
I.J. Modern Education and Computer Science, 2021, 3, 57-67 
Published Online June 2021 in MECS (http://www.mecs-press.org/) 
DOI: 10.5815/ijmecs.2021.03.05 

This work is open access and licensed under the Creative Commons CC BY 4.0 License.                             Volume 13 (2021), Issue 3 

Predicting Student Program Completion Using 
Naïve Bayes Classification Algorithm 

 
Joann Galopo Perez 
Bulacan State University, Philippines 
Email: joann.galopo@bulsu.edu.ph 
 
Eugene S. Perez 
Bulacan State University, Philippines 
Email: eugene.perez@bulsu.edu.ph 
 
Received: 25 January 2021; Revised: 23 February 2021; Accepted: 14 March 2021; Published: 08 June 2021 
 
 
Abstract: Data mining approaches provide different educational institutions opportunities to find hidden patterns from 
the data stored in the database.  Many researchers have used these data to develop a model that would assist the institution 
administrators in decision-making. This study was performed to predict student program completion using the Naïve 
Bayes classifier technique. The dataset utilized in this study was obtained from Bulacan State University – Sarmiento 
Campus in the Philippines under BS Information Technology program from five-year graduates’ data for Academic Year 
2012-2016. This dataset was pre-processed, cleansed, transformed, and balanced before constructing the model. Ten 
predictors were used for predicting student completion.  The feature selection technique was used to filter and evaluate the 
significance of each factor. The significant variables assessed by the feature selection technique (Weight by Correlation) 
were the final parameters in creating the model. The Naïve Bayes classifier was applied to predict the students’ 
completion using the 70:30 ratios for training and testing dataset distribution. Correlation analysis identified the weight of 
individual attributes to the label attribute. From 10 possible predictor variables, only four (4) predictor variables were 
selected after correlation analysis. The identified significant attributes affecting program completion, namely (in order of 
significance): parents' monthly income, mother and father's educational attainment, and High School GPA attributes. The 
significant attributes identified in correlation analysis splitted into 70% training data or 447 records and 30% testing data 
or 191 records. There were 84 out of 191 data samples, or 44% of students were predicted to complete the program. On the 
other hand, 107 out of 191 data samples, or 56%, were predicted as not completing the program. The accuracy values 
performed an 84% rating with 80.46% class precision, and 83.33% class recall in the testing dataset (n=191). The 
outcomes of this study have a significant impact on HEIs, particularly on college completion rates. This study shall be 
highly significant and beneficial specifically to university administrators as this be a tool for them to identify students who 
will complete college based on variables included in the model. 
 
Index Terms: Data Mining, Naïve Bayes Classification Algorithm, Predictive Model, and Program Completion 
 
 

1. Introduction 

One of the pressing and ongoing concerns for Higher Education Institutions (HEIs) is students' retention [1]. This 
undertaking is crucial and essential for an academic institution to highlight and focus on upholding its existence. Higher 
education institutions use learning analytics to enhance the programs they deliver and meet visible and achievable 
objectives such as grade point average and retention [2]. It is vital for the university to effectively make strategic 
adjustments leading to a high retention rate and program completion among its clientele - the students.  

It is of interest to address the students' completion records of Bulacan State University (BSU) Sarmiento Campus 
under the Bachelor of Science in Information Technology (BSIT) program.  

This study focused on developing a program completion model based on the graduate data of BSIT students from 
2012 to 2016 through the classification process of organizing data into categories. Since the BSIT program takes four 
years to finish, the researchers retrieved the records of the students who enrolled from 2008 to 2012 from the registrar's 
office. These records were treated with the utmost security, considering that the final result will not contain any 
identifiable information to protect students' privacy. The names of the students were also removed before handed to the 
researchers.  

To have the most relevant classifier and an effective and efficient model, the researchers utilized the Naïve Bayes 
Classification Algorithm, a simple technique for constructing classifiers or models based on Bayes Theorem of 
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conditional probability and strong independence assumptions. Many researchers have previously used it and observed 
that among other classification approaches, Naïve Bayes performs well [2, 3, 4, 5, 6, 7].  

