
I.J. Information Technology and Computer Science, 2015, 09, 23-30
Published Online August 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.09.04

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 23-30

Estimating Software Reliability by Monitoring

Software Execution through OpCode

Ritika Wason
Bharati Vidyapeeth’s Institute of Computer Applications and Management, Delhi, 110063, India

Email: rit_2282@yahoo.co.in

A. K. Soni
Department of Computer Science and Engineering, Sharda University, Greater Noida, 201306, India

Email: ak.soni@sharda.ac.in

M. Qasim Rafiq
Department of Computer Science and Engineering, Aligarh Muslim University, Aligarh, 202002, India

Email: mqrafiq@rediffmail.com

Abstract—Previous studies on estimating software

reliability employed statistical functions for next system

failure prediction. These models used parameters based

on assumptions regarding the nature of software faults

and debugging process. However, none of the existing

models, attempted on ensuring reliable runtime system

operation. To serve the current demand of autonomous,

reliable, service-oriented software, we present a novel

approach for runtime reliability estimation of executable

software. The approach can help control software

execution at runtime by monitoring software state-to-state

transition at runtime. The approach involves representing

executable software as an automata using opcode

extracted from executable code. The extracted opcode is

then used to learn stochastic finite state machine (SFSM)

representation of executable software which is later

employed to trace software state-to-state transition at

each runtime instance. An evaluation of our approach on

Java-based Chart generator application is also discussed

to explain how we can ensure reliable software execution

and prevent software failures at runtime with the

proposed approach.

Index Terms—Automata-Based Software Reliability

Model, Opcode, Software Reliability, Stochastic Finite

State Machine, Automata-Based Runtime Execution,

Stochastic Automata.

I. INTRODUCTION

Modern computing paradigms like Ubiquitous,

Autonomic, Self-Healing and Fault-Tolerant computing

[1-4] are reliable by definition. Current real-time software

applications are also expected to perform their services in

a reliable manner [5]. Since its inception, varied models

have been applied to software reliability estimation [6].

Most of these software reliability estimation models are

analytical models [7]. These models consider software to

be a black box and estimate the parameters used from

available post-failure data [6-7]. Over two-hundred

models already exist for estimating reliability of different

software systems. However, the realism of the underlying

assumptions of these models and the accuracy of their

estimates remains questionable [7].

Reliability is a dominant issue in computing and is the

main concern behind the line of research presented in this

paper. Modern computing and communication

infrastructures demand reliable operation as an essential

requirement. In conventional reliability models, statistical

functions based on certain unknown parameters were

employed [8]. The parameter values were determined

using post-failure data [7]. Most of these model estimates

are unreliable, far from reality and their accuracy

debatable [7]. Further none of these models have tried to

reduce or eliminate software failure. All conventional

software reliability estimation models attempt at only

reliability analysis [9]. None of the available models tries

to establish techniques that ensure lifetime utility of

software.

To handle the problem of software reliability we

propose to monitor runtime software execution.

Unexpected software behavior and crashes at runtime can

be easily avoided or controlled by monitoring runtime

software behavior [10-12]. This will help verify whether

the execution was correct. Further the model shall help

detect errors and avoid them. All software reliability

estimation models have assumptions, functions and

parameters in common [7]. However, none of the current

models take into account the fact that software during

execution is an automaton. Hence its reliability should be

analogous to the reliability of the automata representing it.

We argue that each software execution is 100% reliable if

it produces correct output. Similarly, in case the software

generates an undesirable output it is 0% reliable. For

customers, this is the only meaning of software reliability.

Hence, complex mathematical and statistical parameters

to estimate software reliability are useless in reality.

