
I.J. Information Technology and Computer Science, 2012, 9, 29-35
Published Online August 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2012.09.04

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 29-35

Coupling Complexity Metric: A Cognitive

Approach

A. Aloysius

Assistant Professor in Computer Science,St. Joseph’s College, Tiruchirappalli

aloysius1972@gmail.com

L. Arockiam

Associate Professor in Computer Science, St. Joseph’s College, Tiruchirappalli

larockiam@yahoo.co.in

Abstract — Analyzing object – oriented systems in

order to evaluate their quality gains its importance as

the paradigm continues to increase in popularity.

Consequently, several object- oriented metrics have

been proposed to evaluate different aspects of these

systems such as class coupling. This paper presents a

new cognitive complexity metric namely cognitive

weighted coupling between objects for measuring

coupling in object- oriented systems. In this metric,

five types of coupling that may exist between classes:

control coupling, global data coupling, internal data

coupling, data coupling and lexical content coupling

are consider in computing CWCBO.

Index Terms— Software Metrics; Control Coupling,

Global Data Coupling, Internal Data Coupling, Data

Coupling, Lexical Content Coupling, Cognitive

Weighed Coupling Between Objects (CWCBO)

I. Introduction

Software engineering is a difficult and complex task.

Software metrics are one way to predict quality within

a system, pointing to problem areas that can be

addressed prior to software release. Metrics attempt to

measure a particular aspect of a software system. These

aspects can range from traditional measurements such

as the number of lines of code to the relationships

created between components in a system. There are

several approaches to estimate complexity of software

but none of them have been accepted as a true measure

of complexity of a class [1]. Object oriented

perspective is one of the most significant ways to

quantify reliability of software by controlling object

oriented constructs. Object oriented design provides a

novel approach for problem solving using models

around real world entities. Most of the software

projects are shifting towards object oriented design

because of only that design phase of a software

development life cycle is the only phase in which

structure of a software is made available. From last two

decades lots of metrics has been proposed ranges from

cohesion to coupling in object oriented software.

However, coupling has a negative impact on software

reliability [2]. To minimize complexity of software it is

necessary to control coupling of object oriented

software. Coupling is closely related with reliability.

To improve reliability of software, coupling should be

taken into consideration to minimize complexity of

software [3]. A lot of coupling metrics to measure the

coupling between two classes or objects but there is no

cognitive weighted coupling metric to measure the

different type of coupling proposed by various

researchers. So, there is a need for cognitive weighted

coupling metric for the class level coupling

measurement. Hence our main goal is to define a

cognitive weighted coupling metric to measure the

coupling at the various levels.

II. Literature Review

Several metrics have been proposed for OO systems

by researchers. A metric suite proposed by Chindamber

and Kemerer (C&K) is one of the best known suites of

OO metrics. The six metrics proposed by CK are

Weighted Method per Class (WMC), Depth of

Inheritance Tree (DIT), Response For a Class (RFC),

Number Of Children (NOC), Lack of Cohesion of

Methods (LOCM) and Coupling Between Objects

(CBO) [4] [5]. Parvinder Singh Sandhu and Dr.

Hardeep Singh [6] have proposed a research that gives

the evaluation of CK suite of metrics and suggests

the refinements and extensions to these metrics so

that these metrics should reflect accurate and

precise results for OO based systems. Raed Shatnawi

[7] has proposed a research that identifies the threshold

values for CBO, RFC and WMC at two levels of risks

using a quantitative methodology based on the logistic

regression curve. These threshold values can be used to

identify the most error-prone classes. Hitz and

Montazeri [8] argue that coupling between two classes

should be multi-faceted rather than being a singular

relation. In other words, there should be many aspects

taken into account when measuring the coupling

relationship between classes within a system. Briand et

al. [7] [9] [10] identify eighteen distinct aspects of

coupling with each focusing on a different type of

30 Coupling Complexity Metric: A Cognitive Approach

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 29-35

relationship. These relationships are finer-grained than

previous approaches where they tend to only pay

attention to method-method, class-method, class-

attribute, etc. Li and Henry [11] propose two additions

to the existing CK suite of metrics. Message Passing

Coupling (MPC) is the number of messages (method

invocations) a class sends to other classes.

