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Abstract— Datalog is a widely recognised language for a 
certain class of deductive databases.  Information Content 
Inclusion Relation (IIR) formulates a general, information 
theoretic relationship between:  data constructs; between 
data constructs and real world objects, and between real 
world objects. IIR is particularly concerned with the 
information that data carry. It would therefore seem 
desirable to find out whether IIR and reasoning based on 
IIR may be implemented by using ‘safe’ Datalog. We 
present and prove the following theorem: 
 
Any database system that can be modelled using IIR can be 
represented as a ‘safe’ Datalog program.} 
 
This paper explores the nature of the relationship between 
the two frameworks for representing domains of 
application, in order that such representations of IIR by 
`safe' Datalog can then be used as a tool for the analysis of 
any site that can be approached  with the notion of 
information content, and in particular any given database, 
and hence how a database works may be approached in 
terms of information content of events. 
 
Index Terms— Databases, Information theory, models and 
principles, Information technology, Programming 
languages. 

  
 
1. Introduction 
When a database is queried, the assumption is that 

we obtain information from it. The query can only be 
answered by a precise match between the query and the 
data within a database [1]. Thus, we have a match on the 
syntactic nature of information [2], but have no definite 
relationship with the semantic level of the information, 
inasmuch as such a query only tells us about the symbols 
in the database. It may possibly tell us something about 
the domain of application, but this is by no means certain. 
For instance, a database may contain entities, and a grid 
reference has a link to an entity that indicates that at that 
grid reference, it is raining, say as a current measure of 
precipitation. To a cognitive agent, this also includes the 

information that the ground at the grid-reference is wet. 
We cannot currently query the database asking if the 
ground at that grid-reference is wet, we may only query 
whether precipitation occurs at this grid reference. This 
is an example of ‘other’ information, besides that of the 
primary meaning of what is carried in the database.  

We take a ‘semantic externalist’ view of 
information [3] and we assert that data within a database 
may carry such information [4], and information 
inclusion content relations (IIR) can be used to describe 
the relationship between these pieces of information that 
the data in a database may carry [5], and the domain of 
application. IIR is domain independent, and is a model 
of the informational relationship between components of 
a site/system. We developed the notion of IIR [5] with a 
main assumption that information is generated by a 
reduction in uncertainty. This follows [6] and [7] and is 
further refined in [5] and [8] That information is 
generated by an occurrence of an event, and this event 
may tell us truly of some other event [5].  

Datalog are programs, consisting of a subset of 
Prolog syntax, which are used to define rules and facts 
declaratively, and in turn is used to derive new facts 
from the database of such facts [9]. ‘Safe’ Datalog is 
Datalog that has only positive sub-goals and is ‘safe’, 
that is, its variables are limited to finite ranges [10, p. 67]. 
‘Safe’ Datalog may always be represented as an 
existentially unqualified, first-order Horn clauses [10] 
and because its first order variables are limited to finite 
sets and as such are necessarily are a subset of first order 
predicate logic (FOL).  

The idea is that a finite probability space can be 
modelled using a Datalog database, and by invoking a 
particular query this acts as selecting the occurrence of a 
particular event in the probability space, upon which the 
concept of IIR is constructed. Using the declarative 
deduction of Datalog, we can then model the inference 
laws for IIR (see section 2, and determine what the 
consequences of that event are, or as we term it the 
‘closure’ for that event. That is, which other events that 
an occurrence of a single event can tell us truly. Thus, if 
the above relationship is mathematically proven, then we 
have a rigorous tool for modelling IIR in all situations. 
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Theorem 2.9 (Product). If X = X1 ∩ X2 ∩… ∩ Xn, 
Y = Xi for i = 1…,n then I(X) ד Y .  

In particular, it is hoped that this will provide a tool to 
model both the logic of a database, and the domain of 
application in informational terms. With such a tool, we 
may be able to uncover reasoning at a distance for such 
representation systems [11], [12, Ch. 20].  

The structure of this paper is as follows. We give a 
brief definitions of IIR, how we believe that IIRs interact 
in a database, and then a brief description of ‘safe’ 
Datalog. This will allow us to define the terms used in 
the above proposition. We then give a theoretical 
justification of the above theorem. This is where the 
main contribution that our work makes is justified. We 
illustrate the above theorem with some examples of IIR 
relationships represented with ‘safe’ Datalog. Finally we 
draw conclusions and propose further work to 
complement and extend the findings of this paper.  

2 Definition of Information Content 
Inclusion Relations 

2.1 IIR and IIR Inference Rules 
The following arguments are based on [5]. In this 

paper, they managed to derive, and prove domain-
independent rules for the manipulation of information 
flow based on probability theory. We take the most of 
the following definitions from this paper.  

Following the terminology of [6, ch. 1] we define 
the term of ‘random selection process’ ((selection 
process) for short), as a set of conditions and outcomes. 
For instance, the roll of a die would be a random 
selection process, whose outcomes are in the set {1, 2, 3, 
4, 5, 6}, and the conditions would be that the die is fair 
(equal probability of rolling any number).  

Definition 2.1.  Let s be some selection process 
under a set C of conditions, O the set of possible 
outcomes of s, which are called states, and E the power 
set of O, X is an event if E ד X and there is a probability 
of X, i.e. P(X).  

Definition 2.2. Let s be some selection process 
under a set C of conditions, O the set of possible 
outco es of s, E the power set of O and let P: E → [0,1] 
be th pro bility measure, such that: P(O)  1;  

m
e ba  =
 E for i = 1, …, n if Xi is a countable ك Xi׊

collection of pairwise disjoint sets then P(ّXi) = ΣP(Xi) 
where ’ّ’ denotes the disjoint union; then the triple 
(O,E,P) is the probability space.  

Definition 2.3. Let s be a selection process under a 
set C of conditions, Xi an event concerning s, xi an 
instance of s, xi is a particular of Xi if xi is in state Ω, 
written Ω = state(Xi) and Xi ד Ω.  

Definition 2.4. Let s be a selection process the 
result of which is reduction of possibilities, and therefore 
be an information source, and k prior knowledge about s;  

Let r be an event, and ri a particular of r at time ti 
and location li;  

Let s’s being F be an event concerning s, and sj 
some particular of s’s being F at time tj and location lj;  

ri carries the information that there must be some sj 
existing at time tj and location lj, if and only if the 

conditional probability of s’s being F given r is 1 (and 
less than 1given k alone).  

This last definition makes more explicit the 
definition of information content in [6, p. 65], whereas 
unlike in the original formulation, and as [5] point out, 
Dretske deals with information content at a type level 
whereas information is carried only by particulars. The 
prior knowledge in this case is not easily quantified, but 
represents an amendment to the state space of the source, 
represented by the receivers prior knowledge (see [7] for 
more details on this concept). For example consider the 
three cup game, in which a pea is under one of three 
cups on a table. One of the cups has already been shown 
to the people already present not to have the pea under it, 
and the cup has been replaced on the table. Some further 
participants now arrive after this event. To those already 
present they know the pea to be under only one of two 
cups, whereas the new arrival only knows that the pea is 
under any of the three cups. So the state space is altered 
by prior knowledge. Such prior knowledge represents the 
relativisation of information content.  

Definition 2.5. When a particular ri carries the 
information that a particular sj exists. We will say that 
the information content of ri includes sj, or in other 
words, sj is in the information content of ri.  

An example of this would be: ‘if it is raining on my 
head at 1500 on the 2nd March 2011’, then this includes 
the information content that ‘my hair is wet at 1500 on 
the 2nd March 2011’.  

Definition 2.6. Let X and Y be an event 
respectively, there exists an information content 
inclusion relation, IIR for short, from X to Y , if every 
possible particular of Y is in the information content of at 
least one particular of X.  

Extending the last example, this gives ‘if it is 
raining on my head’ then this includes the information 
content ‘my hair is wet.’ Notice it is the particulars that 
actually carry the information, but IIR allows us to 
predict the behaviour of the information content of such 
particulars at type level.  