In this paper, we investigate whether software behavior

at runtime can be controlled on a per instance basis. If

incorrect system states can be identified at runtime, any

24 Estimating Software Reliability by Monitoring Software Execution through OpCode

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 23-30

of the current reliability estimation models can be

adapted to calculate software reliability using the above

estimates. We propose that an automata-based software

reliability estimation framework which extracts finite

automaton representation of runtime software using

bytecode features. The approach does not use any

unrealistic assumptions or statistical parameters for

reliability estimation [7]. Instead it utilizes operation

codes or opcodes from bytecode at runtime to trace the

execution sequence of instructions and next software state

at runtime. From this information about software state-to-

state transition, the model can avoid fault execution as

well as ensure correct software execution at runtime.

The automata-based software reliability model utilizes

finite state machine (FSM) representation of executable

software to estimate system reliability at any point during

the software life cycle. All software execute as a finite

state machine (FSM). Hence, a Finite State representation

of executable software is the most appropriate

representation of the various system states and the

transitions resulting in state change.

The broad goal of our research is to make available an

automata-based reliability estimation framework that can

be used across the software life cycle to ensure that the

software performs reliably at any point of time despite

errors in the system. We also aim to control the system

from executing such faults.

This paper is structured as follows: Section 2 examines

how opcodes form the basis of executable code. Section 3

throws light on any related work employing our proposed

approach. Section 4 proposes the automata-based

reliability approach. Section 5 elaborates application of

the above approach to ensure uninhibited software

operation despite the occurrence of faults. We close this

paper by evaluating the pros and cons of this research in

Section 6.

II. EXECUTABLE SOFTWARE REPRESENTATION USING

OPCODE

The general format of each machine language

instruction is constituted using opcode and operands [13].

The operands can be a memory address, a register or a

value [13]. Opcode is short for operational code. At its

simplest it is a subset of machine language instructions

that denote the operation to be performed [13]. Opcodes

are the heart of machine language instruction set.

Interestingly opcodes can also be found in bytecodes of

Java class files, bytecodes of compiled LISP code, .NET

common Intermediate Language and many other

programming languages [13].

We propose that as opcode controls software execution,

it can also be used as the basis to ensure fault-free

software execution. The opcode sequences in program

code drive software transition from one state to another.

Utilizing this basic attribute of software operation we

propose to control software reliability. For

implementation of the same we propose an automata-

based software reliability model in section IV.

III. RELATED WORK

Automata-Based Software Execution is a very naive

domain. Recently the importance of formal languages has

been used for controlling software implementations. Ref.

[14] proposed use of formal languages of finite words

between control designs and software implementations.

Their work proves that finite automata provides

analyzable representations of software implementations

and can help capture interesting specifications of

switched linear systems [14]. Ref. [15] applied automaton

as a basis for recognizing sequences semantically

equivalent to a base program sequence during concurrent

program execution. As part of their automata-based

testing model implemented on Java-based multi-threaded

program authors in [15] have designed and implemented

key components including automata-generator, program

transformer and replay controller. All the components

have been designed in accordance to adopt an automaton.

Ref. [16] employed automaton as a basis to formalize

confidentiality of secret information manipulated by a

program. In comparison to static checking, automaton-

based monitoring of information flow in a program offers

dynamic control of program execution including

forbidding dangerous actions. Ref. [17] authors have

developed visual software building, verification and

validation tool to help in automat-based software

development. The tool helps debug software under study

in terms of automata. The tool is being continuously

upgraded and the current version available is UniMod 4.3.

However, the tool functionality is limited in expanse that

it can only help in software debugging and verification.

Automata have also made its way through in automated

robotic systems. Ref. [18] worked upon a novel robotic

motion planning model using hierarchical model

checking. In this case, notably the robot and its functional

environment are all modeled as a timed automaton.

System requirements are also formalized using

Computational Tree Logic (CTL) formulas. Ref. [19]

suggested learning automata based trust model for

portioning user-based agents to fair and unfair groups of

services available in a service-oriented environment.

The above discussion establishes how slowly

automata-based models are penetrating into different

software application domains where reliable program

execution is of prime concern. Taking note of the above,

we have proposed an automata-based software reliability

model that can help sustain failure-free software

execution at runtime.