While existing studies on retention and attrition [8, 9, 10, 11, 12] have explored various attributes to affect 
completion rates, no study has integrated the specific attributes to be used; hence, the researchers employ all available 
attributes in the students' records. With the use of a more robust predictive model, while considering relevant factors, the 
entire procedure could identify the students who need help at the very early stage or even before a student realizes he or 
she is in trouble. Consequently, the institution can intercede, postulate specific support, and identify relevant resources 
that the students need to continue academically. Moreover, the school administrators could devise specific 
decision-making schemes for on-time program completion, thereby improving the retention rate, particularly among 
BSIT students at BSU Sarmiento Campus. 

The data mining implementation and processing in this study was done using RapidMiner Studio, which offered 
numerous data mining methods such as data cleansing, data transformation, optimization, validation, and visualization 
[12]. Split Data operator in RapidMiner randomly split up the dataset into a training set (70%) and test set (30%). This 
study did not create an actual system that automatically identified students who will complete college. Instead, it 
developed or layout the model or a decision support system that will assist in readily identifying the possibility of 
completion of who will complete college or not.    

2. Related Works 

The literature of this paper, which served as references in the completion of this research, concentrated on predictive 
modeling using data mining, particularly the application of Naïve Bayes. It also presented the student-related attributes 
that contributed to student college completion based on research to select model building variables. 

A. Application of Naïve Bayes Algorithm 

According to [13], Naive Bayes is a basic probabilistic classifier based on the Bayesian theorem. It is based on the 
data set's independent functions or features. The existence or absence of any other aspect has no bearing on the attribute of 
a class. The key advantage of this classifier is that it takes little training data to measure the mean and variance of the 
variable for classification. 

Several researchers have used Naive Bayes techniques to predict student performance in the field of Educational 
Data Mining, and it has also been applied to other fields. In their paper [14] it aims to predict the student's success using 
the concept of mining methods. This paper compared the percentage of accuracy with various data mining approaches 
such as Decision Tree, Neural Network, Naive Bayes, K-Nearest Neighbor, and Support Vector Machine. From the result 
obtained, the Decision Tree and Neural Network are the most accurate of these approaches. 

In this paper [15], three supervised data mining algorithms were applied to preoperative evaluation data to predict 
course completion (either passed or failed). The learning methods' performance was assessed based on their predictive 
accuracy, ease of learning, and user-friendly characteristics. The findings revealed that the Naive Bayes classifier 
outperforms decision tree and neural network approaches.  

Research conducted by [16] on how data can be preprocessed using the Optimal Equal Width Binning discretization 
approach and the Synthetic Minority Over-Sampling (SMOTE) over-sampling methodology to increase the precision of 
the students' final grade prediction model for a specific course. It has been concluded in their study that the Naive Bayes 
classification algorithm is computationally faster than the Neural Network Backpropagation algorithm, making it the best 
option. 

A study proposed by [17] states a framework for predicting first-year bachelor students' academic success in a 
Computer Science course. The variables used in the study included the students' demographics, past academic results, and 
family history information. To generate the best academic performance prediction model for students, Decision Tree, 
Naive Bayes, and Rule-Based classification techniques are applied to their results. 

A study performed by [18] compared Bayes Net, Naive Bayes, and a hybrid of these two classifiers to see which one 
will yield the better results using diabetic patients' data accessible in the WEKA tool. The results suggest that combining 
Bayes Net and Naive Bayes produces better results than using these classifiers independently. 

Another research [19] used the naive Bayesian classification to construct a learner classifier. It has been concluded 
that Bayesian classification theories, in general, are useful analysis forms for forecasting potential data patterns and 
making wise decisions in the distance education system. 

This paper [20] provides an overview of the decision tree and the Naive Bayes classification. The research utilized 
the student's output classification dataset to demonstrate how a decision tree and naive can be constructed and the 
principle of both classification strategies. The analysis concludes that the Naive Bayes classifier is a basic algorithm that 
provides more reliable results, as shown in this paper. As extended to large data sets, the Naive Bayes algorithm 
outperforms Decision Trees. 

Also, [21] performed an analysis in which they used Naive Bayes to forecast the viability of early-stage foreign 
development projects and found good projects that could impact its financial stability. Another study [22] used the Naive 
Bayes machine learning classifier to build a Feedback Validation Model in Education data mining. The model's 
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probabilistic approach will easily unearth the explanations for the student's academic success in the teaching-learning 
process individually. Another study [23] presents a method for predicting sales agents' success in a call center devoted 
solely to sales and telemarketing operations. A naive Bayesian classifier is used in this technique. The goal is to assess 
which levels of the attributes are representative of individuals that perform well. 

