
I.J. Information Technology and Computer Science, 2012, 5, 8-15
Published Online May 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijitcs.2012.05.02

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 5, 8-15

Solving Web-based Applications Architectural
Problems in the Cloud: The Way Forward

Philip Achimugua, Oluwatolani Oluwagbemib, Ishaya Gambo c

a,b,Department of Computer and Information Science, Lead City University, Ibadan. Nigeria
aEmail:check4philo@yahoo.com

cDepartment of Computer Science and Engineering, Obafemi Awolowo University, Ife-Ife.

Abstract—Highly-available and scalable software
systems can be a complex and expensive proposition.
Traditional scalable software architectures have not
only needed to implement complex solutions to
ensure high levels of reliability, but have also
required an accurate forecast of traffic to provide a
high level of customer service. This traditional
software architecture is built around a common
three-tier web application model that separates the
architecture into presentation, business logic and
database layers. This architecture has already been
designed to scale out by adding additional hosts at
these layers and has built-in performance, failover
and availability features. Even with all these
developments in architectural designs, some
software still lacks in scalability, reliability and
efficiency. This paper therefore examines the
shortfalls of traditional software architectural
problems with a view to addressing them using the
cloud computing approach.

Index Terms—Scalability, Software, Systems,
Architecture, Service

1. Introduction

Cloud computing is a model for enabling

convenient, on-demand network access to a shared

pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with

minimal management effort or service provider

interaction [4]. For several years however, software

architects have discovered and implemented several

concepts and best practices to build highly scalable

applications. In today’s "era of tera", these concepts are

even more applicable because of ever-growing datasets,

unpredictable traffic patterns, and the demand for faster

response times.

As companies move computing resources from

premises-based data centers to private and public cloud

computing facilities, they should make certain their

applications and data a safe and smooth transition to

the cloud. In particular, businesses should ensure that

cloud-based facilities will deliver necessary application

and transaction performance now, and in the future.

Much depends on this migration and preparation for

the transition and final cutoff. Rather than simply

moving applications from the traditional data center

servers to a cloud computing environment and flick the

“on” switch, companies should examine performance

issues, potential reprogramming of applications, and

capacity planning for the new cloud target to

completely optimize application performance.

Applications that performed one way in the data center

may not perform identically on a cloud platform.

Companies need to isolate the areas of an application

or its deployment that may cause performance changes

and address each separately to guarantee optimal

transition [3]. In many cases, however, the underlying

infrastructure of the cloud platform may directly affect

application performance.

Therefore, businesses should also thoroughly test

applications developed and deployed specifically for

cloud computing platforms. Ideally, businesses should

test the scalability of the application under a variety of

network and application conditions to make sure the

new application handles not only the current business

 Solving Web-based Applications Architectural Problems in the Cloud: The Way Forward 9

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 5, 8-15

demands but also is able to seamlessly scale to handle

planned or unplanned spikes in demand.

Finally, this paper is divided into about eight

sections. The first section introduces the topic of

discussion which is cloud computing, the second

section discusses software architecture practice as a

discipline, the third section deals with the essentials of

cloud computing, the fourth section enumerates cloud

computing performance, the fifth section has to do with

understanding performance, scale and throughput in

the context of cloud computing infrastructure while the

sixth section describes the scalable architectural

considerations in the cloud and the seventh section

presents an envisioned reference architecture for the

cloud. Section eight brings the research to a logical

conclusion.

2. Software Architecture Practice

Today, software architecture practice is one sub-

discipline within software engineering that is

concerned with the high-level (abstract) design of the

software of one or more systems [1]. Software

architecture are created, evolved, and maintained in a

complex environment. The architecture business cycle

of Figure 1 illustrates this. On the left hand side, the

figure presents different factors that influence software

architecture through an architect. It is the responsibility

of the architect to manage these factors and take care of

the architecture of the system. An important factor is

formed by requirements, which come from

stakeholders and the developing organization. The

architect also has the capacity of influencing opinions

of stakeholders, refine user’s requirement in a way that

it captures all the activities of an organization as well

as determine the technicalities of the proposed software

in terms of development techniques, architectural

considerations, programming language (s) to be used

and the extent of scalability of the database [2].

 Figure 1: The Architectural Business Circle1

3. Essentials of Cloud Computing

Poor application performance causes companies to

lose customers, reduce employee productivity or

morale, reduces bottom line revenue and trust. Because

application performance can vary significantly based

on delivery environment, businesses must make certain

that application performance is optimized when written

for deployment on the cloud or moved from a data

center to a cloud computing infrastructure.

Applications can be tested in cloud and non-cloud

environments for base-level performance comparisons.

