

Thus, the statements of good classification and good categorization into a set of pre-known classes follow from 

each other in the case of supervised leaning models and therefore, are equivalent. 

A proof of the similar statement in the case of unsupervised learning, that is, without preliminary knowledge about 

the set of concepts in the data is less straightforward. Nevertheless, under certain assumptions and conditions, for self-

encoding-regenerating models with forward propagation, it can be shown that the constraints of good accuracy of 

reproduction of the original data D and compression in the space of representation as well as the requirement of strong 

generalization, that is, independence of the accuracy of regeneration from a particular set of data in models with 
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Bayesian training would result in a statistical preference of representations with good categorization in the set of hidden 

concepts with significant representation in the observable data. 

C. Preliminary Arguments 

To illustrate the approaches to the proof of the conjecture, let us first consider two boundary scenarios. In the first 

scenario suppose that hidden concept distributions are well categorized to compact and dense regions separated from 

each other. We will use the manifold assumption [20], i.e. that the concept distributions in the observable parameter 

space are represented by a finite number of continuous manifolds. This assumption can be justified in commonly 

studied examples such as the distribution of human faces, that represents though complex, but rather continuous region 

in the space of all images. 

In this case as can be seen immediately, the dispersion of a hidden concept in the representation space will be small 

in the scale of the representation space, v(h) ≪ G, G being the characteristic size of the representation space. 

Importantly, the generative mapping from the concept region to its image in the observable space under the stated 

assumptions can be relatively simple and can be modeled with a finite neural network that are effective in 

approximation of continuous and smooth distributions. 

Next, we note that knowing the distributions of hidden concepts in the representation space and the generative 

transformation is sufficient to regenerate the part of the data that belongs to hidden concepts. In this case, one can 

conclude that both components of the regeneration transformation, i.e. the representation distribution and the generative 

mapping to the observable space have low variation and can support the constraints of good accuracy of regeneration 

(that is limited only by the fraction of general, non-categorized noise) and generalization simultaneously, that is, the 

accuracy of regeneration can be maintained across datasets of any size and with any number of installments, as long as 

the nature of data does not change significantly. 

In the best case of a very strong categorization, the regenerative mapping for a given concept can be represented by 

a single point-to-point function – from the center of the concept cluster in the representation space (a representation 

prototype or “template” of the concept) to its image in the observable space, the observable prototype, possibly with 

some local variation that constitutes the manifold of the observable concept region. Such a template mapping would be 

effectively defined by 

 

Nreg = Drep + Dobs ~ Dobs,                                                                             (3) 

 

(as in the case of significant compression, Drep ≪ Dobs) parameters, where Drep and Dobs are the dimensionalities of the 

representation and the observable (i.e. input data) spaces, respectively. 

Interesting to note that just such a strategy has been known for a long time in the domain of criminological facial 

reconstruction. Decades of experience confirmed that the wide range of variations of a general human face can be 

successfully described by only 20-50 parameters (such as facial feature categories) with a relatively small number of 

discreet values in each, an enormous compression compared to the resolution of a human eye (approx. 580 megapixels 

by 7 million colors). These observations, as well as results reported in the earlier studies [1-3] provide a direct 

experimental confirmation of the conjecture of unsupervised categorization. 

Turning to the second boundary scenario, let us consider the opposite case, where the resulting representation 

regions of hidden concepts are spread over the entire representation space and overlap significantly. Clearly, the 

representation component of the regenerative transformation for the concept data in this case would have higher 

variance: dspr ~ G ≫ dcat in the first example.  

Consequently, the mapping from the concept regions in the representation space to different continuous manifolds 

representing concept images in the observable space will need to be more complex and variable to maintain the desired 

accuracy of regeneration, as close samples belonging to essentially different concepts would need to be mapped to 

different concept manifolds in the observable space. This complexity would translate into higher number of parameters 

in the generative function requiring more complex approximation with greater number of independent parameters than 

in the first example. 

In the end, this scenario cannot be compatible with the constraints of accuracy and generalization imposed 

simultaneously. Indeed, with each new set of data the density of samples of essentially different concepts in the same 

region of the representation space would increase continuously meaning that more and more complex approximations 

would be needed to map different regions in the observable space with a stable accuracy. Eventually, either the accuracy 

constraint would need to be foregone, if the complexity of the model could not be increased any further; or the 

generality of the model would deteriorate, and a new set of data may cause the accuracy to drop. 