Furthermore, [24] also presented a survey evaluating and investigating students' placement after doing MCA 
applying the three selected classification algorithms using the Weka tool. As compared to other classifiers, the naive 
Bayes classifier has the lowest average error at 0.28. These findings indicate that among the machine-learning algorithms 
studied, and the Naive Bayes classifier will vastly outperform traditional classification methods for placement. The 
current study used a Naïve Bayes classifier to develop the proposed prediction model.   

The Naive Bayes Classifier outperforms all other algorithms presented in the literature. Aside from the result, there 
are many reasons why the Naive Bayes Classifier was chosen for this study. Naïve Bayes is quick and can be trained on all 
of the training data. It has a sound and straightforward foundation for modeling the data and is quite robust to outliers and 
missing values.  A complex resulting classifier can be determined reliably from a limited amount of data. The Naive 
Bayes classifier is easy to introduce, and it is fast and can be used in real-time [25]. 

B. Factors that influence student performance 

Many studies in the literature on various factors such as personal, socioeconomic, psychological, and other 
environmental variables affect students' success and the models used to predict performance. For further reference, a few 
basic studies are mentioned below. 

This paper aims to define the factors affecting students' success in final exams and develop a suitable data mining 
algorithm to predict students' grades to provide a timely and accurate warning to students at risk. The findings showed that 
the type of school has little effect on student success and that parents' occupation plays a significant role in predicting 
grades [26]. Also, predictor variables as a basis for student completion included demographics such as gender, age, family 
background, and external assessments [27]. 

 Features such as family and community background including socioeconomic status, parent educational level, and 
the size of the student's high school and hometown community. Socioeconomic status, often measured by family income, 
had been positively correlated with college persistence [28]. In a study conducted by [29] suggested factors like family 
background and family income should be considered essential attributes in this study. Since family background played an 
important role in student academic performance, it is found that students from a family with less affluent economic 
background have more chance of being unsuccessful in a course due to their other involvements to support the family and 
a higher tendency to discontinue education in the middle. Factors like high school GPA and socioeconomic status [30], 
[31] were utilized in the previous researches study, and also, residence and first-semester GPA were predictors of whether 
students will drop out or continue to program completion [32]. 

According to research conducted by [33] using 300 samples of students from 5 different degree colleges in India, 
there is a relationship between the attributes students' academic success with their grades in the senior secondary test, 
living place, the medium of teaching, mother's qualification, annual family income, and family status. Moreover, another 
study explored new factors associated with college success, including parents’ education level and annual household 
income [34] .  

This research [35] examined demographic variables, family backgrounds, pre-college and college academic success 
indicators, and the degree to which required placement in remedial courses predicts persistence at a public research 
institution. The findings revealed that High school GPA and first-semester college GPA were discovered as significant 
factors to college success. Another study by [36] also revealed that high school grades are a significant factor for college 
readiness than test scores. 

3. Methods 

The framework of the study adopts the Knowledge Discovery Process (KDP) as suggested by [37]. The KDP process 
scheme consists of Selection, Preprocessing, Transformation, Data Mining, and Interpretation. Input data were initially 
selected, and the target data were isolated. Pre-processing and transformation were performed to ensure the database 
reliability where data mining was the core analysis. The knowledge discovery process ended with interpreting the results. 
Based on this KDP scheme, this study came up with a framework, as shown in Figure 1. These processes are  Phase 1: 
Preparation of Data – which involved data collection and production of dataset retrieved from the university student 
database; Phase 2: Preprocessing – which involved the removal of noisy and irrelevant data and further transformed into 
forms appropriate for mining; Phase 3: Classification Process – which involved model building where Naïve Bayes 
algorithm was applied to predict student program completion; Phase 4: Result – which involved interpretation and 
evaluation of the data and also identification and presentation of interesting patterns representing knowledge-based to the 
user. 
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Fig. 1. Proposed Framework of the study 

Phase 1: Preparation of Data 

Comprehensive research of the literature and consultation with experts on student completion revealed various 
aspects that are believed to influence a student's success. In this study, the program completion is predicted based on the 
datasets of the graduates from 2012 to 2016. The framework of this study is presented in Figure 1. The dataset contained 
768 records and eleven (11) attributes. The predictor variables in the dataset were included and were retrieved from the 
university registrar.  The variables selected provided a significant impact on the studies presented in the related 
works.  The list of attributes in the student dataset that originated from the registrar was presented in Table 1. 