Definition 2.7. Let X be an event, the information 
content of X, denoted I(X), is the set of events with each 
of which X has an information cont t inclusion relation.  en

Sufficient conditions for I(X) ד Y are:  
• Both X and Y are events, namely they could be 

contingently true, or contingently untrue, but are 
neither necessarily true nor necessarily false. 
Mathematically P(X)≠1 and P(X)≠0 and P(Y)≠1 
and P(Y)≠0  

• Whenever X is true Y is true. That is P(Y|X) = 1, in 
other words X ؿ Y . 

Given the above definitions [5] went on to prove 
the following inference rules for eve h  sound 
and complete.  

nts, whic  are

Theorem 2.8 (Sum). If Y = X1 ׫ X2 ׫ …׫ Xn, then 
I(Xi) ד Y for i = 1 , …,n.  
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Theorem 2.10 (Transitivity). If I(X) ד Y,I(Y ) ד Z 
then I(X) ד Z.  

Theorem 2.11 (Union). If I(X) ד Y,I(X) ד Z then 
I(X) ד Y ∩ Z.  

Theorem 2.12 (Augmentation). If W = W1 ∩ W2 
∩… ∩ Wn, Z is the product of a subset of W1,W ,…,Wn, 
I(X) ד Y then i(W ∩ X) ד Z ∩ Y .  

2

Theorem 2.13 (Decomposition). If I(X) ד Y ∩ Z 
then I(X) ד Y,I(X) ד Z.  

In the above theorems X1,Xn,Y,Z,W,W1,W2,Wn are 
all events in E.  

Although these rules are sound and complete, it 
should be noted that [5] have already mentioned that 
these rules are not all independent of one another. They 
mention that theorem 2.13 may be proved with the use of 
theorems 2.8 and 2.9.  

Furthermore we find that (theorem 2.12) may be 
proved as follows:  

Table 1 Types of IIR and their sources (based on [5]) 
Information Inclusion 
Relation: I(X) ד Y  

Sources  

X, Y : both database events  Syntactic relations between 
data constructs and data 
values  

X: a database event; Y : an 
application domain event  

Semantic values and 
information content of data 

X: an application domain 
event; Y : a database event  

Rules and processes of 
database design and database 
operations  

X, Y : both application domain 
events  

Relations between real world 
objects, Business rules  

2.2.2 How IIR work for a database 
We note that constructing and using a database to 

carry and convey information must involve all the above 
four types of IIR.  

Student LecturerCourseTAKES TEACHES

S1S1

S3

S2

S1S1

S2

S2

n n n 1

P
 W

I(X)דY  

roof  
W = 1∩W2∩…∩Wn  Premise  1 

Premise  2 
W∩X  

 f
I(W) דZ

Assumption  3 
Z is a actor of W  Premise  4 

  

I(W∩X) ד Z∩Y  

Theorem 2.8 applied to 4 5 
Theorem 2.10 applied to
2,3 and 5    

■

 
Figure 1: A Path in an ER schema 

The following discussions are based on the ER 
diagram in Fig. 1.  

IIR as shown in row 1 of Table 1 are purely the 
result of the syntactic characteristics of a database such 
as rules for the structure and data integrity of a database. 
That is, they arise as a direct result of the nomic 
constraints [11] within a database. To illustrate, consider 
the path shown in Figure 1, let α1 be the connection 
between node entity Student and node entity Course, α2 
entity Course and entity Lecturer, and α3 entity Student 
and entity Lecturer, then there is a nomic constraint α1, 
α2 ٟ α3, which means that α1 and α2 in conjunction entail 
α3. Such a constraint captures information flow [12, p. 
29], and consequently there is an IIR between some 
combination of α1 and α2 having an information content 
inclusion relation with α3 (In fact, in our notation, this 
may be represented by: I(α1∩α2)דα3 - see section 2).  

Therefore, in any discussion of the inference rules 
for IIR, it is sufficient only to consider IIR itself, 
reflexivity and inference rules, i.e., from theorem 2.8 - 
theorem 2.11 inclusive.  

2.2 IIR underlying a database 
The notion of information content of a state of 

affairs is essentially the same as that of information flow 
in the sense that information is carried by a state of 
affairs in order to flow. We agree with [12, p.4], Once 
one reflects on the idea of information flowing, it can be 
seen to flow everywhere; not just in computers and along 
telephone wires but in every human gesture and 
fluctuation of the natural world. Information flow is 
necessary for life. In this section we show how IIR 
support a database and also may be seen as explaining 
how a database may provide the user with information. 
That is, IIR may formulate an information theoretic view 
of databases.  

IIR now provides a framework for reasoning over a 
database in order to derive information. For example, let 
β1 be a real world event that a student takes a course, β2 
the course is taught by a lecturer, and β3 a student is 
taught by a lecturer. To obtain that student s1 is taught by 
lecturer t1 (w ich is a particular of β3), either the 
following IIR ay be used:  

h
m

• I(α1∩ α3,Iד(2  ,.β3, so through Transitivity (i.eד(3
theor m 2.10 ve β3, or alternatively,  

α (α
e ), we deri

• I(α1)דβ1,I(α2)דβ2, through Augmentation (i.e., 
theorem 2.12) and Union (i.e., theorem 2.11) we 
derive β1∩β2, and from this, we derive I(β1∩β2)דβ3, 
resulting in β3.  

The above chains of reasoning show how the type 
of IIR of row 2 of Table 1 work, namely we need an IIR 
from αi to βi (among others) for the reasoning to work. 
Thus, IIR from a database event to an application 
domain event pertains as to how data is used within the 
database to derive information. This kind of IIR may 
also involve so called semantic values of representations 

2.2.1 Types of IIR and their sources 
In this section we show how IIR support a database. 

A database can be involved with two different types of 
events: those that are internal to the database which 
could be termed database events, and those that are in 
the real world, which will be called application domain 
events. Consequently, there are four types of IIR shown 
in Table 1 which summarise the types of IIR and their 
sources.  
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[11], which are concerned with an application domain. 
For instance in the above relationship, at the syntactic 
level, the intersection of α1 and α2 (i.e., the product of the 
two events) has α3 in its information content from which 
a cognitive agent can derive the information in the 
application domain that a particular lecturer teaches a 
student.  

The IIR from application domain event to a 
database event is involved in database design. It would 
remain unclear as to whether an entity Student should be 
placed in an ER schema until the students are identified 
in the application domain for which the database is 
designed. A further example could be constraints placed 
on a relation, which will not be obtained until some 
relation between objects in the application domain is 
captured. This type of IIR is described in row 3 of Table 
1.  

The IIR between application domain events could 
be concerned with requirements analysis and query 
writing, etc. Say for instance we have a business rule of 
‘if a student takes a course that a lecturer teaches, then 
the lecturer teaches the student’ , ‘a student takes a 
course and the course is taught by a teacher’ is an event, 
denoted say X, and ‘the student takes the course’ is 
another event, say Y . Thus the information content of Y 
is already in X. Furthermore, due to this IIR, we need 
only embody (carry) X by using data and not Y , as Y can 
be derived from X. This elaborates on row 4 of Table 1. 
In addition, this level of IIR contains constraints of the 
real world. For instance, a particular lecturer teaches a 
particular student, generally carries such information, 
such as the lecturer is qualified to teach the course, or we 
have a particular by whence such an IIR would make 
sense, such as this is not before the lecturer or student 
was born.  

As can be seen from an earlier part of this section 
there are several inference rules available for deriving 
further IIR from a given set of IIR, the most important of 
these being the transitive property of IIR. It is these 
inference rules that we wish to model with Datalog.  

2.2.3 Information and meaning of a data 
construct 

It is our belief that meaning is often incorrectly 
taken as synonymous with information that a particular 
datum may carry. Such ambiguity, we feel, hampers the 
analysis of information when related to a database. In 
this section we will attempt to make a clear distinction 
between the two.  

