
I.J. Information Technology and Computer Science, 2012, 1, 50-63
Published Online February 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijitcs.2012.01.07

Using Logic Programming to Represent
Information Content Inclusion Relations

Doug Salt
Database and Semantic Web Group, School of Computing, The University of the West of

Scotland, Paisley, Scotland
Email: douglas.salt@uws.ac.uk

Junkang Feng

Database and Semantic Web Group, School of Computing, The University of the West of
Scotland, Paisley, Scotland
Email: junkang.feng@uws.ac.uk

Abstract— Datalog is a widely recognised language for a
certain class of deductive databases. Information Content
Inclusion Relation (IIR) formulates a general, information
theoretic relationship between: data constructs; between
data constructs and real world objects, and between real
world objects. IIR is particularly concerned with the
information that data carry. It would therefore seem
desirable to find out whether IIR and reasoning based on
IIR may be implemented by using ‘safe’ Datalog. We
present and prove the following theorem:

Any database system that can be modelled using IIR can be
represented as a ‘safe’ Datalog program.}

This paper explores the nature of the relationship between
the two frameworks for representing domains of
application, in order that such representations of IIR by
`safe' Datalog can then be used as a tool for the analysis of
any site that can be approached with the notion of
information content, and in particular any given database,
and hence how a database works may be approached in
terms of information content of events.

Index Terms— Databases, Information theory, models and
principles, Information technology, Programming
languages.

1. Introduction
When a database is queried, the assumption is that

we obtain information from it. The query can only be
answered by a precise match between the query and the
data within a database [1]. Thus, we have a match on the
syntactic nature of information [2], but have no definite
relationship with the semantic level of the information,
inasmuch as such a query only tells us about the symbols
in the database. It may possibly tell us something about
the domain of application, but this is by no means certain.
For instance, a database may contain entities, and a grid
reference has a link to an entity that indicates that at that
grid reference, it is raining, say as a current measure of
precipitation. To a cognitive agent, this also includes the

information that the ground at the grid-reference is wet.
We cannot currently query the database asking if the
ground at that grid-reference is wet, we may only query
whether precipitation occurs at this grid reference. This
is an example of ‘other’ information, besides that of the
primary meaning of what is carried in the database.

We take a ‘semantic externalist’ view of
information [3] and we assert that data within a database
may carry such information [4], and information
inclusion content relations (IIR) can be used to describe
the relationship between these pieces of information that
the data in a database may carry [5], and the domain of
application. IIR is domain independent, and is a model
of the informational relationship between components of
a site/system. We developed the notion of IIR [5] with a
main assumption that information is generated by a
reduction in uncertainty. This follows [6] and [7] and is
further refined in [5] and [8] That information is
generated by an occurrence of an event, and this event
may tell us truly of some other event [5].

Datalog are programs, consisting of a subset of
Prolog syntax, which are used to define rules and facts
declaratively, and in turn is used to derive new facts
from the database of such facts [9]. ‘Safe’ Datalog is
Datalog that has only positive sub-goals and is ‘safe’,
that is, its variables are limited to finite ranges [10, p. 67].
‘Safe’ Datalog may always be represented as an
existentially unqualified, first-order Horn clauses [10]
and because its first order variables are limited to finite
sets and as such are necessarily are a subset of first order
predicate logic (FOL).

The idea is that a finite probability space can be
modelled using a Datalog database, and by invoking a
particular query this acts as selecting the occurrence of a
particular event in the probability space, upon which the
concept of IIR is constructed. Using the declarative
deduction of Datalog, we can then model the inference
laws for IIR (see section 2, and determine what the
consequences of that event are, or as we term it the
‘closure’ for that event. That is, which other events that
an occurrence of a single event can tell us truly. Thus, if
the above relationship is mathematically proven, then we
have a rigorous tool for modelling IIR in all situations.

Received November 9, 2011; revised January 17, 2012; accepted
January 30, 2012.

Corresponding author: Douglas Salt.

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

 Using Logic Programming to Represent Information Content Inclusion Relations 51

Copyright © 2012 MECS I.J.Information Technology and Comp Science, 2012, 1, 50-63 uter

Theorem 2.9 (Product). If X = X1 ∩ X2 ∩… ∩ Xn,
Y = Xi for i = 1…,n then I(X) ד Y .

In particular, it is hoped that this will provide a tool to
model both the logic of a database, and the domain of
application in informational terms. With such a tool, we
may be able to uncover reasoning at a distance for such
representation systems [11], [12, Ch. 20].

The structure of this paper is as follows. We give a
brief definitions of IIR, how we believe that IIRs interact
in a database, and then a brief description of ‘safe’
Datalog. This will allow us to define the terms used in
the above proposition. We then give a theoretical
justification of the above theorem. This is where the
main contribution that our work makes is justified. We
illustrate the above theorem with some examples of IIR
relationships represented with ‘safe’ Datalog. Finally we
draw conclusions and propose further work to
complement and extend the findings of this paper.

2 Definition of Information Content
Inclusion Relations

2.1 IIR and IIR Inference Rules
The following arguments are based on [5]. In this

paper, they managed to derive, and prove domain-
independent rules for the manipulation of information
flow based on probability theory. We take the most of
the following definitions from this paper.

Following the terminology of [6, ch. 1] we define
the term of ‘random selection process’ ((selection
process) for short), as a set of conditions and outcomes.
For instance, the roll of a die would be a random
selection process, whose outcomes are in the set {1, 2, 3,
4, 5, 6}, and the conditions would be that the die is fair
(equal probability of rolling any number).

Definition 2.1. Let s be some selection process
under a set C of conditions, O the set of possible
outcomes of s, which are called states, and E the power
set of O, X is an event if E ד X and there is a probability
of X, i.e. P(X).

Definition 2.2. Let s be some selection process
under a set C of conditions, O the set of possible
outco es of s, E the power set of O and let P: E → [0,1]
be th pro bility measure, such that: P(O) 1;

m
e ba =
 E for i = 1, …, n if Xi is a countable ك Xi׊

collection of pairwise disjoint sets then P(ّXi) = ΣP(Xi)
where ’ّ’ denotes the disjoint union; then the triple
(O,E,P) is the probability space.

Definition 2.3. Let s be a selection process under a
set C of conditions, Xi an event concerning s, xi an
instance of s, xi is a particular of Xi if xi is in state Ω,
written Ω = state(Xi) and Xi ד Ω.

Definition 2.4. Let s be a selection process the
result of which is reduction of possibilities, and therefore
be an information source, and k prior knowledge about s;

Let r be an event, and ri a particular of r at time ti
and location li;

Let s’s being F be an event concerning s, and sj
some particular of s’s being F at time tj and location lj;

ri carries the information that there must be some sj
existing at time tj and location lj, if and only if the

conditional probability of s’s being F given r is 1 (and
less than 1given k alone).