IV. AUTOMATA-BASED SOFTWARE RELIABILITY MODEL

Software executes as a system of finite states. Every

state has a probability of transition either to the next

correct state or incorrect state. Hence software is a

probabilistic system. To ensure reliable operation, we

need a formal model to analyze such asynchronous

programs with discrete probabilistic choices. To

accurately control reliable or fault-free operation of such

a system we propose the use of probabilistic automata.

 Estimating Software Reliability by Monitoring Software Execution through OpCode 25

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 23-30

In theoretical computer science, the automaton or finite

state machine (FSM) is a mathematical model of

computation [20]. It has formed the basis for both

computer programs and sequential logic circuits for long.

Actually it is an abstract machine that is in any one of a

finite number of states at any given time. This abstract

machine can be formally defined as a quintuple (∑, Q, q0,

δ, F) where [20]:

 ∑ is the finite set of input symbols (a finite, non

empty set of symbols)

 Q is a finite, nonempty set of states.

 q0 is the initial state, an element of Q.

 δ is the state-transition function, δ: Q Χ ∑  Q

 F is the set of final states, a subset of Q.

The above formalism can be used as a basis to monitor

software at runtime. Executable software is an automaton

which on receiving an input string ‘a’ may transit from its

current state to the next state. If the next state, q’ belongs

to Q and the software finally terminates in some state qf

belongs to F (qf ∈ F), then the software is 100% reliable.

However, if at any point during its execution the next

state q’ does not belong to F (𝑞𝑓 ∉ F), then the software

is executing a fault and is 0% reliable. Hence the runtime

model of software can be represented through a

probabilistic finite automata model. The probabilistic

automaton is also a quintuple like an ordinary automaton

[20]. However, it is different as here the transition

function δ is defined as [20]:

𝛿: 𝑄 × Σ → 𝑃(𝑄) (1)

Here, P (Q) denotes power set of Q. The above

transition function can be expressed as a membership

function [20]

𝛿: 𝑄 × Σ × 𝑄 → {0,1} (2)

such that

𝛿 (𝑞, 𝑎, 𝑞′) = 1 𝑖𝑓 𝑞′ ∈ 𝛿(𝑞, 𝑎) (3)

and

𝛿 (𝑞, 𝑎, 𝑞′) = 0 𝑖𝑓 𝑞′ ∉ 𝛿(𝑞, 𝑎) (4)

Hence in a probabilistic automaton the target of a

transition is a probabilistic choice over several next states.

For instance, a transition may reach the correct next state

with probability of ½ and incorrect state with probability

½ too [20]. Thus in probabilistic automaton a transition

relates a state and an action to a probability distribution

over a set of states.

On basis of the above discussion, we now develop an

approach for software reliability estimation based on

probabilistic automata. This approach provides a model

that is simple, formally sound and practically useful. The

model permits the tracing and control of next possible

software state. The information can then be used to

ensure failure-free software execution and analyze

software feasibility.

The conventional models for software reliability

estimation quantify reliability as the absence of failures

from a system. Contrastingly they compute reliability

using failure data (brute force) [21].

Software Architecture is a key means for achieving

understandability of the complex, real-time software

systems [22]. In present times when real-time software is

expected to perform despite faults, a finite state-based

software representation scheme is used to represent and

control software execution. This state-based software

representation is built using actual executable code.

Hence, it showcases the actual states software can acquire

during its operation along with the possible paths to the

final desirable as well undesirable states.

To achieve this software representation, we propose an

automata-based software reliability model.

The notations used in the model are described in Table

1 below:

Table 1. Notations for the Automata-Based Software Reliability Model

G(V,E) Graph Representation of executable software

as a set of V nodes and E links.

R(Q) Reliability of a software as a set of Q

components or nodes

F(I,N) Function that calculates next software state

using previous state information (N) and

assembly opcode (I)

xi Input node i

Vij Weight b/w node xi and xj

P(i) A distinct collection of nodes through the
FSM from the start node to the final node.