Table 1. Student List of Attributes 

Attributes Description/Assigned Values 
Age during the student admission Age admitted to the university. 
Gender Student's gender. It is the category of the student, whether male or female.  
High School Type Public/Private. Type of High School 
High School GPA High School Grade Point Average. It is the general weighted average of the student in the last year in high 

school. 
High School Math Average 4th Year High School Mathematics average 
1st-year college 1st semester 
GPA  

Grade Point Average in the first-year first semester. This is the average grade of a student while in the 
first-year first semester. The values range from 1.0 to 5.0, where 1.0 is the highest grade a student can get and 
5.0 is the lowest grade.  

1st-year college 2nd semester 
GPA 

Grade Point Average in first year second semester. This is the average grade of the student while in the first 
year second semester. The value ranges from 1.0 to 5.0, where 1.0 is the highest grade a student can get and 
5.0 is the lowest grade. 

Parents' Monthly Income Monthly income of parents 
1 '5000 or below' 
2 '5001-10,000' 
3 '10,001-15,000' 
4 '15,001-20,000' 
5 ’20,001-25,000’ 
6 ’25,001 or above’ 

Father's Educational Attainment Highest educational attainment of the father 
1 'Less than High School' 
2 'High School Graduate' 
3 'Two-Year Associate Degree' 
4 'Four-Year Bachelor's Degree' 
5 'Master's Degree' 
6 'Doctorate Degree' 

Mother's Educational Attainment Highest educational attainment of the mother 
1 'Less than High School' 
2 'High School Graduate' 
3 'Two-Year Associate Degree' 
4 'Four-Year Bachelor's Degree' 
5 'Master's Degree' 
6 'Doctorate Degree' 

Completed The student completed the BSIT program in four (4) years (Yes/No) 

Phase 2: Pre-processing 

Figure 2 displayed the workflow of the pre-processing phase. It contained operators that were used to develop the 
model from retrieving the student dataset; a Set Role operator was applied to determine the attribute label to be predicted. 
Initially, the dataset was in an excel format that contained 768 records. In data pre-processing, the dataset  
was checked and cleaned to reduce the unnecessary attributes. 
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Fig. 2. Pre-processing 

a) Data Balancing 

 
Fig. 3. Data balancing process 

The Sample method in Figure 3 determined how the amount of data is specified. The Sample parameter was set 
'absolute' to create an exactly defined number of records. This was the required number of samples as specified in the 
Sample size parameter. The entire dataset was divided into two parts with equal proportions of Yes and No classes. Yes 
and No contained 319 each absolute size.  

After removing irrelevant attributes, data balancing was applied to the student dataset to achieve the model's higher 
accuracy result. Data balancing is necessary if the classification categories are not approximately equally represented as it 
is considered an imbalanced dataset [38]. The Sample method created a sample based on the original records. The sample 
size was an absolute basis and focused on the number of current records and class distribution in the resulting sample. 
This basis increased the accuracy and balance of the Yes and No classes [39]. Thus, from 768 data samples, 638 records 
were retained after applying the sampling method. The Weight by Correlation operator in Figure 4 calculates the weight 
of attributes for the Completed label attribute using correlation analysis. The higher the weight of the attribute, the more 
important it was to consider. 
b) Application of Weight Attribute using Correlation Analysis 

 
Fig. 4. Weight by a correlation process 

The weight by correlation was used to determine the weight and relevance of a specific attribute, among other 
attributes. Pearson r correlation was the most widely used correlation statistic to measure linearly related variables' 
relationship.  Pearson r correlation measured the degree of relationship between the two attributes[40].    