This last definition makes more explicit the
definition of information content in [6, p. 65], whereas
unlike in the original formulation, and as [5] point out,
Dretske deals with information content at a type level
whereas information is carried only by particulars. The
prior knowledge in this case is not easily quantified, but
represents an amendment to the state space of the source,
represented by the receivers prior knowledge (see [7] for
more details on this concept). For example consider the
three cup game, in which a pea is under one of three
cups on a table. One of the cups has already been shown
to the people already present not to have the pea under it,
and the cup has been replaced on the table. Some further
participants now arrive after this event. To those already
present they know the pea to be under only one of two
cups, whereas the new arrival only knows that the pea is
under any of the three cups. So the state space is altered
by prior knowledge. Such prior knowledge represents the
relativisation of information content.

Definition 2.5. When a particular ri carries the
information that a particular sj exists. We will say that
the information content of ri includes sj, or in other
words, sj is in the information content of ri.

An example of this would be: ‘if it is raining on my
head at 1500 on the 2nd March 2011’, then this includes
the information content that ‘my hair is wet at 1500 on
the 2nd March 2011’.

Definition 2.6. Let X and Y be an event
respectively, there exists an information content
inclusion relation, IIR for short, from X to Y , if every
possible particular of Y is in the information content of at
least one particular of X.

Extending the last example, this gives ‘if it is
raining on my head’ then this includes the information
content ‘my hair is wet.’ Notice it is the particulars that
actually carry the information, but IIR allows us to
predict the behaviour of the information content of such
particulars at type level.

Definition 2.7. Let X be an event, the information
content of X, denoted I(X), is the set of events with each
of which X has an information cont t inclusion relation. en

Sufficient conditions for I(X) ד Y are:
• Both X and Y are events, namely they could be

contingently true, or contingently untrue, but are
neither necessarily true nor necessarily false.
Mathematically P(X)≠1 and P(X)≠0 and P(Y)≠1
and P(Y)≠0

• Whenever X is true Y is true. That is P(Y|X) = 1, in
other words X ؿ Y .

Given the above definitions [5] went on to prove
the following inference rules for eve h sound
and complete.

nts, whic are

Theorem 2.8 (Sum). If Y = X1 ׫ X2 ׫ …׫ Xn, then
I(Xi) ד Y for i = 1 , …,n.

52 Using Logic Programming to Represent Information Content Inclusion Relations

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

Theorem 2.10 (Transitivity). If I(X) ד Y,I(Y) ד Z
then I(X) ד Z.

Theorem 2.11 (Union). If I(X) ד Y,I(X) ד Z then
I(X) ד Y ∩ Z.

Theorem 2.12 (Augmentation). If W = W1 ∩ W2
∩… ∩ Wn, Z is the product of a subset of W1,W ,…,Wn,
I(X) ד Y then i(W ∩ X) ד Z ∩ Y .

2

Theorem 2.13 (Decomposition). If I(X) ד Y ∩ Z
then I(X) ד Y,I(X) ד Z.

In the above theorems X1,Xn,Y,Z,W,W1,W2,Wn are
all events in E.

Although these rules are sound and complete, it
should be noted that [5] have already mentioned that
these rules are not all independent of one another. They
mention that theorem 2.13 may be proved with the use of
theorems 2.8 and 2.9.

Furthermore we find that (theorem 2.12) may be
proved as follows:

Table 1 Types of IIR and their sources (based on [5])
Information Inclusion
Relation: I(X) ד Y

Sources

X, Y : both database events Syntactic relations between
data constructs and data
values

X: a database event; Y : an
application domain event

Semantic values and
information content of data

X: an application domain
event; Y : a database event

Rules and processes of
database design and database
operations

X, Y : both application domain
events

Relations between real world
objects, Business rules

2.2.2 How IIR work for a database
We note that constructing and using a database to

carry and convey information must involve all the above
four types of IIR.

Student LecturerCourseTAKES TEACHES

S1S1

S3

S2

S1S1

S2

S2

n n n 1

P
 W

I(X)דY

roof
W = 1∩W2∩…∩Wn Premise 1

Premise 2
W∩X

 f
I(W) דZ

Assumption 3
Z is a actor of W Premise 4

I(W∩X) ד Z∩Y

Theorem 2.8 applied to 4 5
Theorem 2.10 applied to
2,3 and 5

■

Figure 1: A Path in an ER schema

The following discussions are based on the ER
diagram in Fig. 1.

IIR as shown in row 1 of Table 1 are purely the
result of the syntactic characteristics of a database such
as rules for the structure and data integrity of a database.
That is, they arise as a direct result of the nomic
constraints [11] within a database. To illustrate, consider
the path shown in Figure 1, let α1 be the connection
between node entity Student and node entity Course, α2
entity Course and entity Lecturer, and α3 entity Student
and entity Lecturer, then there is a nomic constraint α1,
α2 ٟ α3, which means that α1 and α2 in conjunction entail
α3. Such a constraint captures information flow [12, p.
29], and consequently there is an IIR between some
combination of α1 and α2 having an information content
inclusion relation with α3 (In fact, in our notation, this
may be represented by: I(α1∩α2)דα3 - see section 2).

Therefore, in any discussion of the inference rules
for IIR, it is sufficient only to consider IIR itself,
reflexivity and inference rules, i.e., from theorem 2.8 -
theorem 2.11 inclusive.

2.2 IIR underlying a database
The notion of information content of a state of

affairs is essentially the same as that of information flow
in the sense that information is carried by a state of
affairs in order to flow. We agree with [12, p.4], Once
one reflects on the idea of information flowing, it can be
seen to flow everywhere; not just in computers and along
telephone wires but in every human gesture and
fluctuation of the natural world. Information flow is
necessary for life. In this section we show how IIR
support a database and also may be seen as explaining
how a database may provide the user with information.
That is, IIR may formulate an information theoretic view
of databases.

IIR now provides a framework for reasoning over a
database in order to derive information. For example, let
β1 be a real world event that a student takes a course, β2
the course is taught by a lecturer, and β3 a student is
taught by a lecturer. To obtain that student s1 is taught by
lecturer t1 (w ich is a particular of β3), either the
following IIR ay be used:

h
m

• I(α1∩ α3,Iד(2 ,.β3, so through Transitivity (i.eד(3
theor m 2.10 ve β3, or alternatively,

α (α
e), we deri

• I(α1)דβ1,I(α2)דβ2, through Augmentation (i.e.,
theorem 2.12) and Union (i.e., theorem 2.11) we
derive β1∩β2, and from this, we derive I(β1∩β2)דβ3,
resulting in β3.