Aspects of an application, such as disk I/O and RAM

access, may cause intermittent spikes in performance.

However, as with traditional software architectures,

overall traffic patterns and peaks in system use account

for the majority of performance issues in cloud

computing [3].

Capacity planning and expansion based on

multiples of past acceptable performance solves many

performance issues when companies grow their cloud

environments. However, planning cannot always cover

sudden spikes in traffic, and manual provisioning

might be required. A more cost-effective pursuit of

greater scalability and performance is the use of more

efficient application development; this technique

breaks code execution into silos serviced by more

10 Solving Web-based Applications Architectural Problems in the Cloud: The Way Forward

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 5, 8-15

easily scaled and provisioned resources. In response to

the need for greater performance and scalability in

cloud computing environments, this paper offer

scalability features and options that aid application

performance, including lightweight virtualization,

flexible resource provisioning, dynamic load balancing

and storage caching, and CPU bursting. This will allow

businesses to develop more efficient applications that

are easily ported to virtually any open standards

environment.

4. Cloud Computing Performance

Poor quality of service in applications, and Web

pages frustrates employees and customers alike, and

some performance problems and bottlenecks can even

cause application crashes and data losses. In these

instances, performance or lack of performance is a

direct reflection of the company’s competency and

reliability. Customers are not likely to put their trust in

a company whose applications crash and are reluctant

to return to business sites that are frustrating to use due

to poor performance and low response times. Intranet

cloud-based applications should also maintain peak

performance. Positive employee productivity relies on

solid and reliable application performance to complete

work accurately and quickly.

Application crashes due to poor performance cost

money and impact morale. Poor performance hampers

business expansion as well. If applications cannot

adequately perform during an increase in traffic,

businesses lose customers and revenue. Adequate

current performance does not guarantee future behavior

[4]. An application that adequately serves 100

customers per hour may suddenly nose-dive in

responsiveness when attempting to serve 125 users.

Capacity planning based on predicted traffic and

system stress testing can help businesses make

informed decisions concerning cost-effective and

optimum provisioning of their cloud platforms. In

some cases, businesses intentionally over-provision

their cloud systems to ensure that no outages or

slowdowns occur. Regardless, companies should have

plans in place for addressing increased demand on their

systems to guarantee they do not lose customers,

decrease employee productivity, or diminish their

business reputation.

5. Understanding Performance, Scale, and
Throughput in the Context of Cloud
Computing Infrastructure

Performance is generally tied to an application’s

capabilities within the cloud infrastructure itself.

Limited bandwidth, disk space, memory, CPU cycles,

and network connections can all cause poor

performance. Often, a combination of lack of resources

causes poor application performance. Sometimes poor

performance is the result of an application architecture

that does not properly distribute its processes across

available cloud resources while the effective rate at

which data is transferred from point A to point B on

the cloud is throughput. In other words, throughput is a

measurement of raw speed. While speed of moving or

processing data can certainly improve system

performance, the system is only as fast as its slowest

element. A system that deploys ten gigabit Ethernet yet

its server storage can access data at only one gigabit

effectively has a one gigabit system and scalability has

to do with the search for continually improving system

performance through hardware and software

throughput gains [3] . This is defeated when a system

is swamped by multiple, simultaneous demands. The

only way to restore higher effective throughput in such

a “swamped resources” scenario is to scale or add more

of the resource that is overloaded. For this reason, the

ability of a system to easily scale when under stress in

a cloud environment is vastly more useful than the

overall throughput or aggregate performance of

individual components. In cloud environments

 Solving Web-based Applications Architectural Problems in the Cloud: The Way Forward 11

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 5, 8-15

however, this scalability is usually handled through

either horizontal or vertical scaling.

When increasing resources on the cloud to restore

or improve application performance, administrators can

scale either horizontally (out) or vertically (up),

depending on the nature of the resource constraint.

Vertical scaling (up) entails adding more resources to

the same computing pool for example, adding more

RAM, disk, or virtual CPU to handle an increased

application load. Horizontal scaling (out) on the other

hand requires the addition of more machines or devices

to the computing platform to handle the increased

demand.

6. Scalable Architectural Considerations in the
Cloud

A scalable architecture can take many forms; but

in essence, it is an application and underlying

infrastructure that can adapt to dynamically changing

conditions to promote the availability and reliability of

a service4.

With the proliferation of online communities and

the potential for cross-pollination across these

environments, the traffic and load patterns encountered

by an application have become unpredictable as the

potential for viral or flash crowd events can drive

unprecedented traffic levels. This dynamic nature

drives the need for a massively scalable solution to

enable the availability of web-based applications.

Previously, in the traditional hardware model,

there were two approaches one could take with regard

to the issue of the unpredictability of site traffic and

system load, each of which is illustrated in Figure 2.