Let f be some relation between objects in the 
application domain, which is either true or false, but 
which cannot always be true, or always false, that is, it is 
contingently true. Let e be a particular data construct, 
such as a node or a path in a graph. Using the above 
example in Figure 1, then e would be the nodes s1, c1 and 
an edge between them, labelled, takes.  

If f can be comprehended by some ‘semantic rule’ 
(terminology borrowed from [11]) without any 
additional inference (ibid., p. 21) from e then f is in the 
primary meaning of e [13]. Again, to illustrate with the 
above example. The primary meaning of e is that student 

s1 takes the course c1. If we assume the accepted rules 
for following the meanings of ER diagrams is like that in 
Figure 1, then the data construct shown therein has a 
‘type’ of primary meaning that a student takes a course, 
and a lecturer teaches a course as opposed to the actual 
meaning of an individual data construct.  

If under certain conditions on both data and the part 
of the application domain with which the data are 
concerned, such as the structure and constraints of a data 
schema, on top of what can be comprehended directly 
from the data, that is f can be derived from e, then this is 
beyond the primary meaning and f is part of the implied 
meaning of e (ibid.). For example, the data constructs in 
Figure 1 are capable of giving the meaning that a student 
is taught by a lecturer if there exists a business rule that 
‘if student takes a course and the course is taught by a 
lecturer then the lecturer teaches that student’. This 
implies that the meaning of such a construction of entity, 
relation, entity is given by its type. Types are modelled 
by the data schema, and types arise from what Dretske 
terms concepts [6, p. 214]. Hence any data instance that 
fit these data constructs inherit the meaning of their 
corresponding types. Meaning arises from these concepts 
and thus concepts give meaning to these instances (cf. [6, 
p. 222]). Some relevant interpretation rule in the 
application domain is then applied to such data 
constructs thereby giving them meaning. Using the ideas 
above, then the meanings of a data construct does not 
necessarily need to be contained in its information 
content. We follow the idea that information must be 
contingently true [4], but this does not necessarily apply 
to meaning. Say f is part of the meaning of e, only if it is 
also a particular of some application domain event, say 
Y with which a database event, say X, of which e is a 
particular, has an IIR, does f qualify as part of the 
information that e bears and conveys. The IIR would 
make sure of the veridicality [12, p. 10] required. The 
meaning of a data construct may happen to be part of its 
information content, however such conditions for 
meaning to be part of the information are neither 
necessary, nor sufficient.  

3 Purpose of Investigation 
The aim of this paper, is to discover whether there 

is any kind of linkage between the two frameworks 
described, and furthermore what the nature of this 
linkage or correspondence is. We believe that there must 
be some kind of linkage. On the basis that ‘safe’ Datalog 
is a subset of First Order Predicate Logic (FOL) then 
Datalog can successfully represent certain aspects of an 
application domain. That is, at one level, it is a 
representation system. There must exist constraints 
between the database and the domain of application it is 
trying to model. However, this representation, when 
looked at from the purely physical viewpoint is at best 
just variances in electrical charge within the internals of 
some computing device [14, p. 156]. We define these 
electrical variances with values of 0 or 1, and in turn use 
those symbols to represent other symbols. Hence a 
computing device is merely a contrivance for 
manipulating symbols (ibid.), and hence computing 
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devices do not exhibit cognition. Eventually these 
symbols can be used to represent aspects of the real 
world. It is this linkage via these constraints to the real 
world by this accumulation and refinement of such 
symbols that we believe information content can arise. 
IIR is a proven way of modelling an application domain 
in terms of information content. As we have two 
frameworks, both of which can represent an aspect of the 
real world, then it seems logical that there must be some 
kind of correspondence between them. This paper is part 
of a series which tries to uncover this assumed 
correspondence.  

‘Safe’ Datalog also represents, as stated before a 
particular subset of FOL. FOL, and in particular one of 
the two inference rules of FOL [15, p.86]; the modus 
ponens, underlies the vast majority of computing [14, p. 
156]. By proving such a correspondence then we must be 
close to determining why computing devices are so 
useful in modelling the real world, and what, therefore is 
the informational justification of the modus ponens, that 
is a possible informational theoretical justification of 
FOL  

We note there are other implementations used when 
analysing databases in terms of IIR. We already know 
we can model IIR using Prolog [8] and Oracle PL/SQL 
[16], [1], [17] and [18]. This would seem to support the 
above claim that there is some link between the 
fundamentals of computing and an information theoretic 
representation of such systems.  

Additionally as seen in the above papers, we can 
model IIR using existing computing frameworks. It 
would therefore, be useful to possess yet another form of 
representing such relationships, which has been formally 
proven to be able to represent any given set of IIR. This 
would allow further investigation of IS in terms of IIR 
using a proven tool.  

Finally, IIR itself is a framework that describes 
information content of a given state of affairs and 
relationship therein. As we are able to successfully 
model IIR, and IIR is not necessarily tied to an IS, and 
furthermore we can model such IIR with several 
implications, it would seem that IIR itself must represent 
some kind of generalised framework, with which to 
undertake informational analysis of virtually any 
situation that can be represented in probabilistic terms.  

4 Brief Definition of ‘safe’ Datalog 
Although Datalog has a relatively simple syntax, in 

this paper we will only be considering ‘Safe’ Datalog, 
that is Datalog that does not contain any negative sub-
goals and is safe [10, pp. 67-68] [19]. One of the reasons 
for this, is that there are many implementations of 
Datalog available, which extend Datalog to include 
negative sub-goals and disjunction [10, p. 119] [20]. 
Throughout this paper we make use of a limited set of 
the functionality of the Datalog Educational System 
[21] .We therefore attempt to define, briefly, the Datalog 
we wish to use to model IIR. We now define the syntax 
of the Datalog we in which we are interested.  

Datalog is a subset of Horn programs, which are 
suitable for application to databases. Datalog’s semantics 

are based on FOL [22]. Note, all following logic 
program definitions are derived from [10] and [19]. 
Essentially Datalog predicate logic consists of a subset 
of formulae. A formula is a set of predicates called 
atoms, or atomic formulae. These are of the form:  

p(a1,…,an)  
where p is the predicate name, a1, a2, …, an are 

constants or variables, known as terms and n is termed 
the arity of the predicate. The collection of predicates, 
constants and variables is referred to as the basis. In 
particular the basis we are considering contains no 
function symbols. A formula consists of series of atoms 
connected using standard logical connectives. It can be 
shown that any formula can be converted to the clausal 
form [9, . 7 4-7 5]. o i  p p2, …, pn, q1, …, qm are a 
series of om , th n a cla al rm of the formulae is:  

pp 3 3  S f 1, 
at s e us  fo

¬p1ש¬p2ש…ש¬pnשq1ש…שqn where all atoms are 
assumed to be universally qualified. Each qualified atom 
in the clause is referred to as a sub-goal. Note this 
structure can be transformed using standard FOL axioms, 
and may give rise to Horn clauses (or definite clauses, 
and general Ho  clauses w  are a subset of the 
clausal form.  

rn  hich

A clause p1ש…pn←q1ש…שqm is called a:  
• Horn clause if n is less or equal to one and every 

sub-goal is an atom;  
• general Horn clause if n is greater than 1 and 

every sub-goal is an atom. 
Definition 4.1. A positive logic program, P, is a set 

of Horn clauses.  

Definition 4.2. r be a general Horn clause, a 
variable V of r is called limited if  
• V appears in an ordinary positive sub-goal, or  
• V is equated to a constant c in a built-in sub-goal, 

e.g. V = c or c = V , or  
• V is equated to a limited variable W in a built-in 

sub-goal, e.g. V = W or W = V . 
r is called safe if each variable of r is limited. A 

positive logic program is safe if all it clauses are safe.  

Definition 4.3. A positive logic program is called a 
‘safe’ Datalog program if  
• its basis does not contain any function symbols, 

and  
• it is safe. 

4.1 ‘Safe’ Datalog syntax 
What follows is a précis of the descriptions found 

in [9], [19] and [10].  
The following conventions are adopted to indicate 

syntax:  
•  ] indicates optional;  [
•  indicates one or more, but finite;  …
 .’… indicates ‘either …or פ •

If none of the above are present, then this indicates 
that the object is mandatory.  