The primary goal of this automata-based software

reliability model is to provide automated support for

model construction and next state knowledge base

generation. The model controls software execution using

the fact that future or next software state depend on the

present state and input instruction [23].The model uses

the above model and data to maximize runtime software

reliability.

The algorithm extends the usage of stochastic finite

state automata formalism for runtime software

representation and control. The stochastic finite

automaton model obtained utilizes the rules laid in eqn.

(1-4) above to allow or halt the next software transition.

26 Estimating Software Reliability by Monitoring Software Execution through OpCode

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 23-30

Table 2. Phases of the Automata-Based Software Reliability Model

Phase I: FSM Representation

Start

Step 0: Preprocess all executable code of software under

scrutiny by transforming their values to equivalent
assembly code.

Step 1: Extract opcode from each assembly instruction.

Repeat steps 2-4 for each assembly opcode until
end of executable code file

Step2: For each unique assembly opcode instruction,

record the opcode instruction and its
corresponding node to the next_state transition

table.

Step 3: Represent each unique assembly opcode as a new,

unique FSM node, linked to its parent node

through the opcode transition.

Step 4: Check for end of file; assign it as the final node of

the FSM.

Step 5: Introduce an error node in the FSM, linked to all

existing nodes.

Step 6: Assign each node of FSM an equal probability of

execution Vij. where 𝑉𝑖𝑗 → {0,1}.according to eqn.
(2)

Phase II: Software Implementation

(Feed

Forward)

Initialize Software Execution

Step 7: Receive input node qi and assembly opcode, ai.

Step 8: Validate next node from next_state transition table
using eqn. (3) and (4). If (3) is true allow transition

to next node.

Step 9: Increase the probability of execution of last
traversed node by a unit.

Step 10: If eqn. (4) is true, halt system execution. Set the

probability of execution, Vij of node qi resulting in

error node as 0 and record it to faulty_node table.

Phase III: Fault Avoidance

Step 11: Repeat steps 12-13 till last executable instruction.

Step 12: If step 10 executes, check for alternate next node

using Djikstra’s algorithm [11].
Else, let the software execute.

Step 13: Continue software execution using the next

alternate node.

Phase IV: Software Maintenance

Step 14: Record the complete path of the successful

execution to alternate_path table.

We demonstrate the step by step implementation of the

above algorithm on a class of real world Java-Based

ChartGenerator application developed by PostGraduate

students.

Phase I

Step 0: The equivalent assembly code for the Java

class LineGraphSales.class was obtained by

disassembling the executable .class file. Figure 1 below

depicts a portion of the same.

Fig. 1. Equivalent assembly code of LineGraphSales.class

Step1 & 2: Opcode was extracted by parsing each

assembly instruction from code obtained in Step 0 and for

each unique assembly instruction a new record was added

to the Next_State_Transition table. The table is referred

as table 3 below:

Table 3. Next_State Transition Table for LineGraphSales

S.No OpCode Instruction Next State

1 Aload q0

2 invokespecial q1

3 Ldc q2

4 putfield q3

5 New q4

6 Dup q5

7 sipush q6

8 invokevirtual q7

9 iconst q8

10 getfield q9

11 Pop q10

12 aconst_null q11

13 bipush q12

14 astore q13

15 ifeq q14

16 goto q15

17 invokestatic q16

 Estimating Software Reliability by Monitoring Software Execution through OpCode 27

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 23-30

Step 3, 4 &5: equivalent FSM was generated using the

same. The equivalent FSM representation for the

executable file LineGraphSales.class is depicted in Figure

2 below:

Fig. 2. FSM representation of LineGraphSales.class

Step 6: Initially as each node of the above FSM has

equal probability of failure, we assign each node an equal

weight Vij as per equation (2). Figure 3 next depicts the

Stochastic Finite State Machine obtained at the end of

this step.