These examples illustrate two essential points: first, that representations with better categorization can be simpler 

and for that reason, have lower regeneration loss and energy configurations of the regenerative model; and secondly, 

that only well-categorized representations can support true generalization that is, the regeneration accuracy maintained 

over the data sets of any size and regardless of the volume or number of new installments as long as the character of the 

data remains stable. 
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In the formal proof of the categorization conjecture we shall use the argument that the configurations with the best 

categorization also minimize the loss of the trained model. We will use already discussed observation that the resulting 

regeneration of the input data in a trained model is controlled by two sets of factors: those of distributions of hidden 

concepts in the representation space of the model; and those that define the generative transformation from the 

representation to the observable space. Hence, the functions of the configuration of the model such as the loss, and free 

energy are also defined by these factors that will be referred to as “regenerative configuration” of the model: 

 

 𝐿 =  𝐿(𝐻, 𝑔), 𝐸 =  𝐸(𝐻, 𝑔)                                                                      (4) 

D.  Categorized Representations Minimise Loss 

We can now proceed with the proof of the following lemma: 

Lemma 2 (of minimum loss): if a regenerative configuration with the best categorization of hidden concepts 

exists in the representation created by a self-encoding-regenerative model with Bayesian training to minimize the error 

of regeneration, it is also the configuration with the lowest average loss among the regenerative mappings of the given 

learning model. 

Proof: Suppose that the representation distribution of a hidden concept Hk is controlled by distribution parameters 

hk in the representation space such as a set of coordinates of k-dimensional clusters or manifolds. Then, 

 

 𝑅 =  𝑈 𝐻𝑘 +  𝑁                                                                                (5) 

 

where N is the random noise component not associated with any hidden concept. Recall again that hidden concepts are 

not known to the model explicitly, neither before nor in the process of training. 

As well, we consider the parameters gi of the generative model from the representation space to the observable 

space, such as weighs and biases: 

 

𝐹𝑔𝑒𝑛: 𝑅 −>  𝐼;  𝐹𝑔𝑒𝑛  =  𝐹(𝑔𝑖)                                                                    (6) 

 

Suppose that for a trained Bayesian model there exists a regenerative configuration that maximizes the 

categorization of the distributions of hidden concepts {Hk} in the representation space, that is, minimizes the size of the 

distribution area of Hk and maximizes its separation from regions occupied by other hidden concepts.  

Next, allow for a small variation of configuration parameters for Hk, pk = {δhk, δgj} and evaluate the corresponding 

differential of the regeneration loss function ∂L⁄∂p. 

Starting with the distribution parameters { hk } one can remark that if the region of representation is increased in 

one dimension, while the model parameters remain constant, some samples outside of the initial concept region can be 

mapped to a different area in the observable space potentially increasing the error of mapping placing the observable 

image in the wrong concept “class”; also more samples of different “foreign” concepts can be now present in the 

extended concept region δHk, and as well mapped to a wrong concept region in the observable space, increasing the 

false positive or statistical type 1 error, and consequently, the total error of regeneration.  

One can observe, as illustrated in Fig.2, both channels can be a potential source of an increase in the regeneration 

error compared to the initial state.  

 

 

Fig.2. Sources of variational error, distribution parameters 

Hence, it follows that: 

 

 
𝜕𝐿(𝐻,   𝑔)

𝜕ℎ𝑘
 ≥ 0                                                                             (7) 

 

Now let us consider variations of the model parameters G ={gi}, with hidden concept distribution parameters fixed. 

Recall that the model parameters of the starting configuration with Bayesian learning already minimizes the 
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regeneration loss so any variation in the model parameter values should increase the loss in the observable space and 

therefore, the energy of the regeneration function: 

 
𝜕𝐿(𝐻,   𝑔)

𝜕𝑔𝑖
 ≥ 0                                                                                (8) 

 

From (7) and (8) one can readily conclude that for all regenerative configuration parameters {p} it holds: 

 
𝜕𝐿(𝐻,   𝑔)

𝜕𝑝
 ≥ 0                                                                              (9) 

 

from which follows that the configuration with the best categorization also minimizes the regeneration error of the 

model thus completing the proof of the lemma. 

The proof of the unsupervised categorization conjecture then follows immediately from (9) and the results on the 

equivalence of the principles of Bayesian learning and minimization of free energy and on stochastic gradient methods 

as approximation of Bayesian training.  

Indeed, from the just proven lemma that categorized representations minimize the regeneration loss in training of 

models with self-encoding and regeneration; and that the configurations with minimal loss are produced by training 

with stochastic gradient descent methods proven to be an approximation of Bayesian learning [8]; and from the 

equivalence of Bayesian learning and minimum energy principle [4] it follows that categorized representations also 

minimize free energy of the model and will be preferred statistically as a result of unsupervised Bayesian training to 

minimize the regenerative error of the model. 