The above chains of reasoning show how the type
of IIR of row 2 of Table 1 work, namely we need an IIR
from αi to βi (among others) for the reasoning to work.
Thus, IIR from a database event to an application
domain event pertains as to how data is used within the
database to derive information. This kind of IIR may
also involve so called semantic values of representations

2.2.1 Types of IIR and their sources
In this section we show how IIR support a database.

A database can be involved with two different types of
events: those that are internal to the database which
could be termed database events, and those that are in
the real world, which will be called application domain
events. Consequently, there are four types of IIR shown
in Table 1 which summarise the types of IIR and their
sources.

 Using Logic Programming to Represent Information Content Inclusion Relations 53

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

[11], which are concerned with an application domain.
For instance in the above relationship, at the syntactic
level, the intersection of α1 and α2 (i.e., the product of the
two events) has α3 in its information content from which
a cognitive agent can derive the information in the
application domain that a particular lecturer teaches a
student.

The IIR from application domain event to a
database event is involved in database design. It would
remain unclear as to whether an entity Student should be
placed in an ER schema until the students are identified
in the application domain for which the database is
designed. A further example could be constraints placed
on a relation, which will not be obtained until some
relation between objects in the application domain is
captured. This type of IIR is described in row 3 of Table
1.

The IIR between application domain events could
be concerned with requirements analysis and query
writing, etc. Say for instance we have a business rule of
‘if a student takes a course that a lecturer teaches, then
the lecturer teaches the student’ , ‘a student takes a
course and the course is taught by a teacher’ is an event,
denoted say X, and ‘the student takes the course’ is
another event, say Y . Thus the information content of Y
is already in X. Furthermore, due to this IIR, we need
only embody (carry) X by using data and not Y , as Y can
be derived from X. This elaborates on row 4 of Table 1.
In addition, this level of IIR contains constraints of the
real world. For instance, a particular lecturer teaches a
particular student, generally carries such information,
such as the lecturer is qualified to teach the course, or we
have a particular by whence such an IIR would make
sense, such as this is not before the lecturer or student
was born.

As can be seen from an earlier part of this section
there are several inference rules available for deriving
further IIR from a given set of IIR, the most important of
these being the transitive property of IIR. It is these
inference rules that we wish to model with Datalog.

2.2.3 Information and meaning of a data
construct

It is our belief that meaning is often incorrectly
taken as synonymous with information that a particular
datum may carry. Such ambiguity, we feel, hampers the
analysis of information when related to a database. In
this section we will attempt to make a clear distinction
between the two.

Let f be some relation between objects in the
application domain, which is either true or false, but
which cannot always be true, or always false, that is, it is
contingently true. Let e be a particular data construct,
such as a node or a path in a graph. Using the above
example in Figure 1, then e would be the nodes s1, c1 and
an edge between them, labelled, takes.

If f can be comprehended by some ‘semantic rule’
(terminology borrowed from [11]) without any
additional inference (ibid., p. 21) from e then f is in the
primary meaning of e [13]. Again, to illustrate with the
above example. The primary meaning of e is that student

s1 takes the course c1. If we assume the accepted rules
for following the meanings of ER diagrams is like that in
Figure 1, then the data construct shown therein has a
‘type’ of primary meaning that a student takes a course,
and a lecturer teaches a course as opposed to the actual
meaning of an individual data construct.

If under certain conditions on both data and the part
of the application domain with which the data are
concerned, such as the structure and constraints of a data
schema, on top of what can be comprehended directly
from the data, that is f can be derived from e, then this is
beyond the primary meaning and f is part of the implied
meaning of e (ibid.). For example, the data constructs in
Figure 1 are capable of giving the meaning that a student
is taught by a lecturer if there exists a business rule that
‘if student takes a course and the course is taught by a
lecturer then the lecturer teaches that student’. This
implies that the meaning of such a construction of entity,
relation, entity is given by its type. Types are modelled
by the data schema, and types arise from what Dretske
terms concepts [6, p. 214]. Hence any data instance that
fit these data constructs inherit the meaning of their
corresponding types. Meaning arises from these concepts
and thus concepts give meaning to these instances (cf. [6,
p. 222]). Some relevant interpretation rule in the
application domain is then applied to such data
constructs thereby giving them meaning. Using the ideas
above, then the meanings of a data construct does not
necessarily need to be contained in its information
content. We follow the idea that information must be
contingently true [4], but this does not necessarily apply
to meaning. Say f is part of the meaning of e, only if it is
also a particular of some application domain event, say
Y with which a database event, say X, of which e is a
particular, has an IIR, does f qualify as part of the
information that e bears and conveys. The IIR would
make sure of the veridicality [12, p. 10] required. The
meaning of a data construct may happen to be part of its
information content, however such conditions for
meaning to be part of the information are neither
necessary, nor sufficient.

3 Purpose of Investigation
The aim of this paper, is to discover whether there

is any kind of linkage between the two frameworks
described, and furthermore what the nature of this
linkage or correspondence is. We believe that there must
be some kind of linkage. On the basis that ‘safe’ Datalog
is a subset of First Order Predicate Logic (FOL) then
Datalog can successfully represent certain aspects of an
application domain. That is, at one level, it is a
representation system. There must exist constraints
between the database and the domain of application it is
trying to model. However, this representation, when
looked at from the purely physical viewpoint is at best
just variances in electrical charge within the internals of
some computing device [14, p. 156]. We define these
electrical variances with values of 0 or 1, and in turn use
those symbols to represent other symbols. Hence a
computing device is merely a contrivance for
manipulating symbols (ibid.), and hence computing

54 Using Logic Programming to Represent Information Content Inclusion Relations

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

devices do not exhibit cognition. Eventually these
symbols can be used to represent aspects of the real
world. It is this linkage via these constraints to the real
world by this accumulation and refinement of such
symbols that we believe information content can arise.
IIR is a proven way of modelling an application domain
in terms of information content. As we have two
frameworks, both of which can represent an aspect of the
real world, then it seems logical that there must be some
kind of correspondence between them. This paper is part
of a series which tries to uncover this assumed
correspondence.

‘Safe’ Datalog also represents, as stated before a
particular subset of FOL. FOL, and in particular one of
the two inference rules of FOL [15, p.86]; the modus
ponens, underlies the vast majority of computing [14, p.
156]. By proving such a correspondence then we must be
close to determining why computing devices are so
useful in modelling the real world, and what, therefore is
the informational justification of the modus ponens, that
is a possible informational theoretical justification of
FOL

We note there are other implementations used when
analysing databases in terms of IIR. We already know
we can model IIR using Prolog [8] and Oracle PL/SQL
[16], [1], [17] and [18]. This would seem to support the
above claim that there is some link between the
fundamentals of computing and an information theoretic
representation of such systems.

Additionally as seen in the above papers, we can
model IIR using existing computing frameworks. It
would therefore, be useful to possess yet another form of
representing such relationships, which has been formally
proven to be able to represent any given set of IIR. This
would allow further investigation of IS in terms of IIR
using a proven tool.