CBO has been shown to be correlated to class

quality (defect or error-proneness of a class) [6] [12]

[13] [14] [15] and [16]. First, Gui and Scott argue that

some metrics like CBO treat coupling between a pair of

classes as a binary relation-either they have one or not.

There is no distinction between a strong and weak

relation. Second, the metrics do not consider the

various type of coupling complexity of the classes that

were proposed by Edward Berard [17]. CBO is

explained in section 3, the motivation of proposed

metric is discussed in section 4, Calibration of Types of

coupling is discussed in section 5, The proposed metric

CWCBO is explained in section 6, the experimentation

of a new metric and the case study is described in

section 7, a comparative study of CWCBO with CBO

in section 8 and Section 9 presents the conclusion and

future work.

III. Coupling between Objects (CBO)

Chidamber and Kemerer (CK) introduced a metric

suite to measure testability, maintenance, and

reusability of a class but without any empirical

validation. CK define Coupling Between Objects

(CBO) for a class to be the count of the number of

other classes to which it is directly coupled. This

number represents an object's fan-out to external

objects. The metric's basis is in the fact that if an object

is coupled to another it uses another's methods or

instance variables.

Stevens et al. [18] introduced the concept of

coupling into structured design. He defined coupling to

be "the measure of the strength of association

established by a connection from one module to

another." This infers that highly coupled classes are not

desired as it is considered bad design and can lead to

difficulty understanding classes. As their degree of

coupling increases so does the complexity of the class.

This results with the module becoming increasingly

dependent on external classes to implement its

functionality and is bound to reflect any changes the

external classes may undergo in future maintenance.

Coupling Between Objects (CBO) for a class is a

count of the number of other classes to which it is

coupled. This definition is flexible in three ways.

 Which direction a class is coupled to another

 How a class is actually coupled to another

 The value to give a coupling relationship to

distinguish its strength from another coupling

CBO count only outward coupling to foreign classes.

The way two classes are coupled will follow the same

definition as before in this section. The value that will

be given to the coupling will be defaulted to one, but

this research will experiment with various other values

as well. These variations will be the novel part of the

proposed metric.

Edward Berard [17] has proposed various types of

coupling which are defined as follows:

The following section discus the motivation derived

from the literature reviewed.

Control Coupling :

Passing control flags between

modules so that one module

controls the sequencing of the

processing steps in another

module.

Global Data

Coupling :

Two or more modules share

the same global data

structures.

Internal Data

Coupling :

One module directly modifies

local data of another module.

Data Coupling :

Output from one module is the

input to another Using

parameter lists to pass items

between routines

Lexical Content

Coupling :

Some or all of the contents of

one module are included in the

contents of another.

IV. Motivation

Creating software is complex and increasingly

expensive to develop [19]. The maintenance phase of

software is by far the most costly part in the software

life cycle [20]. Being able to reduce potential defects as

well as increasing ease of maintenance through

software metrics creates a huge interest in the

applicability of metrics. The two metrics (CWCBO and

CBO) offer varying degrees of aspects measured within

a software system. CBO is a measurement which can

be interpreted to show the reusability of a component

and its proneness to change in the future. This

proneness to change is caused through its extensive

coupling throughout the system. If one object is

modified where the coupled object relied on the

preexisting behavior previously, then there is a subtle

defect that is potentially introduced.

The CWCBO includes various types of coupling.