To conclude, one needs to note first the essential assumptions and limitations that will be discussed in the next 

section; the other essential note is that the statistical preference of categorized representations does not mean that every 

training process that satisfy the conditions of the unsupervised categorization theorem would produce a well-

categorized representation. Rather, that in an ensemble of learning systems under the aforementioned constraints of the 

theorem, the learners with categorized representations would be statistically preferred outcome of training. This 

observation can and was indeed verified in the experiments with learning models where in a number of learning runs 

one could see individual learners showing statistical variations in their performance, while certain average level is 

maintained (Section III, C). 

E.  Assumptions and Limitations 

In the proof, a number of implicit assumptions were made which we are going to discuss and attempt to justify in 

this section.  

The first point is the existence of categorized representations. In the proof it was implicitly assumed that a 

configuration with the best categorization exists in the space of all possible regenerative configurations. It is believed 

that cited experimental results, as well as empirical experience with practices of face recognition provide support and 

justification for this assumption.  

The second important assumption is the significance of the observable parameters. Indeed, the observable 

parameters have to be relevant and specific enough to differentiate between samples of essentially different hidden 

concepts. Consider a simple example: let the face images dataset used to train a deep learning model have only one 

parameter, for example, gender of the person. Clearly, the only possible categorization in this case could be by the value 

of the gender parameter. 

An important consideration is the representation of hidden concepts in the dataset. Artificially constructed sets can 

create disbalance between hidden concepts that could affect training of the model and the resulting representations. As 

well, the populations of hidden concepts must be sufficiently large to establish characteristic structures in the 

representation of the learning model. 

Finally, it has to be noted that the condition of compression is essential to avoid the identity transformation 

counter-example that is achievable by neural network models if the effective dimension of the representation space is 

greater or equal to the dimensionality of essential parameters (i.e. those responsible for significant variation) in the input 

data. 

F.  Categorisation and Generalization 

The results of the study into categorization properties of hidden concept distributions in the representations of 

regenerative models can offer insights into the relation between the conditions of accuracy and generality in both 

supervised and unsupervised learning scenarios. A question can be asked, to what minimal dimensionality limit can a 

given data be compressed to still provide effective learning that is, satisfy both requirements of accuracy and generality 

simultaneously? 

Compression of the observable data to a categorized representation can provide significant reduction in the energy 

of the regenerative mapping due to reduction of dimensionality in the representation space that affects the effective 

degrees of freedom. This gain may extend all the way to the limit where the dimensionality of the representation space 
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would reach that of the local variation in the representations of hidden concepts with the highest population in the data, 

i.e. the number of independent parameters, or degrees of freedom in the variation of hidden concept distributions Hk.  

Beyond that limit the constraints of accuracy and generality could not be maintained simultaneously: forcing the 

model to sustain accuracy would make it overfit that is, encode the training data literally without categorization; while 

an attempt to train such a model with larger sets of data would affect the accuracy, of classification in supervised 

learning or regeneration in unsupervised models. 

Thus, it can be hypothesized that the optimal effective dimension of the representations in models with self-

encoding and regeneration can be chosen based on the expected or observed variation spectrum in the native concepts of 

the data, that in some cases can be approximated by certain known higher-level concepts. 

3.  Experimental Support for Unsupervised Categorization 

In addition to already cited results offering experimental support for the effect of categorization in unsupervised 

learning, a set of experiments was conducted with real neural network regenerative models (deep stacked autoencoder) 

to provide convincing evidence for the theoretical results presented in the previous section as well as the impact of 

unsupervised categorization on the efficiency of learning. 

A.  Purpose of the Experiment 

The purpose of the experiment was to compare the efficiency of self-learning, measured as the accuracy of 

classification of the learned concepts in the initial, unprocessed data space and in the representation obtained with an 

unsupervised encoder trained to reduce the generative error. The difference in classification accuracy between 

classifiers trained with the same sample in the input data space and representation space should give a clear indication 

about the effectiveness of categorization by higher-level concept in the representation created by the model in 

unsupervised training.  

The null hypothesis (that is, no significant effect of unsupervised categorization in the experiment) would manifest 

itself as the absence of a clear difference in classification accuracy for the concept being learned between the classifier 

trained with a signal sample in the input data space vs the one trained with the image of the same sample in the 

representation.  

However, if the hypothesis of unsupervised categorization is correct, the outcome of the experiment should see a 

significant improvement in the learning efficiency measured by the accuracy of classification, between the cases of raw, 

unprocessed input data and the structured representation created in unsupervised training. 