We now need to detail the following structures:  
• constants;  
• variables;  
• terms;  



 Using Logic Programming to Represent Information Content Inclusion Relations 55 

Copyright © 2012 MECS                                                I.J.Information Technology and Computer Science, 2012, 1, 50-63 

• built-in predicates;  
• conditions;  
• facts;  
• rules;  
• programs. 

4.1.1 constants 
These are of the form:  

lower case letter[any alphanumeric character | underscore _ ]…| 
Number  

So examples of constants are:  
a  
x  
constant  
cOnstant  
cONSTANT  
c12939  
1  
-1  
2E10  
1.5  
1.314E-34  
Such constants will be denoted as lower case single 

letters, a, b, c,… or an, bn, cn, …for n א Գ in subsequent 
definitions.  

4.1.2 variables 
These are of the form:  

upper_case_letter| underscore _ [[any alphanumeric character | 
underscore _ ]…  

So examples of variables are:  
X  
Y  
_  
_aVar  
Variable  
VARIABLE  
VariaBle  
V123  
Variables will be denoted as upper-case letters A, B, 

C, …or An, Bn, Cn for n א Գ in the following definitions.  
4.1.3 terms 
Terms may be either variables or constants. This 

will be denoted as emboldened lower case a, b, c,… or 
an, bn, cn,… for n א Գ in the following definitions.  

4.1.4 built-in predicates 
Because we are only using ‘safe’ Datalog, then the 

only predicate available is the equality. This takes the 
form:  

a = b  
Examples of these are  
doug = 10  
X=Y  
2=3  
X=doug  
size=doug  
Conditions will be denoted as emboldened upper 

case A, B, C, …or An, Bn, Cn, for n א Գ in subsequent 
definitions.  

4.1.5 predicates 
These are of the form:  
p(a1,…,an) where n ≥ 0.  
Examples of predicates are:  
ancestor(titus, A).  
student(doug).  
supervises(doug, dr_feng).  

supervises(shuang, Who).  
Predicates will be denoted as lower case single 

letters p, q, r,… or pn, qn, rn,… for n א Գ in subsequent 
definitions. If p, or pi is stated without accompanying 
terms, then the terms are assumed, that is p is shorthand 
for p(a1,…,an).  

4.1.6 facts 
These are of the form.  
g(a1,…,an) for n ≥ 1.  
Examples of facts are:  
true.  
employee(doug).  
ancestor(titus,doug).  
Notice that facts are a specialisation of predicates. 

Indeed facts are known as gr nd predicates.  ou
Facts will be denoted as lower case single letters g, 

h, i,… or gi, hi, ii,… for i א Գ in subsequent definitions. 
If g, or gn is stated without accompanying terms, then the 
terms are assumed, that is g is shorthand for g(a1,…,an).  

Also notice in the first example the predicate 
without arguments invariably returns false (i.e. no tuples 
computed), and is not much use for querying. We do not 
consider it within this paper.  

4.1.7 rules 
Rules are of the form:  
p:-p1,p2,…,pn,P1,…,Pm where m + n ≥ 1, and p must 

start with a lower case letter.  
The right hand side of the rule, is often termed the 

rule body. Examples of rules are:  
superior(A,B):-supervises(A,B).  
superior(A,B):-supervises(A,X),  
     superior(X,B).  
smallSize(X):-size(X,Y),X=8.  
The collection of predicates and conditions (known 

as sub-goals) in the rule body is conjunctive, i.e. all sub-
goals must be satisfied for the rule to be true. A rule may 
contain itself in the rule body, That is, rules may be 
recursively defined.  

Rules will be denoted as lower case emboldened 
single letters r, s, t,… or rn, sn, tn,… for n א Գ in 
subsequent definitions. If r, or rn is stated without 
accompanying terms, or associated predicates, then the 
terms and predicates are assumed, that is r is shorthand 
for r(a1,…,al) : -p1(A1,…,Am),p2(b1,…,bn),…,P1,,P2,…  
for l, m, n ≥ 0.  

Ground rules, i.e. rules with only zero parameters 
or constants in the rule head, are considered to be facts, 
and the rule body is not evaluated.  

4.1.8 Programs 
A collection of rules and facts is referred to as 

Datalog program. Identically named facts may appear in 
a Datalog program many times, and this collection of 
facts is referred to as the Datalog database to which rules 
are applied, in order to return tuples that satisfy the 
query entered. Order is important, Datalog will evaluate 
facts in the order they appear in the program. Similarly 
the same rule name may appear multiple times (as well 
as appearing in its own rule body). Again Datalog will 
evaluate rules in the order they appear. All such 
occurrences of the rule will be evaluated in an attempt to 
return tuples.  
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4.1.9 Querying in Datalog 
A program normally resides in a simple text file. To 

perform a query in Datalog, the Datalog program must 
be ‘consulted’, i.e. loaded up into the Datalog 
environment. Queries are then performed within the 
Datalog environment. These are just predicates with 
usually, at least one variable, and are entered 
interactively in the Datalog environment.  

Examples of queries are:  
ancestor(doug, A).  
employee(Anybody).  
Datalog then returns all matching tuples of the 

predicate.  
5 Theoretical justification of the 

transformation of IIR to Datalog. 
We believe that it is vital to obtain theoretical 

guidance and justification on our investigation. The basic 
idea is to utilise the proven approaches found in [10] and 
[23] of creating an interpretation of a given set of 
predicates and thence trying to produce a model, i.e. an 
interpretation which gives answers corresponding to the 
truth of that set of predicates. In order to do this we 
strictly define the components that we are working with: 
the probability space, and the possible set of IIR which 
will arise from that probability space (but are, as yet, 
unknown), we then create an interpretation. Using the 
properties of IIR we construct predicates within our 
interpretation which reflect these properties. We then go 
on to show that such predicates may always be 
constructed if we have the prior conditions set out below. 
Finally once these structure have been created, we use 
the fact that ‘safe’ Datalog is itself an implementation of 
a subset of FOL (that is, without any negative sub-goals) 
to prove that a given set of IIR may always be 
represented by a suitable Datalog program.  

Within the bounds of a database we are dealing 
purely with data. Such databases are alethically neutral 
[4], that is, not all the semantic value [11] of the 
instances of data in a database is information about the 
application domain it is modelling. However, there is an 
informational relationship between data as row 1 of table 
1 illustrates, and thus we can use IIR to reason about this 
data. To this end, we treat a value of a data construct (i.e., 
an attribute or a set of attributes) being of a certain value 
in an instance of a notional database as an event. This is 
along the same line of [24] [25], [26]. For event B to be 
in the information content of event A, that is, for there to 
be an IIR between these two events, denoted I(A) ד B, 
then we must have, by definition:  

P(B|A) = 1  
That is, event B is certain if we have event A. So 

this may be stated: given event A, then we have the 
information that event B exists. In terms of an instance 
of a database, then if we have an instance of event A at a 
given time, it is certain that we have an instance of event 
B. This means there is always a link between entity A 
and entity B.  

Definition 5.1. If we have the probability space 
O,E,P , then there exists a complete set of IIR and the 
relationships between those IIR due to IIR rules, denoted 

IIR. IIR includes all IIR that are logically implied by a 
given set of IIR, due to IIR rules being complete and 
sound (see [5]).The relationships are determined by 
reflexivity, IIR inductance theorems 2.8 - 2.11 and 
simple IIR relations. These rules would be represented as 
the IIR relation ד between set relations.  

Definition 5.2. An evaluated probability space, W 
is the tuple ((O,E,P),IIR) where (O,E,P) is the 
probability space as mentioned above and IIR is defined 
as above.  

Definition 5.3. A universe or domain of discourse, 
D is the tuple (T,R) where T are all the terms of D, and R, 
are all the rules in D, for manipulating members of T.  