Finally, IIR itself is a framework that describes
information content of a given state of affairs and
relationship therein. As we are able to successfully
model IIR, and IIR is not necessarily tied to an IS, and
furthermore we can model such IIR with several
implications, it would seem that IIR itself must represent
some kind of generalised framework, with which to
undertake informational analysis of virtually any
situation that can be represented in probabilistic terms.

4 Brief Definition of ‘safe’ Datalog
Although Datalog has a relatively simple syntax, in

this paper we will only be considering ‘Safe’ Datalog,
that is Datalog that does not contain any negative sub-
goals and is safe [10, pp. 67-68] [19]. One of the reasons
for this, is that there are many implementations of
Datalog available, which extend Datalog to include
negative sub-goals and disjunction [10, p. 119] [20].
Throughout this paper we make use of a limited set of
the functionality of the Datalog Educational System
[21] .We therefore attempt to define, briefly, the Datalog
we wish to use to model IIR. We now define the syntax
of the Datalog we in which we are interested.

Datalog is a subset of Horn programs, which are
suitable for application to databases. Datalog’s semantics

are based on FOL [22]. Note, all following logic
program definitions are derived from [10] and [19].
Essentially Datalog predicate logic consists of a subset
of formulae. A formula is a set of predicates called
atoms, or atomic formulae. These are of the form:

p(a1,…,an)
where p is the predicate name, a1, a2, …, an are

constants or variables, known as terms and n is termed
the arity of the predicate. The collection of predicates,
constants and variables is referred to as the basis. In
particular the basis we are considering contains no
function symbols. A formula consists of series of atoms
connected using standard logical connectives. It can be
shown that any formula can be converted to the clausal
form [9, . 7 4-7 5]. o i p p2, …, pn, q1, …, qm are a
series of om , th n a cla al rm of the formulae is:

pp 3 3 S f 1,
at s e us fo

¬p1ש¬p2ש…ש¬pnשq1ש…שqn where all atoms are
assumed to be universally qualified. Each qualified atom
in the clause is referred to as a sub-goal. Note this
structure can be transformed using standard FOL axioms,
and may give rise to Horn clauses (or definite clauses,
and general Ho clauses w are a subset of the
clausal form.

rn hich

A clause p1ש…pn←q1ש…שqm is called a:
• Horn clause if n is less or equal to one and every

sub-goal is an atom;
• general Horn clause if n is greater than 1 and

every sub-goal is an atom.
Definition 4.1. A positive logic program, P, is a set

of Horn clauses.

Definition 4.2. r be a general Horn clause, a
variable V of r is called limited if
• V appears in an ordinary positive sub-goal, or
• V is equated to a constant c in a built-in sub-goal,

e.g. V = c or c = V , or
• V is equated to a limited variable W in a built-in

sub-goal, e.g. V = W or W = V .
r is called safe if each variable of r is limited. A

positive logic program is safe if all it clauses are safe.

Definition 4.3. A positive logic program is called a
‘safe’ Datalog program if
• its basis does not contain any function symbols,

and
• it is safe.

4.1 ‘Safe’ Datalog syntax
What follows is a précis of the descriptions found

in [9], [19] and [10].
The following conventions are adopted to indicate

syntax:
•] indicates optional; [
• indicates one or more, but finite; …
 .’… indicates ‘either …or פ •

If none of the above are present, then this indicates
that the object is mandatory.

We now need to detail the following structures:
• constants;
• variables;
• terms;

 Using Logic Programming to Represent Information Content Inclusion Relations 55

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

• built-in predicates;
• conditions;
• facts;
• rules;
• programs.

4.1.1 constants
These are of the form:

lower case letter[any alphanumeric character | underscore _]…|
Number

So examples of constants are:
a
x
constant
cOnstant
cONSTANT
c12939
1
-1
2E10
1.5
1.314E-34
Such constants will be denoted as lower case single

letters, a, b, c,… or an, bn, cn, …for n א Գ in subsequent
definitions.

4.1.2 variables
These are of the form:

upper_case_letter| underscore _ [[any alphanumeric character |
underscore _]…

So examples of variables are:
X
Y
_
_aVar
Variable
VARIABLE
VariaBle
V123
Variables will be denoted as upper-case letters A, B,

C, …or An, Bn, Cn for n א Գ in the following definitions.
4.1.3 terms
Terms may be either variables or constants. This

will be denoted as emboldened lower case a, b, c,… or
an, bn, cn,… for n א Գ in the following definitions.

4.1.4 built-in predicates
Because we are only using ‘safe’ Datalog, then the

only predicate available is the equality. This takes the
form:

a = b
Examples of these are
doug = 10
X=Y
2=3
X=doug
size=doug
Conditions will be denoted as emboldened upper

case A, B, C, …or An, Bn, Cn, for n א Գ in subsequent
definitions.

4.1.5 predicates
These are of the form:
p(a1,…,an) where n ≥ 0.
Examples of predicates are:
ancestor(titus, A).
student(doug).
supervises(doug, dr_feng).

supervises(shuang, Who).
Predicates will be denoted as lower case single

letters p, q, r,… or pn, qn, rn,… for n א Գ in subsequent
definitions. If p, or pi is stated without accompanying
terms, then the terms are assumed, that is p is shorthand
for p(a1,…,an).

4.1.6 facts
These are of the form.
g(a1,…,an) for n ≥ 1.
Examples of facts are:
true.
employee(doug).
ancestor(titus,doug).
Notice that facts are a specialisation of predicates.

Indeed facts are known as gr nd predicates. ou
Facts will be denoted as lower case single letters g,

h, i,… or gi, hi, ii,… for i א Գ in subsequent definitions.
If g, or gn is stated without accompanying terms, then the
terms are assumed, that is g is shorthand for g(a1,…,an).

Also notice in the first example the predicate
without arguments invariably returns false (i.e. no tuples
computed), and is not much use for querying. We do not
consider it within this paper.

4.1.7 rules
Rules are of the form:
p:-p1,p2,…,pn,P1,…,Pm where m + n ≥ 1, and p must

start with a lower case letter.
The right hand side of the rule, is often termed the

rule body. Examples of rules are:
superior(A,B):-supervises(A,B).
superior(A,B):-supervises(A,X),
 superior(X,B).
smallSize(X):-size(X,Y),X=8.
The collection of predicates and conditions (known

as sub-goals) in the rule body is conjunctive, i.e. all sub-
goals must be satisfied for the rule to be true. A rule may
contain itself in the rule body, That is, rules may be
recursively defined.

Rules will be denoted as lower case emboldened
single letters r, s, t,… or rn, sn, tn,… for n א Գ in
subsequent definitions. If r, or rn is stated without
accompanying terms, or associated predicates, then the
terms and predicates are assumed, that is r is shorthand
for r(a1,…,al) : -p1(A1,…,Am),p2(b1,…,bn),…,P1,,P2,…
for l, m, n ≥ 0.