The various types coupling are Control Coupling (CC),

Global Data Coupling (GDC), Internal Data Coupling

(IDC), Data Coupling (DC) and Lexical Content

Coupling (LCC) [17].The cognitive weight of these

types of couplings is calibrated by means of

psychological experiments conducted to students of

masters and bachelors degree. With the new metric

there is hope that this metric will reflect the real

complexity of OO system. This results in a measure

http://dl.acm.org/author_page.cfm?id=81410594978&coll=DL&dl=ACM&trk=0&cfid=96605109&cftoken=11775823
http://dl.acm.org/author_page.cfm?id=81410594978&coll=DL&dl=ACM&trk=0&cfid=96605109&cftoken=11775823

 Coupling Complexity Metric: A Cognitive Approach 31

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 29-35

that will be able to indicate an object that is highly

coupled to methods of another class. This can lead

developers to rethink particular components that can be

re-factored into more maintainable modules or indicate

the complexity of reusing a component to get another

system.

V. Calibration

In this section, an experiment is conducted to assign

cognitive weight to the various type of couplings

discussed in section 3. A comprehension test has been

conducted for a group of students to find out the time

taken to understand complexity of object oriented

program with respect to different types of coupling.

The group of students selected had sufficient exposure

in analyzing the object oriented programs, as they had

undergone courses in Java language. 30 students who

scored 65% and above in the semester Examination

were selected to participate in the comprehension test.

The time taken by students to comprehend the

programs was recorded after the completion of each

program. The time taken for comprehension of all these

programs was noted and the mean time to comprehend

was calculated. Two different programs have been

administered in each case, totally ten different mean

timings were recorded. Average time was calculated

for each program from the individual time taken by

students which shows in Figure 1.

Fig. 1: Average comprehension time for each program

Table 1: Categorized mean comprehension time

Programs

Average

Comprehension

Time

Category

Average

Comprehension

Time

1 40.7
LCC 40.18333

2 39.66667

3 30.76667
DC 30.88333

4 31

5 21.43333
IDC 22.21667

6 23

7 10.8
GDC 11.13333

8 11.46667

9 10.16667
CC 10.11667

10 10.06667

In Table 1, the average comprehension times, for

programs are listed. These programs are based on

object oriented programming. The mean time is also

calculated for each category of the programs and is

tabulated. From the above table, it’s clear that, the

mean time of LCC is higher than which in turn is

higher than DFC, that implies the cognitive load to

understand the LCC is greater than DC, EDC, GDC,

CC.

VI. Cognitive Weighted Coupling Between Object

(CWCBO)

The proposed metric called Cognitive Weighted

Coupling Between Objects (CWCBO), which

considers the cognitive complexity of the different

types of coupling such as data coupling, control

coupling, global coupling and interface coupling.

"Unnecessary object coupling needlessly decreases the

reusability of the coupled objects", "Unnecessary

object coupling also increases the chances of system

corruption when changes are made to one or more of

the coupled objects". The exiting CBO metric proposed

by C.K uses the count of number of objects the current

classes coupled. Each couple is assign a weight 1. This

metric does not considered the various types of

coupling. CWCBO can be calculated by using the

Equation as follows,

))

)

)

))

Where

CC is the total number of modules that

contains Control Coupling

GDC is the count of Global Data Coupling

IDC is the count of Internal Data Coupling

DC is the count of Data Coupling

LCC is count of Lexical Content Coupling

The Weighting Factor of each type of coupling is

calibrated using the method discuss in the previous

section and the values are given as follows,

WFCC is the Weighting Factor of Control

Coupling

WFGDC is the Weighting Factor of Global Data

Coupling and its weight is given as 1

WFIDC is the Weighting Factor of Internal Data

Coupling and its weight is given as 2

0

20

40

60

P1 P3 P5 P7 P9

M
ar

ks

Programs

AVERAGE
TIME

32 Coupling Complexity Metric: A Cognitive Approach

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 29-35

WFDC is the Weighting Factor of Data Coupling

and its weight is given as 3

WFLCC is the Weighting Factor of Lexical

Content Coupling and its weight is given

as 4

If there are many classes namely CWCBO is the

some of all CWCBO for individual classes. The

following section explains how CWCBO is calculated

by means of a case study.

VII. Case Study

The proposed complexity metric given by Eq 1 is

evaluated with the following program.