Definition 5.4. An interpretation, J of domain of 
discourse D, where U is a non-empty set of elements, 
called the universe (or domain) of interpretation, such 
that:  
• For each member T of D, in J, an assignment to 

element in U, i.e. , J:T→U.  
• For each member, R of D, the assignment of an n-

arity Horn predicate q in J, being the assignment of 
a mapping in Un into true, false (or, equivalently, a 
relation on Un) 

We now create an interpretation J, for some 
evaluated probability space W=(O,E,P IIR) with domain 
of discourse, E, giving J:E→U.  

),

Definition 5.5. For any event e א E there exists an 
closure for e, denoted e+, for which ׊xאe+, I(e)דx. This 
closure is created by the repeated application of 
theorems 2.8 - 2.11.  

Definition 5.6. For any two events e1 and e2 linked 
in any way by being members of the same closure then 
they are said to be related. Note such events will appear 
in some kind of relation in the complete IIR set, IIR.  

Definition 5.7. A set of terms, T for that particular 
interpretation of an IIR rule are said to be linked if all the 
terms, representing those events, are related, and this set 
is denoted TIIR.  

Definition 5.8. A linked predicate, denoted iir is 
constructed recursively from predicates with linked 
terms, thus:  

iir(T)←p1(T1)ר…רpm(Tm),m≥0,TكTIIR,T1׫…׫Tm=TIIR  

where pi(Ti) is either a fact, or a further linked 
predicate such that TiكTIIR, and the arity(T), arity(Ti) ≥ 2  

Note the above does not impose order (as these are 
sets), so the above example could represent, for example, 
if T, in the above were T={a,b}, then this predicate could 
be either be p(a,b) or p(b,a), both of which could 
represent I(J-1)(a))דJ-1(b) or I(J-1)(b))דJ-1(a).  

Note that with the iir(T), then the set T may be a 
selection of any of the terms in TIIR.  

Definition 5.9. The IIR predicate rule set is said to 
be consistent if and only if ׊am, an א U then I(J(am)) ד 
J(an) ֞ am, an א TIIR.  
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Note this could consist of only one IIR predicate, a 
series of IIR predicates, a single rule, or rules that call 
other rules, or any combination of the above to complete 
the IIR predicate set.  

Lemma 5.10. A consistent IIR linked predicate rule 
set may always be constructed.  

Proof.  
Given en א e1

+, then as theorems (2.8) - (2.11), are 
complete there must exist a path between events e1 and 
en such that I(e1) ד e2, I(e2) ד e3,…,I(en-1) ד en, I(ei) א IIR.  

There may be many such paths. We select the one 
with lowest order.  

Firstly we construct the relationship for e to e
This is simply:  

1 n. 

closure1(T1) ← iir1(T2) where {J(e1),J(e2)}ؿ T1 ك 
T2 ك T1

IIR, T1
IIR is the set of linked terms for linked 

predicate involving e1 and e2.  
We now construct the remainder of the predicate, 

inductively, from e1 to ep, where p ≤ n. So we have:  2 < 

 closurep(Tp) ← cl urep-1(Tp-1)  iirp(T1)  os ר 

where: J(e1) א Tp-1, J(ep) א T1, {J(e1),J(em)}ؿ Tp ك 
T1 ك Tm

IIR and Tp-1 ك Tp-1
IIR.  

There are two cases we must examine to prove the 
above constructed predicate is consistent. These are:  
• The predicate evaluates to true and there is no 

closure  
• The predicate evaluates to false and there is a 

closure 
Considering the first, that the predicate evaluates to 

true and there is no closure. By definition, this means 
that there must exist a sub-goal which is true which 
contains terms that are not linked, representing events 
that are not related. However this is a contradiction, as 
all sub-goals have been constructed from linked terms.  

More f mally:  or
If we have constructed closuren(Tn), where 

{J(en),J(e1)}ؿ Tp, for en א e1
+, then there exists p, such 

that closurep(Tp) ← closurep-1(Tp-1) רiirp(T1), 1 < p ≤ n 
where some eventual fact of iirp(T1) is not linked. 
However, this is a contradiction as by definition as terms 
in iirp(T1) must be linked, that is for any two terms in T1, 
then the event representation of these terms are linked by 
definition. Additionally since iirp(T) ← predicate1(T1) 
 ר…ר predicatem(Tm), m ≥ 0 and in particular T ك Tp

IIR,T1 
Tm = Tp ׫ …׫

IIR, then all such terms must be present.  
Now considering, that the predicate evaluates to 

false and there is a closure. This implies there are related 
events which are not represented by linked terms. 
However, by definition all linked terms must be present. 
This is a contradiction, and hence no predicate can 

aluate to false if there is a closure.  ev
Again, more formally: since we have the events en 

e1 א
+ and the assumption is that these are linked, then we 

must have I(e1) ד e2, I(e2) ד e3,…I(en-1) ד en. But the 
assumption is that the predicate is untrue, this means 
there must be a missing fact in iirp(T) ← predicate1(T1) 
 ר…ר predicatem(Tm), m ≥ 0 , 1 < p ≤ n, but by definition 
the set Tp

IIR must contain all linked terms for that 

predicate, and hence have a representation for related 
events - this is a contradiction, so there can never be a 
false constructed predicate when there is a closure. 

 ■ 
Lemma 5.11. A set of consistent IIR predicate rules 

is always safe.  
Proof.  
Replacing all terms J(ei) in linked iir predicates by 

Vi then all iir linked predicates are Horn clauses, so by 
definition are general Horn clauses.  
• Vi only appears in an ordinary positive sub-goal, 

and  
• There are no constants in J. 

■ 
Definition 5.12. An interpretation J, which upon 

evaluation makes all rules in the complete IIR rule set, 
IIR evaluate correctly is called a representation of W . 
That is ׊ui, uj א U then I(J-1(ui) ד J-1(uj) must be true.  

Lemma 5.13. A interpretation J is a representation 
for W , if and only if the predicate representation of the 
IIR rule set is consistent.  

Proof.  
The IIR predicate rule set is consistent, thus as we 

can see from lemma (5.10) when for any iir predicate 
rule is true for J it is true for the representation W. When 
any iir predicate rule is false for J, it is false for W , 
hence J is a model for W. 

■  
Lemma 5.14. An interpretation J of W that has a 

consistent IIR predicate rule set is a Horn program.  

Proof.  
From (5.11) we see that all iir linked predicates of 

an interpretation J of W are Horn clauses, and from 
definition (4.1) we see that the set of iir linked predicates 
is therefore a Horn program. 

■  
Definition 5.15. An interpretation J that makes true 

all rules in P is called a model for P .  

It should be noted that any positive program P has 
been shown to have a model [19, p. 193].  

Definition 5.16. A model M for a program S is said 
to be its least model, denoted lms(S) if M′   M for every ل
model M′ of S. Because S is a safe ‘safe’ Datalog 
program, then there always exists a least model, lms(S) 
for S (see [10] and [19]). This least model consists only 
of series of facts, i.e. predicates of arity one or above.  

Theorem 5.17. Any database system that can be 
modelled using IIR can be represented as a ‘safe’ 
Datalog program.  

Proof.  
Lemma (5.13) shows we can construct a 

representation of W within interpretation J if and only if 
the iir predicate rule set is consistent. Lemma (5.10) 
shows we can construct this consistent rule set. Lemma 
(5.14) means that J is a Horn program, and hence may be 
represented as a program in ‘safe’ Datalog.  

■  
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5.1 How to construct IIR from ‘safe’ 
Datalog 

We note that this is only an existence theorem, and 
does not actually show how to construct a given Datalog 
database to represent the given set of IIR. To do this we 
must prove each of the four inductance theorems 2.8 - 
2.8 can be represented in ‘safe’ Datalog  

Proof.  
Let X, Y and Z be events in a probability space E 

and let I(X) ד Y and I(Y) ד Z. By the transitivity theorem, 
2.10, then I(X) ד Z. Thus the domain of discourse, by 
definition 5.3 is the tuple D = ({X,Y,Z}, {I(X)דY, I(Y)דZ, 
I(X)דZ}. Now let PT be an interpretation of D, such that 
PT:X → x, PT:Y → y, PT:Z → z.  