Pearson's r formula: 
 

𝑟𝑟 = 𝑛𝑛(∑𝑥𝑥𝑥𝑥−(∑𝑥𝑥)∑𝑥𝑥)
�[𝑛𝑛∑𝑥𝑥2−(∑𝑥𝑥)2][𝑛𝑛∑𝑥𝑥2−(∑𝑥𝑥)2]

                                                                     (1) 

 
r   - Pearson r correlation coefficient 
N   - number of observations 
∑xy  - sum of the products of paired scores 
∑x  - sum of x scores 



 Predicting Student Program Completion Using Naïve Bayes Classification Algorithm  

62                                                                                                                                                                       Volume 13 (2021), Issue 3 

∑y  - sum of y scores 
∑x2 - sum of squared x scores 
∑y2 - sum of squared y scores 

 
The attributes with a high correlation coefficient among the variables were the final data inputs for building the 

Naïve Bayes classification model. Select Attributes parameter in Figure 4 selected the Attribute Selection filter; the 
method was a subset option: this option allows choosing multiple attributes based on weight by correlation. The 
significant variables assessed by the feature selection technique (Weight by Correlation) were the final parameters in 
creating the model to feed into the Naïve Bayes process. 

Phase 3: Classification Process 

 
Fig. 5. Classification process 

The third phase of the study was the classification process. In this phase, the significant attributes from Phase 2 were 
partitioned into training data and testing data.  As presented in Figure 5 the operator Split Data was constructed to shuffle 
data into two subsets, sized 70% and 30% of data. In the Training phase, the Naive Bayes operator builds a Naive 
Bayes model upon the training set. The model is then fed into the testing phase for performance evaluation. A Naïve 
Bayes algorithm has been applied to the dataset for building the classification process. The following steps were also 
done: 

Phase 4: Result  

a) Model Testing and Evaluation 

 
Fig. 6. Data model testing and evaluation process 

The last phase of the workflow included the testing and evaluation of the model.  The model was applied to the 30% 
test data and evaluated using confusion matrix cross-validation to get the model's accuracy percentage.  

The Apply Model (Figure 6) operator predicted the label value for each test set. This prediction was added to a new 
column named prediction (completed). After applying the formula and generating the projection column in the test sample, 
the model's output was tested using the Performance operator. After selecting a suitable model, the data was exported into 
an excel file using the Write Excel operator. 

Table 2. Confusion Matrix Table 

 
 
 
 

 
 
 

 

  Yes No 
Predicted Class 
(Expectation) 

Yes TP(true positive) positive Examples that have 
been correctly identified 

FN(false negative) positive Examples that have 
been incorrectly identified 

No FP(false positive) negative Examples that 
have been incorrectly identified 

TN(true negative) negative Examples that have 
been correctly identified 
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The model performance was tested and evaluated through the confusion matrix accuracy, precision, and recall. The 
confusion matrix showed prediction, either positive or negative, arranged as in the 2x2 matrix, as shown in Table 2.  

Accuracy measures the percentage of the model's correct predictions. 
 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝑻𝑻𝑻𝑻+𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻+𝑭𝑭𝑻𝑻

                                                                        (2) 
 

Precision evaluates how precise a model is in predicting positive labels. It is calculated as a total number of true 
positive's divided by the total number of true positive's + total number of false positives. 

 
 

𝑻𝑻𝑨𝑨𝑷𝑷𝑨𝑨𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻

                                                                             (3) 
 

Recall measures the percentage of actual positives a model correctly identified. 
 

𝑹𝑹𝑷𝑷𝑨𝑨𝑨𝑨𝑹𝑹𝑹𝑹 = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻

                                                                                (4) 

4. Results and Analysis 

This section discussed the results and findings obtained based on the conceptual framework and the experimental 
design and methods. It discusses the result generated by the correlation analysis technique, classification process applying 
Naïve Bayes algorithm, and model performance evaluation.  

1) Results of Correlation Analysis 

Correlation analysis identified the weight of individual attributes to the label attribute. The initial data were loaded, 
and different attributes were identified and ranked using the correlation analysis method, as presented in Table 3.  From 10 
possible predictor variables, only four (4) predictor variables were selected after correlation analysis. Among the ten (10) 
attributes, the variables with above 0.2 weights were considered significant attributes and were used to classify students in 
predicting student completion. Four (4) attributes in Table 3 were considered: Parents' Monthly Income attribute got the 
highest weight among other attributes, followed by Mother's Educational Attainment, Father's Educational Attainment, 
and High School GPA. The other six (6) attributes were not considered since it contains minimal correlation to what is 
being predicted, which is the label completed. 