Ground rules, i.e. rules with only zero parameters
or constants in the rule head, are considered to be facts,
and the rule body is not evaluated.

4.1.8 Programs
A collection of rules and facts is referred to as

Datalog program. Identically named facts may appear in
a Datalog program many times, and this collection of
facts is referred to as the Datalog database to which rules
are applied, in order to return tuples that satisfy the
query entered. Order is important, Datalog will evaluate
facts in the order they appear in the program. Similarly
the same rule name may appear multiple times (as well
as appearing in its own rule body). Again Datalog will
evaluate rules in the order they appear. All such
occurrences of the rule will be evaluated in an attempt to
return tuples.

56 Using Logic Programming to Represent Information Content Inclusion Relations

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

4.1.9 Querying in Datalog
A program normally resides in a simple text file. To

perform a query in Datalog, the Datalog program must
be ‘consulted’, i.e. loaded up into the Datalog
environment. Queries are then performed within the
Datalog environment. These are just predicates with
usually, at least one variable, and are entered
interactively in the Datalog environment.

Examples of queries are:
ancestor(doug, A).
employee(Anybody).
Datalog then returns all matching tuples of the

predicate.
5 Theoretical justification of the

transformation of IIR to Datalog.
We believe that it is vital to obtain theoretical

guidance and justification on our investigation. The basic
idea is to utilise the proven approaches found in [10] and
[23] of creating an interpretation of a given set of
predicates and thence trying to produce a model, i.e. an
interpretation which gives answers corresponding to the
truth of that set of predicates. In order to do this we
strictly define the components that we are working with:
the probability space, and the possible set of IIR which
will arise from that probability space (but are, as yet,
unknown), we then create an interpretation. Using the
properties of IIR we construct predicates within our
interpretation which reflect these properties. We then go
on to show that such predicates may always be
constructed if we have the prior conditions set out below.
Finally once these structure have been created, we use
the fact that ‘safe’ Datalog is itself an implementation of
a subset of FOL (that is, without any negative sub-goals)
to prove that a given set of IIR may always be
represented by a suitable Datalog program.

Within the bounds of a database we are dealing
purely with data. Such databases are alethically neutral
[4], that is, not all the semantic value [11] of the
instances of data in a database is information about the
application domain it is modelling. However, there is an
informational relationship between data as row 1 of table
1 illustrates, and thus we can use IIR to reason about this
data. To this end, we treat a value of a data construct (i.e.,
an attribute or a set of attributes) being of a certain value
in an instance of a notional database as an event. This is
along the same line of [24] [25], [26]. For event B to be
in the information content of event A, that is, for there to
be an IIR between these two events, denoted I(A) ד B,
then we must have, by definition:

P(B|A) = 1
That is, event B is certain if we have event A. So

this may be stated: given event A, then we have the
information that event B exists. In terms of an instance
of a database, then if we have an instance of event A at a
given time, it is certain that we have an instance of event
B. This means there is always a link between entity A
and entity B.

Definition 5.1. If we have the probability space
O,E,P , then there exists a complete set of IIR and the
relationships between those IIR due to IIR rules, denoted

IIR. IIR includes all IIR that are logically implied by a
given set of IIR, due to IIR rules being complete and
sound (see [5]).The relationships are determined by
reflexivity, IIR inductance theorems 2.8 - 2.11 and
simple IIR relations. These rules would be represented as
the IIR relation ד between set relations.

Definition 5.2. An evaluated probability space, W
is the tuple ((O,E,P),IIR) where (O,E,P) is the
probability space as mentioned above and IIR is defined
as above.

Definition 5.3. A universe or domain of discourse,
D is the tuple (T,R) where T are all the terms of D, and R,
are all the rules in D, for manipulating members of T.

Definition 5.4. An interpretation, J of domain of
discourse D, where U is a non-empty set of elements,
called the universe (or domain) of interpretation, such
that:
• For each member T of D, in J, an assignment to

element in U, i.e. , J:T→U.
• For each member, R of D, the assignment of an n-

arity Horn predicate q in J, being the assignment of
a mapping in Un into true, false (or, equivalently, a
relation on Un)

We now create an interpretation J, for some
evaluated probability space W=(O,E,P IIR) with domain
of discourse, E, giving J:E→U.

),

Definition 5.5. For any event e א E there exists an
closure for e, denoted e+, for which ׊xאe+, I(e)דx. This
closure is created by the repeated application of
theorems 2.8 - 2.11.

Definition 5.6. For any two events e1 and e2 linked
in any way by being members of the same closure then
they are said to be related. Note such events will appear
in some kind of relation in the complete IIR set, IIR.

Definition 5.7. A set of terms, T for that particular
interpretation of an IIR rule are said to be linked if all the
terms, representing those events, are related, and this set
is denoted TIIR.

Definition 5.8. A linked predicate, denoted iir is
constructed recursively from predicates with linked
terms, thus:

iir(T)←p1(T1)ר…רpm(Tm),m≥0,TكTIIR,T1׫…׫Tm=TIIR

where pi(Ti) is either a fact, or a further linked
predicate such that TiكTIIR, and the arity(T), arity(Ti) ≥ 2

Note the above does not impose order (as these are
sets), so the above example could represent, for example,
if T, in the above were T={a,b}, then this predicate could
be either be p(a,b) or p(b,a), both of which could
represent I(J-1)(a))דJ-1(b) or I(J-1)(b))דJ-1(a).

Note that with the iir(T), then the set T may be a
selection of any of the terms in TIIR.

Definition 5.9. The IIR predicate rule set is said to
be consistent if and only if ׊am, an א U then I(J(am)) ד
J(an) ֞ am, an א TIIR.

 Using Logic Programming to Represent Information Content Inclusion Relations 57

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

Note this could consist of only one IIR predicate, a
series of IIR predicates, a single rule, or rules that call
other rules, or any combination of the above to complete
the IIR predicate set.

Lemma 5.10. A consistent IIR linked predicate rule
set may always be constructed.

Proof.
Given en א e1

+, then as theorems (2.8) - (2.11), are
complete there must exist a path between events e1 and
en such that I(e1) ד e2, I(e2) ד e3,…,I(en-1) ד en, I(ei) א IIR.

There may be many such paths. We select the one
with lowest order.

Firstly we construct the relationship for e to e
This is simply:

1 n.

closure1(T1) ← iir1(T2) where {J(e1),J(e2)}ؿ T1 ك
T2 ك T1

IIR, T1
IIR is the set of linked terms for linked

predicate involving e1 and e2.
We now construct the remainder of the predicate,

inductively, from e1 to ep, where p ≤ n. So we have: 2 <

 closurep(Tp) ← cl urep-1(Tp-1) iirp(T1) os ר

where: J(e1) א Tp-1, J(ep) א T1, {J(e1),J(em)}ؿ Tp ك
T1 ك Tm

IIR and Tp-1 ك Tp-1
IIR.