We now show one possible way such a set may be 
constructed.  

5.1.1 Sum 
This refers to the em .8  or  2
If Y = X1 ׫ X2 ׫ …׫ Xn, then I(Xi) ד Y for i = 

1 , …,n.  

By definition 5.5, the closures for X,Y and Z are: 
• Z+ = {Z}  
• Y+ = {Y,Z}  
• X+ = {X,Y,Z} 

We now construct the following linked predicates, 
as per definition 5.8. As consistent rule sets need to be 
built recursively, (as explained in 5.10 from the smallest 
set of linked terms, then we take the lowest order set of 
the closure and begin with that. We can ignore Z+, as this 
cannot produce any rules of arity 2 or above. Thus we 
now have Y+, which we can select a consistent linked 
predicate, this being any subset of  

We select a single fact from this set: facty(y,z), 
and use this to build the next consistent linked predicate.  

We have already chosen to select factx(x,y). 
Given this then, the least model (as in definition 5.16) 
produced for the program must be something like:  

One way to do this in Datalog is the following:  
iir(X,S) : -sum(S,X,X1,…,Xn).  
iir(X,S) : -sum(S,X1,X,…,Xn).  
� � 
iir(X,S) : -sum(S,X,…,Xn,X).  
Where S is a fact (or derived fact) , representing a 

sum of arity n + 1, and the first parameter of the fact 
names the sum.  

Proof.  
Let Y1, X1, … Xn be events is E. We now represent 

the union of X1, …, Xn as the Datalog fact: 
sum(s,x1,…,xn). The sum is called s. We now 
construct the sum inference rule 2.8 as above. To prove 
that we have indeed created a sum, then we must have 
we must have an IIR relationship between X1, …, Xn.  

{fact(x,y).,fact(x,z).,fact(y,z).}  ■  
We note immediately, that the naming of the sum 

need not occur in the first argument of the fact, so from 
this method, we have another n - 1 possible 
representations of the same set of IIR. Additionally, and 
possibly more neatly  

Although again, there are other least models which 
will equally satisfy our requirements.  

The next linked predicate must be a subset of the 
following (noting that this is ‘safe’ Datalog and all 
arguments are limited)  5.1.2 Product We also note we have named all facts and sub-
goals the same. This need not necessarily be the case. So 
the actual set from which we can choose our model is 
somewhat greater than that presented above. We are 
perforce, constrained somewhat by the union of the 
previous iteration to find the consistent linked predicate, 
(but not by a great deal), so after rename the facts and 
rules, we now choose:  

T
If X = X1 ∩ X2 ∩… ∩ Xn, Y = Xi for i = 1…, n then 

I(X) ד Y .  

his refers to theorem 2.9:  

An example of representing the product would be:  
iir(P,X) : -product(P,X,X1,…,Xn).  
iir(P,X) : -product(P,X1,X,…,Xn).  

                  
iir(P,X) : -product(P,X1,…,Xn,X).  {iir(y,z).,iir(y,z)., 
Where P is a fact (or derived fact) , representing an 

intersection of arity n + 1, and the first parameter of the 
fact names the product.  

iir(X,Z):-iir(X,Y),iir(Y,Z).}  

We note that this predicate rule set is consistent as 
per definition 5.9, as for every I(PT

-1(xi))ד PT
-1(xj)׊xi,xj 

 hence we have a representation of D as per ,{x,y,z}א
definition 5.12.  

Proof.  
We note immediately, that the naming of the 

product need not occur as the first argument of the fact, 
so from even from this method, we have another n- 1 
possible representations of the same set of IIR.  

Which gives us the program as above.  
■  

This rule, is why we believe is why ‘safe’ Datalog 
is so suitable for representing IIR. The recursive nature 
of ‘safe’ Datalog is amply able in representing the 
transitive nature of IIR.  

■  
5.1.3 T ansitivi  r ty

fe eo
If I(X) ד Y, I(Y) ד Z then I(X) ד Z.  
This re rs to th rem 2.10  

5.1.4 Union This may be represented by the ‘safe’ Datalog 
program:  This refers to theorem 2.11  

If I(X)דY, I(X)דZ then I(X)דY∩Z.  
One way to do this is by doing the following:  
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iir(X,P) : -
product(P,X,Y ),iir(X,Y ),product(P,Y,Z),i
ir(X,Z)  

6 Examples of IIR converted to Datalog 
6.1 Closure example 
The examples that follow are from [17], but have 

been slightly modified to exemplify all the IIR inference 
rules, as in [27], and thus demonstrate how to derive an 
IIR closure using a Datalog.  

It should be noted that [17] uses a modified version 
of the IIR inference rules. These are equivalent, although 
the omission of the sum and product, loses some of the 
generality associated with IIR. The modified versions of 
the inference rule may be presented as follows.  

If X, Y and Z are separate and individual events, in 
a state space, as defined in section 2 the forms of IIR 
may be rewritten thus, imitating in the form of the well-
known Armstrong’s Axiom  for functional dependencies 
in relational databa es [5], 8]:  

s
s  [2

1. Reflexivity: X → X ֜  → X, or using previous 
notation: I(X) ד X.  

 X

2. Augmentation: X → Y  X Z → Y ∩ Z.   ֜
 →

∩ 
3. Transitivity: X → Y, Y  Z  X → Y.  ֜

 
5
4. Union: X → Y, X → Z ֜ X → Y ∩ Z.  

. Decomposition: X → Y ∩ Z ֜ X → Y,  X → Y. 
For the purposes of this paper, we use the original 

versions of IIR mentioned in section 2. That is, we use 
definition, (2.7) and theorems (2.8 - 2.11). Bearing this 
in mind, the example we wish to code may be 
represente by he following set of IIR:  

 
 t

I(A ∩ ) C  
d 
 B

I(C) ד A  
 ד

I(B ∩ D  C ד (
 C

I(D) ד E  G  

 
I(A ∩  ∩ D) ד B   

∩
I(B ∩ E) C  ד 

ד
I(C ∩ E) ד A ∩ G  
I(C ∩ G)  B ∩ D  

W = X  Y  Z   ∩  ∩
 ∩   

L = P ׫ Q ׫ A  
M = W  A

T = B ∩ D ∩ W  
All the above literals represent events in a 

probability space as defined above. The reason we use 
them is because each conjunction or disjunction of an 
event needs to be named in order to be manipulated by 
the ‘safe’ Datalog program.  

For the purposes of this paper, we now demonstrate 
how the constructions in section 5 may be used to 
construct a combination of a st ight-forward IIR and the 
product rule.  

ra

For the example I(A∩B) ד C we need to represent 
that the product A ∩ B has in its information content C. 
If we assume the product pAB = A ∩ B, then the original 
relationship may be rewritten I(pAB) ד C. Thus we have 
the linked events pAB and C Representing these as a 
linked predicate gives us  

iir(pAB, c).  
We now need to represent the product inference 

rule as a rule. To do this we must show that the product  

pAB has in its information content A or C. This could be 
represented as two further predicates  

iir(pAB, a).  
iir(pAB, b).  
If we now represent transitivity as the following, 

which again maintains the linked events as linked 
predicates, using:  

iir(X,Y):-iir(X,Z),iir(Z,Y).  
The evaluation of the rule leads to new facts:  
iir(a,c).  
iir(a,b).  
Which is correct. Or, alternatively the product 

inference rule could be represented by the rule:  
iir(P,X):-product(P,X,Y).  
iir(P,X):-product(P,Y,X).  
The rule, when run in conjunction with the 

representation of the transitivity rule gives more 
flexibility as not all the examples of the product then 
have to be represented. Additionally the statement of the 
inference rules will lead to other IIR relationships which 
may not be immediately aware to the person coding the 
representation. Notice also, the 2nd representation, 
returns exactly the same results as the former 
representation, maintaining the linked events as linked 
predicates.  

Bearing this kind of construction in mind, we now 
take the relationships listed above, and originally used in 
[27] and code them in Datalog.  