Figure 2: Traditional Hardware Model3

The first approach was to overprovision, that is, to

have enough resources in place to handle any spikes in

traffic that may occur. While this enables an

application to increase its availability in high-traffic

situations, it is not an effective use of resources

because a portion (and perhaps the majority) of these

resources sits idle during non-peak periods which

makes it uneconomical while the second approach in

the traditional hardware model is to provision for the

typical usage pattern of the application and suffer the

consequences of lost traffic when peak demands are

encountered. Although this is more cost friendly in

times of normal usage, it is costly during traffic spikes

because lost traffic typically means lost revenue

opportunities. This scenario is illustrated in Figure 2 by

the shaded region under the demand curve represented

by the red line and above the available infrastructure

capacity represented by the blue line. In this situation

the demand exceeds capacity, and, as a result, traffic is

lost and/or the application service is unavailable.

Neither of these approaches in the traditional hardware

model is ideal, which is why the scalable cloud model

is such an excellent fit for this type of dynamic and

unpredictable environment. With the scalable cloud

model, you can dynamically provision additional

resources only when they are needed and then

decommission them when they are no longer required.

In true utility computing fashion, you incur charges

only for the time period in which you use the resources.

Figure 3 illustrates the scalable cloud model for

application resources. In this figure, the demand curve

12 Solving Web-based Applications Architectural Problems in the Cloud: The Way Forward

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 5, 8-15

is identical to that of Figure 2, but due to the dynamic

provisioning of resources, at no time is there excess

capacity in which servers sit idle, nor is there

insufficient capacity to accommodate the demand for

the application. In the following sections, we will

describe the preferred methods and techniques for best

implementing the scalable cloud model at all levels of

an application’s multi-tiered architecture. The y-axis

represents infrastructure costs (which can be

generalized to represent the number of servers in use)

while the x-axis represents the time at which user

requests are processed, and the red line is an indication

of actual user demand for the service provided by the

application. The gray arrow illustrates the disparity

between the two. This scenario is obviously a costly

solution due to the presence of unutilized capacity and

therefore generally not a common or recommended

approach.

Figure 3: Scalable Cloud Model3

7. Envisioned Scalable References Architecture
for the Cloud

Scalable web-based applications enhance

organizational performance and also align enterprises.

As a result, Figure 4 illustrates a reference architecture

that could be adopted by scalable applications that

incorporates the best practices for successful

implementations of our diverse customer base. Worthy

of note is that this architecture looks much like the

conventional three-tier web application architecture,

which has to do with the presentation, business logic

and database layers with the addition of a caching tier

between the application servers and the database.

However, there are some subtle (and some less subtle)

modifications and enhancements that can be made to

the architecture to allow it to best handle the unique

traffic and load patterns experienced by scalable

applications at run time.

The components of the proposed scalable

architecture is shown in Figure 4.The first tier shown in

the architecture is composed of clients who are

responsible for sending HTTP requests. The responses

of these requests must be provided at good response

time based on user profile. Scaling application-specific

computation is relatively easy as requests can be

distributed across any number of independent

application servers running identical code through the

use of two load balancers called request allocator.

Regardless of estimated load, we recommend using

two front-end load balancers to avoid redundancy in

the case of a server failure. Additionally, it is better to

ensure that these load balancers be placed in different

availability zones to increase the reliability and

availability of the application. Similarly, one can

reduce the network bottleneck between the application

and database servers.

The main challenge, however, is to scale access to

application data. The application server are positioned

in different availability zones and with alert

mechanisms in place to allow automatic scaling (both

up and down) of the array based on instance specific

metrics. These metrics used for auto-scaling include

CPU-idle, free memory, and system load. However,

one can use virtually any system metric as an auto-

scaling trigger, including application-specific metrics

that you can add via custom plug-ins to the system.

The core of this architecture lies in the implementation

of the proxy servers. A traditional proxy server is

sufficient to serve static content on behalf of

 Solving Web-based Applications Architectural Problems in the Cloud: The Way Forward 13

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 5, 8-15

application providers. To generate dynamic content

however, the system must be designed in such a way

that each proxy server has immediate and dynamic

access to the contents in the main or home server.

The proxy server also contains a simple database

cache designed to reduce CPU utilization and

bandwidth consumption of the home server, as well as

the impact of database queries on the execution time of

a request. Each home server embodies the traditional

three-tiered architecture, which enables it to generate

Web content dynamically. While it is aimed at

offloading the generation of dynamic content to the

proxy servers, the prototype is compatible with this

well-established home server architecture and hence

also allows the application provider to serve directly as

much dynamic content as it chooses. The top tier is a

standard web server, which manages HTTP

interactions with clients.