At the end of phase I, stochastic finite state

representation of software is obtained. The automata-

based reliability model can now serve as a control tool

that can control, monitor and trace each software

execution. At this point it is important to note that during

each execution, software may not traverse all connected

nodes in its automata representation. Instead for each

execution, software traverses a set of nodes starting from

the initial node till it terminates. Hence, for each

execution software traverses a path P

 𝑤ℎ𝑒𝑟𝑒 𝑃 (𝑞𝑖 , 𝑞0, … , 𝑞𝑓) (5)

is a set of nodes such that 𝑞𝑖 ∈ 𝑄 , the selection of Q is

guided through user input.

We now discuss the case here for correct software

execution.

Fig. 3. SFSM Representation for LineGraphSales.class

Phase II

We demonstrate Phase II of the application by taking

an execution instance of the LineGraphSales class. Let’s

say the LineGraphSales class follows the following path

(depicted in Figure 3 using bold, solid lines).

𝑃(𝑖) = (𝑞𝑖 , 𝑞0 , 𝑞8 , 𝑞7 , 𝑞0 , 𝑞2, 𝑞7, 𝑞15, 𝑞0 , 𝑞7, 𝑞𝑓) (6)

Step7-9: As the above path starts from the initial node,

we keep increasing the probability of each node traversed

by the software by a unit. As a result the traversed nodes

have a higher probability than the non-traversed nodes.

Phase III and IV

Step 11-14: Software terminates successfully and the

path traversed is recorded as a log entry to the

alternate_path table.

V. MODEL EVALUATION

Accurate monitoring of reliable software operation has

become increasingly important due to the expensive

impact of software failures and recovering from them.

The proposed automata-based software reliability model

is an attempt to achieve the same. The model unlike its

conventional counterparts does not stop at simply

estimating the reliability value of software. Instead the

model is designed to enable early fault detection and

avoidance. The model is a novel breakthrough towards

solving the software reliability challenge.

All conventional software reliability models depend on

either the number of variables related to the software

28 Estimating Software Reliability by Monitoring Software Execution through OpCode

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 23-30

development process, the failure process or the fault

object. The proposed automata-based software reliability

model does not utilize any such mathematical variables or

functions. Instead the model utilizes software state and

input information to control software behavior at runtime.

As a result the proposed model is simpler and direct in its

approach in comparison to its confusing counterparts.

None of the conventional software reliability models

can be generically applied to all software systems of any

size. Engineers need to make a choice for the appropriate

model that suits the data available with the software [24].

The proposed automata-based software reliability model

can be generically applied to all software systems of any

size, complexity or based on any technology. For

application of this model no consideration of the

available data from the software is important.

We now compare the model with its conventional

counterparts using some comparison criteria identified in

[8, 24]. The criteria are the most common criteria used to

make a choice between different conventional reliability

models.

Table 4. Automata-based Reliability Model Evaluation

S.

No

Criteria Automata-Based Reliability

Model

1 Predictive Validity:

Capability to predict
future failure behavior

in operational phases

from present and past
failure behavior

Does not predict failure behavior,

instead detects fault and halts the
system before executing the same.

2 Capability: Ability of

the model to estimate

with accuracy the
quantities needed in

planning and managing

software projects.

Irrespective of software size,

complexity and structure, the

model is capable to monitor
software execution and control

failure due to input or software

related errors.

3 Quality of
Assumptions: Degree

to which an assumption

is supported by the
actual data.

Conventional reliability models
make assumptions regarding the

failure process. Validity of most of

the assumptions in real-world is
questionable. Automata-Based

Model does not rely on any such

dubious assumptions.

4 Applicability: Is the
degree of model

applicability across

different software
products.

The proposed model unlike its
conventional counterparts is

applicable across different

software products.

5 Simplicity: A model

should be simple in

collecting data, in
concept and readily

implementable.