Program:

import java.io.*;

class bank

{

DataInputStream in=new

DataInputStream(System.in);

int accno,amtde;

String name,acctype;

 //GLOBAL

DATA COUPLING//(Sharing global

variables)

void getdata()throws IOException

{

System.out.println("Enter the Account No:");

accno=Integer.parseInt(in.readLine());

System.out.println("Enter the Account

Type:");

acctype=in.readLine();

System.out.println("Enter the Customer

Name:");

name=in.readLine();

System.out.println("Enter the Initial

Deposit:");

amtde=Integer.parseInt(in.readLine());

}

void display()

{

System.out.println("*******************");

System.out.println(" Account No:"+accno);

System.out.println("Account Type:"+acctype);

System.out.println("Customer Name:"+name);

System.out.println("Initial Deposit:"+amtde);

}}

class withdraw extends bank

{

int wd;

void getin()throws IOException

{

System.out.println("Enter the amount to be

withdrawn:");

wd=Integer.parseInt(in.readLine());

}

void show()

{

if(wd<=amtde) //DATA COUPLING//

(passing variables again for use)

 {

amtde-=wd;

System.out.println("Balance after

withdrawal:"+amtde);

System.out.println(" ******************");

}

else //CONTROL COUPLING//(using true

or false values)

{

System.out.println("You cannot withdraw this

amount");

System.out.println("

**********************");

}}}

class deposit extends bank

{

int dt;

void get()throws IOException

{

System.out.println("Enter the amount to be

deposited:");

dt=Integer.parseInt(in.readLine());

}

void print()

{

amtde+=dt; //LEXICAL

CONTENT COUPLING//(Same content)

System.out.println("Balance after

deposit:"+amtde);

System.out.println("********************"

);

}}

class bankacc

{

public static void main(String args[])throws

IOException

{

DataInputStream in=new

DataInputStream(System.in);

System.out.println("Enter the choice:");

int op=Integer.parseInt(in.readLine());

switch(op)

{

case 1:

 withdraw w=new withdraw();

 w.getdata();

 w.getin();

 w.display();

 w.show();

 break;

case 2:

 deposit d=new deposit();

 d.getdata(); // INTERNAL DATA

COUPLING/ (Modifying same method

with different objects)

 d.get();

 d.display();

 Coupling Complexity Metric: A Cognitive Approach 33

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 29-35

 d.print();

 break;

default:

 System.out.println("Enter the choice 1 or

2");

 break;

}}}

CBO:

CBO=CC+GDC+IDC+DC+LCC

CBO=1+1+1+1+1

CBO=5

CWCBO:

CWCBO= (CC*WFCC) + (GDC*WFGDC) +

(IDC*WFIDC) + (DC*WFDC) + (LCC*WFLCC)

CWCBO = (1*1) + (1*1) + (1*2) + (1*3) + (1*4)

CWCBO=1+1+2+3+4=11

Table 2: Coupling Complexity metric value for the above program

VIII. Analytical Evaluation of CWCBO

Several researchers have recommended properties

that software metrics should possess to increase their

usefulness. For example, Basili and Reiter [21] suggest

that metrics should be sensitive to externally

observable differences in the development environment,

and must also correspond to intuitive notions about the

characteristic differences between the software artifacts

being measured. Weyuker [22] has developed a formal

list of properties for software metrics and has evaluated

a number of existing software metrics using these

properties. These properties include notions of

monotonicity, interaction, non-coarseness, non-

uniqueness and permutation. He developed nine

properties.

In this section, the new metric CWCBO is analyzed

and evaluated against the properties of metrics defined

by Weyuker as discussed in the previous section. This

analytical evaluation explains how the proposed metric

satisfies or not satisfies those properties.

 Non-coarseness: Not all class can have the

same CWCBO since the number of class that it

interacts with varies for different class. Hence

this property is satisfied.

 Granularity: Since the number of class of any

large scale system is always finite, the number

of class having the same CWCBO is also finite.

Hence this property is satisfied.