There are two cases we must examine to prove the
above constructed predicate is consistent. These are:
• The predicate evaluates to true and there is no

closure
• The predicate evaluates to false and there is a

closure
Considering the first, that the predicate evaluates to

true and there is no closure. By definition, this means
that there must exist a sub-goal which is true which
contains terms that are not linked, representing events
that are not related. However this is a contradiction, as
all sub-goals have been constructed from linked terms.

More f mally: or
If we have constructed closuren(Tn), where

{J(en),J(e1)}ؿ Tp, for en א e1
+, then there exists p, such

that closurep(Tp) ← closurep-1(Tp-1) רiirp(T1), 1 < p ≤ n
where some eventual fact of iirp(T1) is not linked.
However, this is a contradiction as by definition as terms
in iirp(T1) must be linked, that is for any two terms in T1,
then the event representation of these terms are linked by
definition. Additionally since iirp(T) ← predicate1(T1)
 ר…ר predicatem(Tm), m ≥ 0 and in particular T ك Tp

IIR,T1
Tm = Tp ׫ …׫

IIR, then all such terms must be present.
Now considering, that the predicate evaluates to

false and there is a closure. This implies there are related
events which are not represented by linked terms.
However, by definition all linked terms must be present.
This is a contradiction, and hence no predicate can

aluate to false if there is a closure. ev
Again, more formally: since we have the events en

e1 א
+ and the assumption is that these are linked, then we

must have I(e1) ד e2, I(e2) ד e3,…I(en-1) ד en. But the
assumption is that the predicate is untrue, this means
there must be a missing fact in iirp(T) ← predicate1(T1)
 ר…ר predicatem(Tm), m ≥ 0 , 1 < p ≤ n, but by definition
the set Tp

IIR must contain all linked terms for that

predicate, and hence have a representation for related
events - this is a contradiction, so there can never be a
false constructed predicate when there is a closure.

 ■
Lemma 5.11. A set of consistent IIR predicate rules

is always safe.
Proof.
Replacing all terms J(ei) in linked iir predicates by

Vi then all iir linked predicates are Horn clauses, so by
definition are general Horn clauses.
• Vi only appears in an ordinary positive sub-goal,

and
• There are no constants in J.

■
Definition 5.12. An interpretation J, which upon

evaluation makes all rules in the complete IIR rule set,
IIR evaluate correctly is called a representation of W .
That is ׊ui, uj א U then I(J-1(ui) ד J-1(uj) must be true.

Lemma 5.13. A interpretation J is a representation
for W , if and only if the predicate representation of the
IIR rule set is consistent.

Proof.
The IIR predicate rule set is consistent, thus as we

can see from lemma (5.10) when for any iir predicate
rule is true for J it is true for the representation W. When
any iir predicate rule is false for J, it is false for W ,
hence J is a model for W.

■
Lemma 5.14. An interpretation J of W that has a

consistent IIR predicate rule set is a Horn program.

Proof.
From (5.11) we see that all iir linked predicates of

an interpretation J of W are Horn clauses, and from
definition (4.1) we see that the set of iir linked predicates
is therefore a Horn program.

■
Definition 5.15. An interpretation J that makes true

all rules in P is called a model for P .

It should be noted that any positive program P has
been shown to have a model [19, p. 193].

Definition 5.16. A model M for a program S is said
to be its least model, denoted lms(S) if M′ M for every ل
model M′ of S. Because S is a safe ‘safe’ Datalog
program, then there always exists a least model, lms(S)
for S (see [10] and [19]). This least model consists only
of series of facts, i.e. predicates of arity one or above.

Theorem 5.17. Any database system that can be
modelled using IIR can be represented as a ‘safe’
Datalog program.

Proof.
Lemma (5.13) shows we can construct a

representation of W within interpretation J if and only if
the iir predicate rule set is consistent. Lemma (5.10)
shows we can construct this consistent rule set. Lemma
(5.14) means that J is a Horn program, and hence may be
represented as a program in ‘safe’ Datalog.

■

58 Using Logic Programming to Represent Information Content Inclusion Relations

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

்ܲ ൌ ቐ
,ݔሺ݈݁ݑݎ .ሻݕ
,ݕሺ݈݁ݑݎ .ሻݖ

,ሺ݈ܺ݁ݑݎ ܼሻ:െ݈݁ݑݎሺܺ, ܻሻ, ,ሺܻ݈݁ݑݎ ܼሻ.

5.1 How to construct IIR from ‘safe’
Datalog

We note that this is only an existence theorem, and
does not actually show how to construct a given Datalog
database to represent the given set of IIR. To do this we
must prove each of the four inductance theorems 2.8 -
2.8 can be represented in ‘safe’ Datalog

Proof.
Let X, Y and Z be events in a probability space E

and let I(X) ד Y and I(Y) ד Z. By the transitivity theorem,
2.10, then I(X) ד Z. Thus the domain of discourse, by
definition 5.3 is the tuple D = ({X,Y,Z}, {I(X)דY, I(Y)דZ,
I(X)דZ}. Now let PT be an interpretation of D, such that
PT:X → x, PT:Y → y, PT:Z → z.

We now show one possible way such a set may be
constructed.

5.1.1 Sum
This refers to the em .8 or 2
If Y = X1 ׫ X2 ׫ …׫ Xn, then I(Xi) ד Y for i =

1 , …,n.

By definition 5.5, the closures for X,Y and Z are:
• Z+ = {Z}
• Y+ = {Y,Z}
• X+ = {X,Y,Z}

We now construct the following linked predicates,
as per definition 5.8. As consistent rule sets need to be
built recursively, (as explained in 5.10 from the smallest
set of linked terms, then we take the lowest order set of
the closure and begin with that. We can ignore Z+, as this
cannot produce any rules of arity 2 or above. Thus we
now have Y+, which we can select a consistent linked
predicate, this being any subset of

We select a single fact from this set: facty(y,z),
and use this to build the next consistent linked predicate.

We have already chosen to select factx(x,y).
Given this then, the least model (as in definition 5.16)
produced for the program must be something like:

One way to do this in Datalog is the following:
iir(X,S) : -sum(S,X,X1,…,Xn).
iir(X,S) : -sum(S,X1,X,…,Xn).
� �
iir(X,S) : -sum(S,X,…,Xn,X).
Where S is a fact (or derived fact) , representing a

sum of arity n + 1, and the first parameter of the fact
names the sum.

Proof.
Let Y1, X1, … Xn be events is E. We now represent

the union of X1, …, Xn as the Datalog fact:
sum(s,x1,…,xn). The sum is called s. We now
construct the sum inference rule 2.8 as above. To prove
that we have indeed created a sum, then we must have
we must have an IIR relationship between X1, …, Xn.