Table 3. Correlation Analysis Output (Rank by Weight) 

 
 

 
 
 
 
 
 
 
 
 
 

2) Results of the Classification phase 

The significant attributes identified in correlation analysis was splitted into 70% training data or 447 records and 30% 
testing data or 191 records. The primary variable used as a label/target was Completed.  The classification model was built 
to predict the likelihood for program completion (Yes/No) output variable - Yes, students who were likely to complete 
college and No, students who were likely not to complete college. 

Testing the model was used to make predictions using the summaries trained from the training phase. Prediction 
involved calculating the probability that a given data instance belongs to each class and selecting the class with the most 
significant probability as the prediction. To test the model, it was applied to a previously unseen record as a test set. Table 
4 shows the resulting percentage of the prediction. There were 84 out of 191 data samples, or 44% of students were 
predicted to complete the program. On the other hand, 107 out of 191 data samples, or 56%, were predicted as not 
completing the program.  

Rank Attributes Weight by 
Correlation 

1 Parents' Monthly Income 0.648 
2 Mother's Educational Attainment 0.451 
3 Father's Educational Attainment 0.420 
4 High School GPA 0.194 
5 4th Year HS Mathematics Average 0.162 
6 1st-year 1st semester GPA  0.140 
7 High School Type (Public/Private) 0.053 
8 Age during admission 0.017 
9 1st-year 2nd semester GPA  0.009 
10 Gender 0.004 



 Predicting Student Program Completion Using Naïve Bayes Classification Algorithm  

64                                                                                                                                                                       Volume 13 (2021), Issue 3 

Table 4.Test result percentage 

 
 

 
 
 

 
 
 

The actual result of the prediction (a portion of the result from the RapidMiner) for the given records was shown in 
Table 5 (predicted Yes) and Table 6 (predicted No). It was observed the level of confidence for each instance. The higher 
the parents' monthly income supported with both parents' high educational attainment, the student was predicted to 
complete the program, having a confidence level for Yes of 1 or approximately 100%. On the other hand, the level of 
confidence for a student having low parents' monthly income and low educational attainment of each parent was observed 
to nearly 0 for Yes and almost 1 for No. 

Table 5. Test Result with YES Prediction output in RapidMiner Studio 

Table 6. Test Result with NO Prediction output in RapidMiner Studio 

Prediction (Completed) 
 

  
Prediction  

NO 107 0.56  
YES 84 0.44  
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YES YES 0.97 0.03 83.6 5 3 2 

YES YES 1.00 0.00 88.72 5 3 4 

YES YES 0.97 0.03 84.61 3 4 2 

YES YES 1.00 0.00 86.7 4 1 5 

YES YES 0.71 0.29 87.59 4 2 2 

YES YES 1.00 0.00 85.73 5 3 3 

YES YES 1.00 0.00 88.44 6 4 4 

YES YES 1.00 0.00 85.78 6 3 4 

YES YES 0.91 0.09 87.1 3 3 3 

YES YES 1.00 0.00 87 4 4 4 
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NO NO 0.03 0.97 89.34 1 2 2 

NO NO 0.24 0.76 88.66 2 1 3 

NO NO 0.04 0.96 86.4 2 1 1 

NO NO 0.01 0.99 80.8 2 1 1 

NO NO 0.04 0.96 85.57 2 1 1 

NO NO 0.02 0.98 85.29 1 2 2 

NO NO 0.01 0.99 98.75 1 1 2 

NO NO 0.01 0.99 87.99 1 1 1 

NO NO 0.01 0.99 83.52 1 1 2 

NO NO 0.01 0.99 80.01 1 2 2 

NO NO 0.03 0.97 87.14 1 2 2 

NO NO 0.02 0.98 85.87 1 1 2 

NO NO 0.04 0.96 81.95 1 2 3 
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3) Results of Model performance evaluation 

Two sets of tests were carried out to determine the effects of the feature selection technique on models' predictive 
performance. The first test used the three (3) features in the dataset (Father and Mother Educational Attainment, High 
School GPA (Table 7), and the second test used the four best-ranked attributes (Table 8) (Parents' Monthly Income 
attribute, Mother's Educational Attainment, Father's Educational Attainment, and High School GPA according to their 
weights by correlation).  