 Non-uniqueness (Notion of Equivalence): A

class can have the same number of interactions

with the rest of the class as another class thus

having the equal value of CWCBO (s1, s2) can

be equal to CWCBO (s3, s2), since both s1 and

s3 can have the same level of interactions with

s2. Therefore this property is satisfied.

 Design Details are Important: Inter-class

coupling occurs when methods of one class use

methods of another class, i.e., coupling depends

on the manner in which methods are designed

and not on the functionality provided by the

class. Therefore this property is satisfied.

 Monotonicity: Let A and B be two class with

CWCBO (A) = p and CWCBO (B) = q. If A,

and B are combined, the resulting class will

have p + q – r couples, where r is the number of

couples reduced due to the combination i.e.,

CWCBO (A+B) = CWCBO (A) + CWCBO (B)

– (CWCBO (A, B) + CWCBO (B, A)). If A and

B are highly coupled i.e., r is very high,

CWCBO (A+B) may be less than CWCBO (A)

or CWCBO (B). Hence this property is not

satisfied for CSL. Whereas for any three class,

A, B and C, if A and B are combined, then CB

CWCBO S (A+B, C) ≥ CWCBO (A, C) and

CWCBO (A+B, C) ≥ CWCBO (B, C). Thus this

property holds good for CWCBO.

 Non-Equivalence of Interaction: For all class

A, B and C, let CWCBO (A) = CWCBO (B).

CWCBO (A + C) = CWCBO (A) + CWCBO (C)

– CWCBO (A, C) and CWCBO (B+C) =

CWCBO (B) + CWCBO (C) – CWCBO (B, C).

Since CWCBO (A, C) and CWCBO (B, C) may

not be equal, CWCBO (A+C) is not necessarily

equal to CWCBO (B+C). This means that

interaction between A and C can be different

than interaction between B and C resulting in

different complexity values for A+C and B+C.

Thus this property is satisfied.

 Permutation: This property holds good only for

structured programming, since order of methods

need not be the same as the order of execution

in object-oriented systems.

 Renaming: CWCBO does not depend on the

name of the class and depends only on the

details of the implementation. Hence renaming

a class does not affect the CWCBO. Hence this

property holds good.

 Interaction Increases Complexity: Let A, B

and C be any three class with CWCBO (A) = p

and CWCBO (B) = q. If A, and B are combined,

the resulting subsystem will have p + q – r

couples, where r is the number of couples

reduced due to the combination. That is

CWCBO (A+B) = CWCBO (A) + CWCBO (B)

– (CWCBO (A, B) + CWCBO (B, A)). Since

CWCBO (A, B) and CWCBO (B, A) are non-

negative, SC (A) + CWCBO (B) > SC (A+B).

But, CWCBO (A, C) + CWCBO (B, C) ≤

Program # CBO CWCBO

1 5 11

34 Coupling Complexity Metric: A Cognitive Approach

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 29-35

CWCBO (AB, C) is possible for some cases.

Hence this property is not satisfied for SC and

satisfied only for CWCBO

The CWCBO metric satisfies almost all of the

Weyuker’s properties. Though it does not satisfy two

of those properties, these two properties clearly shows

that not being satisfied actually decreases the

complexity. Hence, the metric is proven to be a valid

metric for object oriented system.

IX. Comparative Study

A comparative study has been made with most

widely accepted CK metric suite [5] and found that

CBO metrics proposed by CK did not provide the total

complexity of the class by considering the cognitive

complexity due to message Coupling Between Object

of that class. This differentiates CWCBO from the CK

metrics. The current CWCBO metric is one step ahead

of CK’s CBO, because it includes the complexity that

arises due to the various types of Coupling Between

Object. Another advantage of CWCBO metric is that, it

takes cognitive weights into consideration. In order to

compare the proposed metric a comprehension test was

conducted to bachelors and master degree students.

There were sixty students who participated in the test;

the students were given five different programs in java

for the comprehension test. Thetest was to find out the

output of the given programs. The time taken to

complete the test in minutes is recorded. The average

time taken by all the students is calculated. In the

following Table 3, a comparison has been

demonstrated with CBO, CWCBO and the

comprehension test result.