{fact(x,y).,fact(x,z).,fact(y,z).} ■
We note immediately, that the naming of the sum

need not occur in the first argument of the fact, so from
this method, we have another n - 1 possible
representations of the same set of IIR. Additionally, and
possibly more neatly

Although again, there are other least models which
will equally satisfy our requirements.

The next linked predicate must be a subset of the
following (noting that this is ‘safe’ Datalog and all
arguments are limited) 5.1.2 Product We also note we have named all facts and sub-
goals the same. This need not necessarily be the case. So
the actual set from which we can choose our model is
somewhat greater than that presented above. We are
perforce, constrained somewhat by the union of the
previous iteration to find the consistent linked predicate,
(but not by a great deal), so after rename the facts and
rules, we now choose:

T
If X = X1 ∩ X2 ∩… ∩ Xn, Y = Xi for i = 1…, n then

I(X) ד Y .

his refers to theorem 2.9:

An example of representing the product would be:
iir(P,X) : -product(P,X,X1,…,Xn).
iir(P,X) : -product(P,X1,X,…,Xn).

iir(P,X) : -product(P,X1,…,Xn,X). {iir(y,z).,iir(y,z).,
Where P is a fact (or derived fact) , representing an

intersection of arity n + 1, and the first parameter of the
fact names the product.

iir(X,Z):-iir(X,Y),iir(Y,Z).}

We note that this predicate rule set is consistent as
per definition 5.9, as for every I(PT

-1(xi))ד PT
-1(xj)׊xi,xj

 hence we have a representation of D as per ,{x,y,z}א
definition 5.12.

Proof.
We note immediately, that the naming of the

product need not occur as the first argument of the fact,
so from even from this method, we have another n- 1
possible representations of the same set of IIR.

Which gives us the program as above.
■

This rule, is why we believe is why ‘safe’ Datalog
is so suitable for representing IIR. The recursive nature
of ‘safe’ Datalog is amply able in representing the
transitive nature of IIR.

■
5.1.3 T ansitivi r ty

fe eo
If I(X) ד Y, I(Y) ד Z then I(X) ד Z.
This re rs to th rem 2.10

5.1.4 Union This may be represented by the ‘safe’ Datalog
program: This refers to theorem 2.11

If I(X)דY, I(X)דZ then I(X)דY∩Z.
One way to do this is by doing the following:

 Using Logic Programming to Represent Information Content Inclusion Relations 59

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

iir(X,P) : -
product(P,X,Y),iir(X,Y),product(P,Y,Z),i
ir(X,Z)

6 Examples of IIR converted to Datalog
6.1 Closure example
The examples that follow are from [17], but have

been slightly modified to exemplify all the IIR inference
rules, as in [27], and thus demonstrate how to derive an
IIR closure using a Datalog.

It should be noted that [17] uses a modified version
of the IIR inference rules. These are equivalent, although
the omission of the sum and product, loses some of the
generality associated with IIR. The modified versions of
the inference rule may be presented as follows.

If X, Y and Z are separate and individual events, in
a state space, as defined in section 2 the forms of IIR
may be rewritten thus, imitating in the form of the well-
known Armstrong’s Axiom for functional dependencies
in relational databa es [5], 8]:

s
s [2

1. Reflexivity: X → X ֜ → X, or using previous
notation: I(X) ד X.

 X

2. Augmentation: X → Y X Z → Y ∩ Z. ֜
 →

∩
3. Transitivity: X → Y, Y Z X → Y. ֜

5
4. Union: X → Y, X → Z ֜ X → Y ∩ Z.

. Decomposition: X → Y ∩ Z ֜ X → Y, X → Y.
For the purposes of this paper, we use the original

versions of IIR mentioned in section 2. That is, we use
definition, (2.7) and theorems (2.8 - 2.11). Bearing this
in mind, the example we wish to code may be
represente by he following set of IIR:

 t

I(A ∩) C
d
 B

I(C) ד A
 ד

I(B ∩ D C ד (
 C

I(D) ד E G

I(A ∩ ∩ D) ד B

∩
I(B ∩ E) C ד

ד
I(C ∩ E) ד A ∩ G
I(C ∩ G) B ∩ D

W = X Y Z ∩ ∩
 ∩

L = P ׫ Q ׫ A
M = W A

T = B ∩ D ∩ W
All the above literals represent events in a

probability space as defined above. The reason we use
them is because each conjunction or disjunction of an
event needs to be named in order to be manipulated by
the ‘safe’ Datalog program.

For the purposes of this paper, we now demonstrate
how the constructions in section 5 may be used to
construct a combination of a st ight-forward IIR and the
product rule.

ra

For the example I(A∩B) ד C we need to represent
that the product A ∩ B has in its information content C.
If we assume the product pAB = A ∩ B, then the original
relationship may be rewritten I(pAB) ד C. Thus we have
the linked events pAB and C Representing these as a
linked predicate gives us

iir(pAB, c).
We now need to represent the product inference

rule as a rule. To do this we must show that the product

pAB has in its information content A or C. This could be
represented as two further predicates

iir(pAB, a).
iir(pAB, b).
If we now represent transitivity as the following,

which again maintains the linked events as linked
predicates, using:

iir(X,Y):-iir(X,Z),iir(Z,Y).
The evaluation of the rule leads to new facts:
iir(a,c).
iir(a,b).
Which is correct. Or, alternatively the product

inference rule could be represented by the rule:
iir(P,X):-product(P,X,Y).
iir(P,X):-product(P,Y,X).
The rule, when run in conjunction with the

representation of the transitivity rule gives more
flexibility as not all the examples of the product then
have to be represented. Additionally the statement of the
inference rules will lead to other IIR relationships which
may not be immediately aware to the person coding the
representation. Notice also, the 2nd representation,
returns exactly the same results as the former
representation, maintaining the linked events as linked
predicates.

Bearing this kind of construction in mind, we now
take the relationships listed above, and originally used in
[27] and code them in Datalog.

% facts
% =====

% I(A ∩ B)-> C
product(pAB,a,b).
iir(a,c).
% I(B ∩ C) -> D
product(pBC,b,c).
iir(pBC,d).
% I(A ∩ C ∩ D) -> B
product(pACD, a, c, d).
iir(pACD,b).
% I(D) -> E ∩ G
product(pEG, e, g).
iir(d,pEG).
% I(B ∩ E) -> C
product(pBE, b, e).
iir(pBE, c).
% I(C ∩ G) -> (B ∩ D)
product(pCG, c, g).
product(pBD, b, d).
iir(pCG, pBD).
% I(C ∩ E) -> (A ∩ G)
product(pCE, c, e).
product(pAG, a, g).
iir(pCE,pAG).
% W = X ∩ Y ∩ Z
product(w,x,y,z).
% M = W A ∩

% L = P ׫ Q ׫ A
product(m,w,a).

sum(l,p,q,a).
% T = B ∩ D ∩ W
product(t,b,d,w).
% Rules
% =====
% Sum...