% facts  
% =====  
 
% I(A ∩ B)-> C  
product(pAB,a,b).  
iir(a,c).  
% I(B ∩ C) -> D  
product(pBC,b,c).  
iir(pBC,d).  
% I(A ∩ C ∩ D) -> B  
product(pACD, a, c, d).  
iir(pACD,b).  
% I(D) -> E ∩ G  
product(pEG, e, g).  
iir(d,pEG).  
% I(B ∩ E) -> C  
product(pBE, b, e).  
iir(pBE, c).  
% I(C ∩ G) -> (B ∩ D)  
product(pCG, c, g).  
product(pBD, b, d).  
iir(pCG, pBD).  
% I(C ∩ E) -> (A ∩ G)  
product(pCE, c, e).  
product(pAG, a, g).  
iir(pCE,pAG).  
% W = X ∩ Y ∩ Z  
product(w,x,y,z).  
% M = W A ∩  

% L = P ׫ Q ׫ A  
product(m,w,a).  

sum(l,p,q,a).  
% T = B ∩ D ∩ W  
product(t,b,d,w).  
% Rules  
% =====  
% Sum...  
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% ...for a sum of three parts.  
iir(X,S):-sum(S,X,A,B).  
iir(X,S):-sum(S,A,X,B).  
iir(X,S):-sum(S,A,B,X).  
% product...  
% ...for a product of 2 members.  
iir(P,X):-product(P,X,A).  
iir(P,X):-product(P,A,X).  
% ...for a product of 3 members.  
iir(P,X):-product(P,X,A,B).  
iir(P,X):-product(P,A,X,B).  
iir(P,X):-product(P,A,B,X).  
% transitivity  
iir(X,Y):-iir(X,Z),iir(Z,Y).  
% union  
iir(X,P):-product(P,Y,Z),iir(X,Y),  
     product(P,Y,Z),iir(X,Z).  
If the program is run with the following query:  
iir(t,X). 
It gives the following uncovered IIR (amongst 

many others involving all the sums and intersections) :  
{  
iir(t,a),  
iir(t,b),  
iir(t,c),  
iir(t,d),  
iir(t,e),  
iir(t,g),  
iir(t,l),  
iir(t,m),  
iir(t,pAB),  
iir(t,pAG),  
iir(t,pBC),  
iir(t,pBD),  
iir(t,pBE),  
iir(t,pCE),  
iir(t,pCG),  
iir(t,pEG),  
iir(t,w),  
iir(t,x),  
iir(t,y),  
iir(t,z)  
}  
Info: 20 tuples computed.  
This is identical to the closure generated within 

[27], although in this paper we have used a different 
representation this time.  

6.2 Student database example 
This is the 2nd example from [17] and demonstrates 

how to derive and implement IIR upon an example of a 
real-world database. The functional dependencies, used 
as IIR are encoded as IIR. The reasoning behind this is 
that each instance of each of the entities below: student; 
class; and enrolment represent types of events. The 
instantiation of any of them represents an event, i.e., the 
instantiated entity of student has the corresponding 
nested information of student id, surname, major, level 
(or year) and age. Each instantiation in the database, 
must obviously have been extant at a given time, place 
(for instance when we created the database in the 
Datalog system), so a single instantiation of each entity 
represents an event. Likewise for the entities class and 
enrolment. The functional dependencies between 
instances of these entities may, therefore be modelled as 
information content belonging to these events. This 

makes the modelling, using Datalog quite straight-
forward. The only IIR we need to model are the 
transitivity property (2.10) and the IIR relationship itself.  

So, this may be coded up in Datalog as follows:  
% Facts  
student(100,smith,history,gr,25).  
student(150,parks,geology,so,21).  
student(200,baker,finance,gr,24).  
student(250,glass,history,sn,19).  
student(300,baker,geology,sn,20).  
student(350,rosso,finance,jr,18).  
student(400,bryan,geology,sr,22).  
class(ba200,tth9,sc110).  
class(bd445,mwf3,sc213).  
class(bf410,mwf8,sc213).  
class(cs150,mwf3,ea304).  
class(cs250,mwf1,eb210).  
enrollment(100,bd445).  
enrollment(150,ba200).  
enrollment(200,bd445).  
enrollment(200,cs250).  
enrollment(300,cs150).  
enrollment(400,ba200).  
enrollment(400,bf410).  
enrollment(400,cs250).  
enrollment(450,ba200).  
businessRule(history,swimming).  
businessRule(geology,diving).  
businessRule(finance,basketball).  
% rules  
iir(X,Y):-student(A,B,X,C,D),  
     businessRule(X,Y).  
% functional dependencies  
iir(X,Y):-student(X,B,C,D,E),  
     enrollment(X,Y).  
iir(X,Y,Z):-enrollment(A,X),  
     class(X,Y,Z).  
result(A,B,C,D,E,F,G,H,I):-  
     student(A,B,C,D,E),  
     iir(A,F),  
     iir(F,G,H),  
     iir(C,I). 
If the program is run with the following query:  
result(A,B,C,D,E,F,G,H,I). 
It gives the following results:  
{  
result(100,smith,history,gr,25,bd445,  
     mwf3,sc213,swimming),  
result(150,parks,geology,so,21,ba200,  
     tth9,sc110,diving),  
result(200,baker,finance,gr,24,bd445,  
     mwf3,sc213,basketball),  
result(200,baker,finance,gr,24,cs250,  
     mwf1,eb210,basketball),  
result(300,baker,geology,sn,20,cs150,  
     mwf3,ea304,diving),  
result(400,bryan,geology,sr,22,ba200,  
     tth9,sc110,diving),  
result(400,bryan,geology,sr,22,bf410,  
     mwf8,sc213,diving),  
result(400,bryan,geology,sr,22,cs250,  
     mwf1,eb210,diving)  
}  
Info: 8 tuples computed. 
This is the result as expected, agreeing with the 

results in [17].  
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7 Conclusions 
We believe that we have proved and demonstrated 

the following theorem:  
Theorem: Any database system that can be 

modelled using IIR can be represented as a ‘safe’ 
Datalog program.  

The above theorem is an existence theorem and 
does not impose much structure on the creation of 
mappings between IIR to ‘safe’ Datalog, the positioning 
of terms and variables in heads of rules or facts are not 
determined. This leads to a very large number of 
possible interpretations of IIR in ‘safe’ Datalog. Is it that 
such representations are logically equivalent? That is, 
they might possibly be ways of saying the same thing. 
Are these sets of statements when converted to FOL, 
logically equivalent? Indeed, although the theorem 
above has been proved, this does not guarantee that the 
methods suggested above are the only ways to encode a 
given set of IIR as ‘safe’ Datalog. We see from [27] that 
the sum rule (2.8) can be modelled as a Datalog 
disjunction. That is, the individual parts of the sum are 
modelled as separate rules, and the disjunctive 
evaluation, which gives the desired effect. Seemingly the 
crucial component to such representations (and the proof 
that they are possible), appears to be the transitivity rule 
(2.10). This is the mathematical formulation of Dretske’s 
Xerox principle [6, pp. 57-58], and seems very similar to 
the propositional logic’s and first or predicate logic’s 
modus-ponens. It appears that this allows the assemblage 
of linked iir, via linked predicates. It would appear, that 
given a probability space as defined above, then what we 
have is some kind of informational content justification 
of the modus-ponens.  

The examples shown in section 6 above have been 
tried in three sorts of inference engines. Firstly one based 
on Oracle PL/SQL [8] [29], then against a ‘normal’ 
inference mechanism of Prolog [8] , and then finally in 
this paper, ‘safe’ Datalog - all leading to the same results. 
However none of these attempts have been proven to 
formally represent a site of information content in terms 
of IIR. We now have a tool, which we know, formally 
can represent any set of IIR. Thus by modelling a site of 
information content, and then by invoking a Datalog 
query, we are effectively modelling the occurrence of 
that event, and by use of ‘safe’ Datalog can derive the 
consequences of that event, in terms of all the other 
events the occurrence of the original event tells us truly 
of other events.  