The proposed model is simple as it

does not require any post-failure

data. The model is based on the
formal theory of automata but can

be easily understood by software

engineers with no mathematical
background. Finally the model can

be directly implementable on the

software at runtime.

The comparison criteria discussed above compares the

proposed automata-based software reliability models with

its conventional counterparts on a common basis. The

framework of comparison criteria and the information

gathered in support of the proposed model clearly shows

that the proposed model is a better choice as compared to

its conventional counterparts.

VI. CONCLUSION

An approach to software reliability based on theory of

automata has been derived. Various methods based on the

theory of probability and statistics have been used to

assess reliability of elements in hardware structures [1].

This approach establishes a model that is simple,

mathematically verifiable and directly implementable on

software at runtime. The model permits the monitor and

control of software execution at runtime. The state

transition information collected on basis of opcode

constituting program code can then be linked to actual

state transition of the software at runtime. In case the

software acquires an allowable transition, then it is

performing reliably. However any non-allowable

transition indicates that the software shall execute a fault.

The model can work as a control tool on top of any

software to avoid fault execution. Further if we integrate

this model directly at the intermediate code generation

phase of a compiler, engineers can decide about the

feasibility of a software project.

Use of finite state representation technology suffers

from the state explosion problem [25]. The size of a finite

state model may increase exponentially as the number of

components grows. However, automata-based reliability

model controls this problem to a large extent in the

following way:

 The model generates a unique state for a unique

opcode instruction. The instruction set for every

programming language is finite. Hence the

next_state transition table for each runtime

software code shall be represented through finite

state model irrespective of code size.

Our conclusion from this work is rather positive. All

conventional reliability models give unacceptably

optimistic reliability predictions. The proposed model

does not attempt at any kind of data-driven predictions.

Instead, the model controls reliability at runtime through

the use of a next_state transition knowledgebase. The

next_state transition knowledge base uses opcode

instructions to calculate the next software state.

Preliminary testing of the model has been done. However,

its establishment as a generic model requires its

conversion to a software tool. We are working on the

same at the time of this writing. Though the proposed

model is successful in controlling and avoiding all

software faults. However, the approach shall be unable to

control hardware faults that may result in software failure.

 Estimating Software Reliability by Monitoring Software Execution through OpCode 29

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 23-30

ACKNOWLEDGMENT

The authors wish to thank Late Prof. Pervez Ahmed.

This work was conceived under his able guidance and

vision. It would have been completely impossible to

complete this framework had Prof. Ahmed not provided

his able and timely inputs into the work. May God rest

his soul in peace.

REFERENCES

[1] M. Krejsa, P. Janas and V. Kresja, “ Direct Optimized

Probabilistic Calculations,” in Proc. of 3rd WSEAS

International Conference on Mathematical Models for

Engineering Sciences (MMES’12), Paris, pp. 216–221,

2012.

[2] Danial Rahdari, Amir Masoud Rahmani and Afsane

Arabshahi, “Fault Tolerant Message Efficient Coordinator

Election Algorithm in High Traffic Bidirectional Ring

Network,” (IJITCS) International Journal of Information

Technology and Computer Science, vol. 5, no.1, pp. 1-14,

December 2012.doi:10.5815/ijitcs.2013.01.02.

[3] Karima Mahdi, Raida Elmansouri and Allaoua

Chaoui, ”On Transforming Business Patterns to Labeled

Petri Nets Using Graph Grammars,” (IJITCS)

International Journal of Information Technology and

Computer Science, vol. 5, no.2,pp.15-27, January

2013.doi:10.5815/ijitcs.2013.02.02.

[4] P. Lokesh Kumar Reddy, B. Rama Bhupal Reddy and S.

Rama Krishna, ”Self-Organized Detection of

Relationships in a Network,” (IJITCS) International

Journal of Information Technology and Computer Science,

vol. 5, no.2,pp.80-87, January

2013.doi:10.5815/ijitcs.2013.02.02.