Clearly, in measuring the accuracy the errors of both statistical types need to be taken into account. 

B.  Experimental Setup 

The model used in the experiment is a stacked two-stage deep autoencoder. The model produced two stages of 

representations of unprocessed aerial image data. The model and the dataset are described in detail in [21]. 

 

 

Fig.3. Deep stacked autoencoder model 

In the experiment, six out of ten labeled classes in the dataset were used in self-learning; however, the rest of the 

data was still used as uncategorized background to verify the resolution of the resulting learning. The classes used in 

self-learning were the following: buildings; woods; fields; water; roads; large construction structures (classes 1 – 6 

below, respectively). 

The encoder of the first stage was a convolutional-pooling autoencoder that produced a numerical representation of 

a dimension 576 from color images with dimensions (64,64) to (128,128). The resulting representation was used as an 

input to the second stage encoder with physical dimensionality reduction to 3 dimensions: 

 

 (128 𝑥 128 𝑥 3) →   (576, ) →   (3, )                                                      (10) 
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The dimension of the final representation stage was chosen according to the results of the principal component 

analysis that indicated three principal dimensions with combined weight of above 95. The maximum compression of 

information achieved by the encoding process was thus in the range of 16,000.  

In the process of unsupervised training the models have achieved significant improvement in all measured metrics. 

Loss, mean squared error (MSE) and mean absolute error (MAE), decreased by a factor of 10
2
 after 50-100 epochs of 

self-supervised training; while cross-categorical accuracy, that is a measure of covariance of the input and output 

samples has increased from below 1% to approximately 35%. Such an improvement in regeneration performance of a 

trained unsupervised feed-forward model signifies that it has indeed learned and retained essential information about the 

input data that allows to regenerate it efficiently in the regenerative stage despite considerable compression in the 

representation layer. 

To investigate the impact of the unsupervised categorization on the learning capacity of models, an unsupervised 

structure of density clusters was identified by applying a density clustering method, such as MeanShift [22] in two sets 

of data: 1) the original, input dataset and 2) its representation created by a pre-trained generative model described earlier 

in this section. Then, a landscape-based method of signal sample learning described in [3] was applied with the 

resulting cluster structure in the input data and its low-dimensional representation created by the model. 

The signal sample method unsupervised self-learning of new concepts with a single true sample is based on 

marking the cluster(s) associated with the signal sample and producing an artificial labeled concept dataset generated 

from the unsupervised cluster structure identified as a result of unsupervised learning phase, that can be used to train the 

initial iteration of the binary classifier of the concept. As demonstrated, even with a single true sample of the concept a 

trained classifier can learn to identify it in the input data with the accuracy significantly better than random.  

C.  Experiment Results 

The classification results of a trained classifier for a concept in in raw (that is, unprocessed input data) and 

representation by a trained model were measured in a set 100 tests with 100 randomly selected samples of in- and out-

of-concept each, thus 20,000 predictions in total for each of the measured concepts. The accuracy was measured as a 

combination of the recall and false positive rate, representing statistical errors of types 2 and 1, and a combined 

accuracy measure, F1, that incorporates the errors of both types. The mean and best accuracy scores as well as standard 

deviation (SD) as a measure of statistical variation were calculated for each concept over 10 learning experiments.  

The results of the self-learning experiments are presented in Table 1. 

Table 1. Concept Self-Learning Accuracy 

Concept 
Accuracy, Representation 

(Mean) 
Representation F1 (Best / 

Mean) 
Representation F1 (SD) Accuracy, Input (mean) 

Class 1 0.679 / 0.330 0.700 / 0.677 0.018 0.95 / 0.76 

Class 2 0.868 / 0.373 0.741 / 0.727 0.007 1.00 / 0.75 

Class 3 0.958 / 0.275 0.842 / 0.824 0.021 1.00 / 0.75 

Class 4 0.515 / 0.425 0.556 / 0.543 0.007 1.00 / 0.76 

Class 5 0.654 / 0.375 0.656 / 0.637 0.010 1.00 / 0.77 

Class 6 * 0.889 / 0.394 0.743 / 0.720 0.020 1.00 / 0.77 
*With adjusted learning parameters: number of initial samples, cutoff for out-of-concept clusters [2]
To remind, the null hypothesis in this experiment would be represented by one of the following outcomes: 1) a failure of the 

representation classifier to learn, i.e. a strongly biased prediction to acceptance, or rejection; or 2) the accuracy of the representation 
classifier on the level of a random prediction i.e. for a binary classifier, (½, ½) or F1-score of 0.5. 