The web server is augmented with a second tier,

the application server, which can execute a program to

generate a response to a client’s request based on the

client profile, the request header, and the information

contained in the request body. Finally, the third tier

consists of a database server that the application

provider uses to manage all of its data. One important

issue in any replicated system is consistency.

Consistency management has two main aspects: update

propagation and concurrency control. In update

propagation, the issue is to decide which strategy must

be used to propagate updates to replicas. Many

strategies have been proposed to address this issue.

They can be widely classified into push-based and pull-

based strategies. Pull-based strategies are mostly

suitable for avoiding unnecessary data update transfers

when no data access occurs between two subsequent

updates while pushing data updates immediately

ensures that replicas are kept consistent and the servers

hosting replicas can serve read requests immediately.

The system must also handle concurrent updates to

a data unit emerging from multiple servers. Traditional

non-replicated DBMSs perform concurrency control

using locks or multiversion models. For this, a database

requires an explicit definition of transaction, which

contains a sequence of read/write operations to a

database. When querying a database, each transaction

sees a snapshot of consistent data (a database version),

regardless of the current state of the underlying data.

This protects the transaction from viewing inconsistent

data produced by concurrently running update

transactions.

However, concurrency control at the database

level can serialize updates only to a single database and

does not handle concurrent updates to replicated data

units at multiple edge servers. Traditional solutions

such as two-phase commit are rather expensive as they

require global locking of all databases, thereby

reducing the performance gains of replication. To

handle this scenario, the system must serialize

concurrent updates from multiple locations to a single

location. The system does guarantee transaction

semantics and also enforces consistency for each query

individually.

14 Solving Web-based Applications Architectural Problems in the Cloud: The Way Forward

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 5, 8-15

Figure 4: Proposed Scalable Architecture for the Cloud

8. Conclusion

Most approaches toward scalable hosting of Web

applications consider the application code and data

structure as constants, and propose middleware layers

to improve performance transparently to the

application. This paper keys into this concept and

Request
Allocator

1

. . .

Request
Allocator

1

App
Server

1

App
Server

2

App
Server

n

Proxy
Server

1

Proxy
Server

3

Proxy
Server

n

Proxy
Server

2

.

Master
DB

Slave
DB

Slave
DB

.

Consistency Updates

User Profile

Consistency Updates

Home Server

Immediate and
Dynamic Access

 Solving Web-based Applications Architectural Problems in the Cloud: The Way Forward 15

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 5, 8-15

demonstrates that major scalability improvements can

be gained by allowing one to decentralize an

application’s data into independent services that are

interoperable and allows regular updates using profile

of users to respond to queries. While such restructuring

introduces extra costs, it considerably simplifies the

query access pattern that each service receives, and

allows for a much more efficient use of classical

scalability techniques.

References

[1] Achimugu et al., “Software Architecture and
Methodology as a Tool for Efficient Software
Engineering Process: A Critical Appraisal”
Journal of Software Engineering & Applications,
2010, 3, 933-938 doi:10.4236/jsea.2010.310110
Published Online October 2010
(http://www.SciRP.org/journal/jsea)

[2] Bass et al., “Software Architecture in Practice,”
Addison Wesley, New York, 2003.

[3] Alder, B., “Building Scalable Applications in the
Cloud: Reference Architecture & Best Practices”
2011 RightScale, Inc.

[4] Nolle, T., “Meeting performance standards and
SLAs in the cloud.” SearchCloudComputing,
2010.

(http://searchcloudcomputing.techtarget.com/tip/0
,289483,sid201_gci1357087_mem1,00.html)

Authors Biography

Philip Achimugu is a Lecturer of Computer
Science at Lead City University, Ibadan, Nigeria. He
holds B.Sc., M.Sc. in Computer Science and also
pursuing a PhD degree in the same field. He has got
about twenty-five (25) scholarly publications in
reputable journals and learned conferences to his credit.
His research interest borders on ubiquitous or
pervasive computing.

Oluwatolani Oluwagbemi lectures in Computer

Science department of Lead City University, Ibadan,
Nigeria. She holds B.Sc., M.Sc. in Computer Science
and also pursuing a PhD degree in the same field. She
has over fifteen (15) reputable journal and learned
conference publications. Her research interest is IT
project Management and Entrepreneurship.

Ishaya Gambo is a lecturer of Computer Science

at the Obafemi Awolowo University Ile-Ife, Nigeria.
He holds B.Sc., M.Sc. in Computer Science and also
pursuing a PhD degree in the same field and institution.
He has got a good number of publications in reputable
journals and learned conferences. His research interest
is Software Architecture.