[5] M. Viswanathan, “Foundations for the Run-time Analysis

of Software Systems,” Ph.D. Dissertation, Univ. of

Pennysylvania, Philadelphia, PA, USA, AAI9989666,

2000.

[6] Md. Anjum, Md. Asraful Haque and Nesar Ahmed,

“Analysis and Ranking of Software Reliability Models

Based on Weighted Criteria Value,” (IJITCS)

International Journal of Information Technology and

Computer Science, vol.5,no.2,pp. 1-14, January 2013. doi:

10.5815/ ijitcs. 2013. 02.01.

[7] A.L. Goel, “Software Reliability Models: Assumptions,

Limitations and Applicability,” IEEE Trans. Software

Engineering, vol. SE-11, no. 12, pp. 1411–1423, 1985.

[8] J.D. Musa, “A Theory of Software Reliability and its

Applications,” IEEE Transactions on Software

Engineering, vol.SE-1, no.3, pp. 312–327, 1975.

[9] Pan Jiantao, “Software Reliability”,

http://users.ece.cmu.edu/~koopman/des_s99/sw_reliabilit

y/ (Accessed On: 12-01-2013).

[10] V. Skorpil, L.Cizek, and J. Stastny, “Path Optimization by

Graph Algorithms,” in Proc. 16th WSEAS International on

Computers (CSCC’12), Greece, pp. 73–77, 2012.

[11] “A Machine Learning Based Efficient Software

Reusability Prediction Model for Java Based Object

Oriented Software”

[12] M. Santhosh Prabhu, A. Hazra, P. Dasgupta, "Reliability

Guarantees in Automata-Based Scheduling for Embedded

Control Software," Embedded Systems Letters”, IEEE ,

vol.5,no.2,pp.17-20,June2013.doi:

10.1109/LES.2013.2250479.

[13] I. Santos, F. Brezo, X. U. Pedrero and P.G. Bringas,

“Opcode Sequences as Representation of Executales for

data-mining based unknown malware detection,”

Information Sciences: an International Journal, vol 231,

pp. 64-82, 2013.

[14] Gera Weiss and Rajeev Alur, “Automata based interfaces

for control and scheduling,” in Proc. of the 10th

international conference on Hybrid systems: computation

and control (HSCC'07), Alberto Bemporad, Antonio

Bicchi, and Giorgio Buttazzo (Eds.). Springer-Verlag,

Berlin, Heidelberg, 601-613, 2007.

[15] Heui-Seok Seo, In Sang Chung, Byeong Man Kim and

Yong Rae Kwou, "The design and implementation of

automata-based testing environment for Java multi-thread

programs," Software Engineering Conference, APSEC

2001. Eighth Asia-Pacific, pp.221-228, 4-7 Dec. 2001,

doi: 10.1109/APSEC.2001.991480.

[16] G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt.

“Automata-based Confidentiality Monitoring,” in Proc.

Asian Computing Science Conference (ASIAN’06),

Revised Selected Papers, vol. 4435 LNCS, pp. 75–89.

Springer-Verlag, January 2008.

[17] D. Kochelaev, B. Khasanzyanov, B. Yaminov and A.

Shalyto, “Instrumental Tool for Automata Based Software

Development UniMod 2,” vol. 1, pp. 55-58. DOI:

10.15514/SYRCOSE-2008-2-11.

[18] Rui Wang et al. , "Timed automata based motion planning

for a self-assembly robot system," Robotics and

Automation (ICRA), 2014 IEEE International Conference

on , vol., no., pp.5624,5629, May 31 2014-June 7 2014

doi: 10.1109/ICRA.2014.6907686.

[19] A. Khoshkbarchi, H.R. Shahriari and M. Amjadi,

"Comparison-based Agent Partitioning with Learning

Automata: A Trust Model for Service-Oriented

Environments," Information Security and Cryptology

(ISCISC), 2014 11th International ISC Conference on ,

vol., no., pp.109-114, 3-4 Sept. 2014

doi: 10.1109/ISCISC.2014.6994032.