Table 7. Top 2,3,4 Attributes Confusion Matrix for Validation Set 

 
 
 
 
 
 

The result from Table 7, using the attributes Mother's Educational Attainment, Father's Educational Attainment, and 
High School GPA accuracy, achieved only 72.77%. This can be interpreted that removing parents' monthly income 
attribute greatly affects the model's accuracy result.  

Table 8. Top Four (4) Attributes Confusion Matrix for Validation Set 

 
 
 
 
 
 

 
Table 8 showed the confusion matrix’s result in terms of the model’s accuracy, precision, and recalls percentage of 

the model. There were 191 data samples for the test set from the result obtained; the accuracy was 83.77%, with 80.46% 
class precision and 83.33% class recall.  The result was higher than the previous experiment utilizing all the top four (4) 
attributes. 

The detailed computation of the model's percentage obtained in terms of accuracy, precision, and recall is presented 
below.  

The result of the model in terms of accuracy is:  
 

𝟖𝟖𝟖𝟖.𝟕𝟕𝟕𝟕% = 𝟕𝟕𝟕𝟕+𝟗𝟗𝟕𝟕
𝟕𝟕𝟕𝟕+𝟗𝟗𝟕𝟕+𝟏𝟏𝟕𝟕+𝟏𝟏𝟏𝟏 

                                                                        (5) 
 

The result of the model in terms of precision is: 
 

𝟖𝟖𝟕𝟕.𝟏𝟏𝟒𝟒% = 𝟕𝟕𝟕𝟕
𝟕𝟕𝟕𝟕+𝟏𝟏𝟕𝟕

                                                                              (6) 
 The result of the model in terms of recall is: 

 
𝟖𝟖𝟖𝟖.𝟖𝟖𝟖𝟖% = 𝟕𝟕𝟕𝟕

𝟕𝟕𝟕𝟕+𝟏𝟏𝟏𝟏
                                                                              (7) 

5. Conclusion and Future Works 

The study identified significant attributes affecting program completion, namely (in order of significance): parents' 
monthly income, mother and father's educational attainment, and High School GPA attributes.  From the result obtained, 
the model identified 44% or 84 students out of 191 of the probability of student who was able to complete, and 56% or 107 
out of 191 students was the probability of student who was not able to finish college.  

Using test data samples, two sets of tests were carried out to determine the effects of the feature selection technique 
on models' predictive performance. The first test used the three (3) features in the dataset (Father and Mother Educational 
Attainment, High School GPA, and the second test used the four best-ranked attributes (Table 8) (Parents' Monthly 
Income attribute, Mother's Educational Attainment, Father's Educational Attainment, and High School GPA according to 
their weights by correlation). The first test result showed 73% accuracy, while the second experiment utilizing all the top 
four attributes achieved 84% accuracy with 80.46% class precision and 83.33% class recall; the said model yielded 
compelling results. Using the Naïve Bayes Classifier to develop a prediction model for program completion is feasible. It 
can be utilized to provide a powerful educational tool in determining students' probability for completion or retention. 

Accuracy: 72.77% 

 Predicted true YES true NO class precision 
YES 55 20 73.33% 
NO 32 84 72.41% 
class recall 63.22% 80.77% 

 

ACCURACY: 83.77% 
Predicted True Yes True No Class Precision 

Yes TP= 70 FN=17 83.33% 
No FP= 14 TN=90 84.11% 
Class Recall 80.46% 86.54%   
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The findings of this study have a significant impact on HEIs, specifically in combatting the retention problem. 
University administrators can use the vital yields regarding the best attributes that contribute to students' success to 
complete college. For instance, in the attribute Parent's Monthly Income, the university can provide scholarship programs 
or extend any possible assistance, such as earning additional income thru Student Assistantships in different offices. 
Teachers who have the data of that student at-risk should immediately call the identified students' attention and extend any 
possible help, such as guidance and counseling. On the other hand, the student-at-risk should not hesitate to seek help 
from their parents, teachers, and school authorities.  

Future researchers may integrate this model into an actual system that automatically identifies students who will 
complete college. Furthermore, researchers can adopt other predictor variables related to attrition and program 
completion of students. Other researchers may also use the model by utilizing more complex students' records, which 
cover other university programs or courses.   
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