 

As can be seen from the results above, while classifiers in the representation space for all measured concepts were 

able to achieve signal accuracy better, and in most cases significantly better than the random threshold, those trained 

with samples in the input space were not able to converge to a meaningful resolution, and remained strongly biased for 

acceptance (in some cases, a bias for rejection was observed as well). In over 100 learning experiments across all 

measured concepts, the null hypothesis has not been observed, with the resulting statistical significance of the support 

for the effect of unsupervised categorization better than 99%. 

It is worth noting that the accuracy results in the input space were observed in the entire range of the bandwidth 

parameter of the density clustering method as confirmed by a grid search in the entire range of its variation, and 

therefore the presented results cannot be attributed to a specific choice of parameters. 

A logical conclusion from these results is that the density structure or “unsupervised landscape” in the 

representation that develops in unsupervised learning via minimisation of regenerative error proves essential for 

successful learning of new concepts with minimal data that can only be the case if it is closely correlated with common 

concepts in the input data. 
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D.  Visualization  

The results of the experiments in the previous section can be illustrated by direct visualizations of the concept 

distribution regions in the low-dimensional representation space of a pre-trained regenerative model. 

Presented in Fig. 4 are the reconstructed surfaces of the concept distribution regions obtained with triangular 

interpolation of concept samples encoded by the model into the representation space.  

In the diagram above, from top left, clockwise: concepts 1 (lighter) and 2; concepts 3 and 4 (lighter); concepts 5 

and 6 (lighter); the last diagram, bottom right, illustrates the scale of the compact concept distributions (concepts 3 and 

6) in the coordinates of the representation space. 

As can be seen in the visualizations, for most studied concepts distribution regions in the latent space were 

represented by smooth and compact low-dimensional manifolds supporting the accuracy results presented in the 

previous section, as signal learning training sets for concepts being learned generated artificially based on the signal 

sample and the unsupervised landscape in the representation can be expected to be effective in the case of such compact 

and well-defined distributions in the latent space. 

 

 
 

  

Fig.4. Concept distribution regions in the representation space 

Importantly, these results also validate the manifold assumption commonly used in unsupervised and semi-

supervised machine learning [20]. The structure and distributions of the concepts in the representations of models with 

regenerative self-learning will be investigated in more depth in future works. 

4.  Conclusions and Discussion 

In this work theoretical approaches in the analysis of unsupervised representations were introduced with the proof 

of the conjecture of unsupervised categorization that links categorization properties of unsupervised distributions in 

representations of models with self-encoding and regeneration, and Bayesian training to minimize the error of 

regeneration. 

In Section III experimental results were presented that, along with cited previously published results of other 

independent studies provide strong empirical support for the effect of unsupervised categorization observed with data of 

different types and origin.  

On the basis of theoretical and experimental results presented in this work, as well as those reported in the earlier 

studies, one is led to conclude that the hypothesis of the study that is, the effect categorization by native concepts in 

unsupervised generative learning has a general character, being a consequence of the general principles of information 

processing in systems satisfying the identified conditions and constraints in the process of unsupervised generative 

learning. 

The results of the study can have significance for the field of unsupervised machine learning because unsupervised 

categorization can offer a natural platform for development of flexible and environment driven learning strategies in the 

settings where massive amounts of labeled data used in common approaches aren not readily available. This specifically 

applies to new domains and environments where domain knowledge is scarce and large amounts of verified data are not 

yet available.  

The connection between unsupervised training and concept-sensitive structure in the representations may offer 

valuable insights about the emergence and modeling of intelligence that can be common for artificial and biologic 

systems. Indeed, it can be remarked that the natural, biologic systems known for their capacity to learn independently, 

with minimal supervision or prior knowledge as noted by Hassabis et al. [23], “human cognition is distinguished by its 

capacity to rapidly learn about new concepts from only a handful of examples” also commonly apply the same 

constraints of accuracy of reproduction of the observable data; generalization; and compression that were used in the 

hypothesis of unsupervised categorization in this study. Further linking the results of this work with a number of recent 
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results in biological neurocomputing, is the observation of low dimensional representations similar to those observed in 

the experimental results in Section III that appear to play an important role in processing of sensory information in 

human brain [24,25]. 

Thus, the conclusions about the general character of the effect of unsupervised categorization in generative 

learning can offer an important link between learning processes of biologic systems and used as a basis for development 

of approaches and methods in self-learning and general learning systems that are flexible, interactive, iterative, and 

require minimal supervision or prior knowledge about the domain [26]. 
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