Table 3: Complexity metric values and mean comprehension time

Program # CBO CWCBO
Mean Comprehension

Time

1 16 16 19.6

2 7 13 13.5

3 12 12 15.7

4 14 20 20.5

5 12 27 22.2

Fig.2: Complexity metric values Vs mean comprehension time

The coupling complexity of the class is calculated by

computing Control Coupling (CC), Global Data

Coupling (GDC), Internal Data Coupling (IDC), Data

Coupling (DC) and Lexical Content Coupling(LCC).

This is better indicator than the CK’s CBO. The weight

of each type of coupling is calculated by using

cognitive weights and weighting factor of type of the

coupling similar to which is suggested by Wang et al.

It is found that the resulting value of CWCBO is larger

than the CBO. This is because, in CBO, the weight of

each coupling is assumed to be one. However,

including cognitive weights for calculation of the

CWCBO is more realistic because it provides for the

complexity of the internal architecture of Coupling

Between Object. The results are shown in the Table 3.

A correlation analysis was performed between CBO Vs

Comprehension Time with r = 0.699243 and CWCBO

Vs Comprehension time with r = 0.872378. CWCBO

has more positively correlated than CBO. From the

table 3, it is observed that CWCBO value is larger than

CBO value which concludes Chat CWCBO is a better

indicator of complexity of the classes with various

types of coupling.

X. Conclusion and Future Work

A CWCBO metric for measuring the class level

complexity has been formulated. The complexity of the

class includes the coupling complexity of the class.

CWCBO includes the cognitive complexity due to

different types of coupling. CWCBO has proven that,

complexity of the class getting affected, which is based

on the cognitive weights of the various types of

coupling. The assigned cognitive weight of the various

types of coupling is validated using the comprehension

test and found that the cognitive load to understand the

LCC is larger than CC, GDC and IDC. The metric is

evaluated through a case study and a comparative study,

and proved to be a better indicator of the class level

complexity. A tool is to be developed for calculating

the CWCBO value and to compare it with CK metrics.

Newer metrics may also be proposed and validated for

assessing the cognitive complexity of other object

oriented features.

Reference

[1] Xu, B.Randell. J, C.M.F. Rubira, and J. R.Stroud,

―Towards an Object Oriented Approach to

Software Fault Tolerance‖,IEEE, ISBN:!0-792-

38069-X, pp. 226-232, 1995.

[2] Yadav. A and Khan. R .A, ―Measuring Design

Complexity–An Inherited Method Perspective‖,

SIGSOFT Software Engineering Notes, 24

No.4,pp: 1-5, july 2009.

[3] Yadav. A, and Khan. R. A, ―Complexity:A

Reliability Factor‖, IEEE International Advance

Computing Conference (IACC-2009), Patiala,

India, pp.2375-2378,6-7 March 2009.

 Coupling Complexity Metric: A Cognitive Approach 35

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 29-35

[4] Mc Quillan. J. A and Power. J. F, ―On the

application of software metrics to UML model,‖

Lecture Notes in Computer Science, Vol. 4364,

2007, pp.217-226.

[5] Chidamber. S. R and Kemerer. C. F, ―A Metric

Suite for Object-Oriented Design‖, IEEE Trans.

on Software Engineering, 1994, pp.476-493.

[6] Harrison. R, Counsell. S and Nithi. R, ―Coupling

metrics for object-oriented design,‖ In

Proceedings for the Fifth International Software

Metrics Symposium, 1998. pages 150-157

[7] Raed Shatnawi ―An Investigation of CK Metrics

Thresholds‖ ISSRE Supplementary Conference

Proceedings, 2006, pp.12-13.

[8] Hitz. M and Montazeri. B, ― Measuring coupling

and cohesion in objectoriented systems,‖ In

Proceedings of the International Symposium on

Applied Corporate Computing, Monterrey,

Mexico., 1995.