[20] M. O Rabin, “Probabilistic Automata,” Information and

Control, vol.6, pp. 230-245, 1963.

[21] Ritika Wason, P. Ahmed and M. Qasim Rafiq, “A Tool

for Runtime Reliability Estimation and Control Using

Automata-Based Software Reliability Model,” in Proc. of

the 2nd WSEAS International Conference on Computers,

Digital Communications and Computing (ICDCC 2013),

Romania, pp.51-56, 2013.

[22] A. Dimov, “Formalizing Nonfunctional Characteristics in

Software Architecture- A Way to Achieve System

Dynamism,” in Proc. of 2nd WSEAS International

Conference on Computers, Digital Communications and

Computing (ICDCC 2013), Romania, pp. 14, 2013.

[23] M. Iliescu, V.Ursianu, F. Moldoveanu, R. Ursianu and E.

Ursianu, “Mathematical Models to Estimate the Quality of

Monitoring Software Systems for Electrical

Substantiations,” in Proc. of 2nd WSEAS International

Conference on Applied and Computational Mathematics

(ICACM’13), Greece, pp 112-117, 2013 .

[24] A. Iannino, J. D. Musa, K. Okumoto and B. Littlewood,

“Criteria for Software Reliability Model Comparisons,”

IEEE Transactions on Software Engineering, vol. SE-10,

no. 6, pp. 687-691, 1984.

[25] J. C. Corbett et al., “Bandera: extracting finite –state

models from Java source code,” in Proc. of the 22nd

International Conference on Software Engineering, New

York, pp.439-448, 2000.

http://syrcose.ispras.ru/2008/files/11_paper.pdf

30 Estimating Software Reliability by Monitoring Software Execution through OpCode

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 23-30

Authors’ Profiles

Ritika Wason did her B.Sc from Delhi

University, MCA from Guru Gobind

Singh Indraprastha University and is a

doctoral student at the School of

Engineering and Technology, Sharda

University, India. She joined Bharati

Vidyapeeth’s Institute of Computer

Applications and Management as an

Assistant Professor in 2013. She has published papers in several

National and International conferences proceedings and journals

and has also authored books on Software Testing. She is also a

life time member of Computer Society of India. Her research

interests include formal models and approaches for software

quality especially software reliability and software testing.

Dr. A.K Soni has done his Ph.D. &

M.S.(Computer Science) both from

Bowling Green State University in Ohio,

USA. He is the Professor and Head,

Department of Information Technology,

Sharda University.

He has more than seventeen years of

teaching experience. He has published

many papers in national and international journals. His research

area includes Software engineering, Datamining, Database

management systems and object oriented systems.

Prof. Dr. M. Qasim Rafiq did B.Sc Engg

(Elect), M.Sc Engg (Inst), and M.Tech

(CSE) from A.M.U in 1972, 1979 and

1986 respectively, Did Ph.d in parallel

processing in 1996 from UOR Roorkee.

Joined the teaching at AMU in 1979 as

Lecturer, became Reader in 1987, and

Professor in 1997. A founder chairman of

the Deptt, served thrice as chairman Dr Rafiq is an expert

member of NBA committee, selection committee to various

universities in India, Academic council of different universities

and resource person to different places for delivering expert

lectures. He has also been external examiner for Ph.D and

undergraduate courses to various universities. Have guided

many research scholars for Ph.D. Published a no of papers in

reputed journals/conferences. Fellow IETE, Fellow IE & Senior

member CSI also.

How to cite this paper: Ritika Wason, A. K. Soni, M. Qasim

Rafiq,"Estimating Software Reliability by Monitoring Software

Execution through OpCode", International Journal of

Information Technology and Computer Science(IJITCS), vol.7,

no.9, pp.23-30, 2015. DOI: 10.5815/ijitcs.2015.09.04