We suggest that now we have such a relationship 
established between ‘safe’ Datalog and IIR, then ‘safe’ 
Datalog itself may be used to perform further, revealing 
analyses of information systems (IS) that can be 
represented as probabilistic situations, i.e., an 
information source [6, p. 4]. Probability spaces have 
been explored by [25], [26]and [24] as a means to 
investigate a database. Our efforts attempt to 
complement such analyses by using the tools developed 
in [5] as a means to understand the behaviours of 
information within a site of information content, e.g. a 
database, but by representing the information within a 

source of information as a probability space, and hence 
one of the aims of this paper has been to start to discover 
whether there is any kind of linkage between the IIR 
framework and ‘safe’ Datalog. IIR is a proven way of 
modelling an application domain in terms of information 
content. As we have two frameworks, both of which can 
represent an aspect of the real world, then it seems 
logical that there must be some kind of correspondence 
between them. This paper is part of a series which tries 
to uncover this assumed correspondence.  

Additionally ‘safe’ Datalog, being a subset of FOL 
implements one of the two inference rules of FOL [15]; 
the modus ponens,. This underlies Datalog deduction, 
and indeed the vast majority of modern computing [14, p. 
156]. By proving such any correspondence between 
Datalog and IIR, then we may be close to determining 
why computing devices are so useful in modelling 
information content, and by extension, the real world. 
This may give an information-theoretic justification of 
the modus ponens, and thus a possible informational 
theoretical justification of some section of FOL - 
especially given that all deductions from FOL are certain, 
and thus by many definitions of information [30, pp. 94-
109], must as a consequence contain no information 
whatsoever.  

We note there are other implementations of IIR 
used when analysing databases in terms of IIR. We 
already know we can model IIR using Prolog [8] and 
Oracle PL/SQL [16], [1], [17] and [18]. This would seem 
to support the above claim that there is some link 
between the fundamentals of computing and the 
modelling of such systems using information content. As 
seen in the above papers, we can model IIR using 
existing computing frameworks. It would therefore, be 
useful to possess yet another form of representing such 
relationships, which has been formally proven to be able 
to represent any given set of IIR. This would allow 
further investigation of IS in terms of IIR using a proven 
tool. It has already been shown in [27] that for some 
specific examples of a given set of IIR and its associated 
probability space, then ‘safe’ Datalog, can indeed be 
used to model those IIR.  

Furthermore, ‘safe’ Datalog has three kinds of 
semantics [19, pp. 192-197] which are all equivalent, 
these being:  
• Model-Theoretic;  
• Proof-Theoretic;  
• Least Model Theoretic. 

Because of the transitive nature of IIR (see section 
2.7 - this implies some form of recursion), it should be 
noted that in both [8] and [17] when attempts were made 
to model IIR using Prolog, difficulties were encountered. 
Prolog uses a method known as SLD resolution [10] 
which utilises a top-down proof-theoretic strategy to 
evaluate Prolog Programs. However, SLD can create 
trees which are infinite, i.e. do not terminate. Because of 
the cyclic nature of IIR closures, it becomes apparent 
why simple definitions of recursive IIR in Prolog do not 
work (they produce infinite SLD trees). ‘safe’ Datalog 
has been proven to have a least model [19, pp. 192-197] , 
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and thus using the underlying theorems described in 
section 5 to model IIR, then simple IIR recursive models 
can be established, as the least model is always finite, 
given a ‘safe’ Datalog program. Because of this ‘safe’ 
Datalog seems an ideal way of representing a given set 
of IIR. Because IIR is domain independent, then using 
‘safe’ Datalog to model a given set of IIR would allow 
us to model the more general situations that IIR covers, 
and investigate the relationships between the levels of 
IIR in a database shown in table 1.  

In summary:  
• we can model the transitive nature of IIR using 

recursion in Datalog;  
• we have the three semantics available for modelled 

IIR, namely model, fixpoint and proof theoretic 
semantics, which allows the operational semantics 
of least fixpoint to be used in generating IIR 
closures;  

• there are possibly many interpretations of IIR 
using Datalog. These are not term order dependent 
in the IIR eventual predicate rule set;  

• ‘safe’ Datalog can be used as a tool for the 
investigation and modelling of any information 
source. 

Finally, IIR itself is a framework that describes 
information content of a given state of affairs and 
relationship therein. As we are able to successfully 
model IIR, and IIR is not necessarily tied to an IS, and 
furthermore we can model such IIR with several 
implementations (as shown above), it would seem that 
IIR itself must represent some kind of generalised 
framework, with which to undertake informational 
analysis of virtually any situation that can be represented 
in probabilistic terms.  

8 Future Work 
We have shown that there is some kind of 

transformation from IIR to ‘safe’ Datalog. In future 
papers we propose to show that the reverse is also true; 
that is, there is some kind of transformation from ‘safe’ 
Datalog to IIR.  

Additionally why are there so many ‘safe’ Datalog 
representations of IIR rule sets available? Does this 
reflect the fact that FOL (of which ‘safe’ Datalog is a 
subset) is not quite correct when describing 
informational relationships? To determine the number of 
interpretations, and why this should be the case may be 
the subject of future work. Indeed, it would appear that 
such a paradigm as first-order logic is not stringent 
enough to be isomorphic with information-theoretic 
views of domains of discourse. This would agree with 
Devlin’s claim that first-order logic is insufficient to 
describe informational relations [31]. The multiplicity of 
representations and the reason for this needs further 
investigation. Also, there is no proof in the above, that 
this is the only method by which IIR can be represented 
in ‘safe’ Datalog. We believe, that because IIR is a more 
general framework, and thus, in some ways, possibly a 
specialised, or, on the contrary a more generalised 
version of FOL. If so, then there must be a specific 
morphism between a subset or super-set of First Order 

Categorical Logic to IIR which we believe is a category, 
with events as objects, IIR as arrows, composition as IIR 
under transitivity, with reflexivity as the identity [32].  

Because of this formally proven linkage between 
IIR and ‘safe’ Datalog, we know we can represent any 
information source, that is any situation that can be 
presented as a state space, in ‘safe’ Datalog. Furthermore 
such a linkage suggests that there must be a more formal 
link between ‘safe’ Datalog and IIR than that explored in 
the previous parts of this paper. Lastly we suggest that 
IIR itself is not limited to an IS. In fact it is a general 
purpose description of any suitably constrained domain 
of discourse. As there appear to be many ways of 
representing such a relationship, listed above, then there 
is some evidence to show such IS representations must 
be some kind of subset of the IIR framework. What this 
subset is, and what parts of, say for instance, ‘safe’ 
Datalog contains, is also the subject for future work. In 
particular, as we have now successfully proved that ‘safe’ 
Datalog can be used to represent a given set of IIR. This 
now allows us to investigate each of the four levels of 
IIR in a database, as in table 1, and we should now be 
able to cast some light on the nature of such databases, 
which at heart are representation systems, after [11]. The 
source representation system is the database itself, and 
the target of the representation system is the domain of 
application. Furthermore what is the nature of this 
linkage or correspondence? ‘Safe’ Datalog can 
successfully represent certain aspects of an application 
domain. That is, at one level, it is such a representation 
system, and there must exist constraints between the 
database and the domain of application it is trying to 
model. However, the source of this representation, e.g. a 
database resident on some computing device, when, as 
mentioned previously, looked at from the purely physical 
viewpoint is at best just variances in electrical potential 
within the internals of that computing device [14, p. 
156].Eventually these symbols can be used to represent 
aspects of the real world. We define these differences of 
electrical potential with values of 0 or 1, and in turn use 
groups of these symbols to represent other symbols. 
Hence a computing device is merely a contrivance for 
manipulating symbols (ibid), and consequently 
computing devices do not exhibit cognition. It is this 
linkage via these constraints to the real world by this 
accumulation and refinement of such symbols that we 
believe information content can arise. We intend to use 
Datalog to model such area of information content, and 
uncover reasoning at a distance for such representation 
systems.  
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