[9] Briand, L.C., J.W. Daly, and J.K. Wust, A Unified

Framework for Coupling in Object-Oriented

Systems. IEEE Transactions on Software

Engineering, v.25(1): p. 91-121, 1999.

[10] Briand. L, Wiist. J and Lounis. H, ―Using

coupling measurement for impact analysis in

object-oriented systems,‖ In Proceedings of the

19th International Conference on Software

Maintenance, Oxford, UK, , 1999, pages 475-482

[11] Li. W. and Henry. S, ―Object-oriented metrics

that predict maintainability,‖ Journal of Systems

and Software , 1993, 23:111-122

[12] Basili. V. R, Briand. L. C, and Melo. W. L, ―A

validation of object-oriented design metrics as

quality indicators,‖ IEEE Transactions on

Software Engineering, 1996, 22(10):751-761,

[13] Wilkie. F. and Kitchenham. B, ―Coupling

measures and change ripples in c++ application

software‖, Journal of Systems and Software, 2000,

52(2-3):157-164

[14] Wilkie. F. and Kitchenham. B, ―An investigation

of coupling, reuse, and maintenance in a

commercial c++ application‖, Information and

Software Technology, 2001, 43(13):801-812

[15] Olague. H. M, Etzkorn. L. H, Gholston. S and

Quattlebaum. S, ―Empirical validation of three

software metric suites to predict fault-proneness

of objectoriented classes developed using highly

iterative or agile software development processes,‖

IEEE Transactions on Software Engineering, 2007,

33(6):402-419

[16] Gyimthy. T, Ferenc. R and Siket. I, ―Empirical

validation of object-oriented metrics on open

source software for fault prediction,‖ IEEE

Transactions on Software 8Engineering, 2005,

31(10):897-910

[17] Edward Berard. V ―Essays on object-oriented

software engineering (vol. 1)‖ Berard Software

Engineering, Prentice-Hall, 1993, ISBN:0-13-

288895-5, 1993

[18] Stevens. W, Myers. G and Constantine. L,

―Structured design,‖ IBM Systems Journal, 1974,

13(2):115-139

[19] Kemerer. C. F, ―An empirical validation of

software cost estimation models,‖

Communications of the ACM, 1987, 30(5):416-

429

[20] Pearse. T and Oman. P, ―Maintainability

measurements on industrial source code

maintenance activities,‖ In ICSM '95: Proceedings

of the International Conference on Software

Maintenance, 1995, page 295

[21] Basili, V. and R. Reiter, Evaluating automatable

measures of software Models. in IEEE Workshop

on Quantitative Software Models, NY, p. 107-116,

1979,

[22] Weyuker, E., Evaluating software complexity

measures. IEEE Transactions on Software

Engineering, v.14: p. 1357-1365, 1988.

Mr. A. Aloysius is working as

Assistant Professor in

Department of Computer

Science, St.Joseph’s College

(Autonomous), Tiruchirappalli,

Tamil Nadu, India. He has 12

years of experience in teaching

and research. He has published

many research articles in the National / International

conferences and journals. He has also presented 2

research articles in the International Conferences on

Computational Intelligence and Cognitive Informatics

in Indonesia. He has acted as a chair person for many

national and international conferences. He is currently

pursuing doctor of philosophy programme and his

current area of research is cognitive aspects in software

design.

Dr. L. Arockiam is working as

Associate Professor in the

Department of Computer Science,

St.Joseph’s College (Autonomous),

Tiruchirappalli, Tamil Nadu, India.

He has 23 years of experience in

teaching and 15 years of

experience in research. He has

published 109 research articles in the International /

National Conferences and Journals. He has also

presented 2 research articles in the Software

Measurement European Forum in Rome. He has

chaired many technical sessions and delivered invited

talks in National and International Conferences. He has

authored a book on ―Success through Soft Skills‖. His

research interests are: Software Measurement,

Cognitive Aspects in Programming, Web Mining and

Mobile Networks.