60 Using Logic Programming to Represent Information Content Inclusion Relations

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

% ...for a sum of three parts.
iir(X,S):-sum(S,X,A,B).
iir(X,S):-sum(S,A,X,B).
iir(X,S):-sum(S,A,B,X).
% product...
% ...for a product of 2 members.
iir(P,X):-product(P,X,A).
iir(P,X):-product(P,A,X).
% ...for a product of 3 members.
iir(P,X):-product(P,X,A,B).
iir(P,X):-product(P,A,X,B).
iir(P,X):-product(P,A,B,X).
% transitivity
iir(X,Y):-iir(X,Z),iir(Z,Y).
% union
iir(X,P):-product(P,Y,Z),iir(X,Y),
 product(P,Y,Z),iir(X,Z).
If the program is run with the following query:
iir(t,X).
It gives the following uncovered IIR (amongst

many others involving all the sums and intersections) :
{
iir(t,a),
iir(t,b),
iir(t,c),
iir(t,d),
iir(t,e),
iir(t,g),
iir(t,l),
iir(t,m),
iir(t,pAB),
iir(t,pAG),
iir(t,pBC),
iir(t,pBD),
iir(t,pBE),
iir(t,pCE),
iir(t,pCG),
iir(t,pEG),
iir(t,w),
iir(t,x),
iir(t,y),
iir(t,z)
}
Info: 20 tuples computed.
This is identical to the closure generated within

[27], although in this paper we have used a different
representation this time.

6.2 Student database example
This is the 2nd example from [17] and demonstrates

how to derive and implement IIR upon an example of a
real-world database. The functional dependencies, used
as IIR are encoded as IIR. The reasoning behind this is
that each instance of each of the entities below: student;
class; and enrolment represent types of events. The
instantiation of any of them represents an event, i.e., the
instantiated entity of student has the corresponding
nested information of student id, surname, major, level
(or year) and age. Each instantiation in the database,
must obviously have been extant at a given time, place
(for instance when we created the database in the
Datalog system), so a single instantiation of each entity
represents an event. Likewise for the entities class and
enrolment. The functional dependencies between
instances of these entities may, therefore be modelled as
information content belonging to these events. This

makes the modelling, using Datalog quite straight-
forward. The only IIR we need to model are the
transitivity property (2.10) and the IIR relationship itself.

So, this may be coded up in Datalog as follows:
% Facts
student(100,smith,history,gr,25).
student(150,parks,geology,so,21).
student(200,baker,finance,gr,24).
student(250,glass,history,sn,19).
student(300,baker,geology,sn,20).
student(350,rosso,finance,jr,18).
student(400,bryan,geology,sr,22).
class(ba200,tth9,sc110).
class(bd445,mwf3,sc213).
class(bf410,mwf8,sc213).
class(cs150,mwf3,ea304).
class(cs250,mwf1,eb210).
enrollment(100,bd445).
enrollment(150,ba200).
enrollment(200,bd445).
enrollment(200,cs250).
enrollment(300,cs150).
enrollment(400,ba200).
enrollment(400,bf410).
enrollment(400,cs250).
enrollment(450,ba200).
businessRule(history,swimming).
businessRule(geology,diving).
businessRule(finance,basketball).
% rules
iir(X,Y):-student(A,B,X,C,D),
 businessRule(X,Y).
% functional dependencies
iir(X,Y):-student(X,B,C,D,E),
 enrollment(X,Y).
iir(X,Y,Z):-enrollment(A,X),
 class(X,Y,Z).
result(A,B,C,D,E,F,G,H,I):-
 student(A,B,C,D,E),
 iir(A,F),
 iir(F,G,H),
 iir(C,I).
If the program is run with the following query:
result(A,B,C,D,E,F,G,H,I).
It gives the following results:
{
result(100,smith,history,gr,25,bd445,
 mwf3,sc213,swimming),
result(150,parks,geology,so,21,ba200,
 tth9,sc110,diving),
result(200,baker,finance,gr,24,bd445,
 mwf3,sc213,basketball),
result(200,baker,finance,gr,24,cs250,
 mwf1,eb210,basketball),
result(300,baker,geology,sn,20,cs150,
 mwf3,ea304,diving),
result(400,bryan,geology,sr,22,ba200,
 tth9,sc110,diving),
result(400,bryan,geology,sr,22,bf410,
 mwf8,sc213,diving),
result(400,bryan,geology,sr,22,cs250,
 mwf1,eb210,diving)
}
Info: 8 tuples computed.
This is the result as expected, agreeing with the

results in [17].

 Using Logic Programming to Represent Information Content Inclusion Relations 61

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

7 Conclusions
We believe that we have proved and demonstrated

the following theorem:
Theorem: Any database system that can be

modelled using IIR can be represented as a ‘safe’
Datalog program.

The above theorem is an existence theorem and
does not impose much structure on the creation of
mappings between IIR to ‘safe’ Datalog, the positioning
of terms and variables in heads of rules or facts are not
determined. This leads to a very large number of
possible interpretations of IIR in ‘safe’ Datalog. Is it that
such representations are logically equivalent? That is,
they might possibly be ways of saying the same thing.
Are these sets of statements when converted to FOL,
logically equivalent? Indeed, although the theorem
above has been proved, this does not guarantee that the
methods suggested above are the only ways to encode a
given set of IIR as ‘safe’ Datalog. We see from [27] that
the sum rule (2.8) can be modelled as a Datalog
disjunction. That is, the individual parts of the sum are
modelled as separate rules, and the disjunctive
evaluation, which gives the desired effect. Seemingly the
crucial component to such representations (and the proof
that they are possible), appears to be the transitivity rule
(2.10). This is the mathematical formulation of Dretske’s
Xerox principle [6, pp. 57-58], and seems very similar to
the propositional logic’s and first or predicate logic’s
modus-ponens. It appears that this allows the assemblage
of linked iir, via linked predicates. It would appear, that
given a probability space as defined above, then what we
have is some kind of informational content justification
of the modus-ponens.

The examples shown in section 6 above have been
tried in three sorts of inference engines. Firstly one based
on Oracle PL/SQL [8] [29], then against a ‘normal’
inference mechanism of Prolog [8] , and then finally in
this paper, ‘safe’ Datalog - all leading to the same results.
However none of these attempts have been proven to
formally represent a site of information content in terms
of IIR. We now have a tool, which we know, formally
can represent any set of IIR. Thus by modelling a site of
information content, and then by invoking a Datalog
query, we are effectively modelling the occurrence of
that event, and by use of ‘safe’ Datalog can derive the
consequences of that event, in terms of all the other
events the occurrence of the original event tells us truly
of other events.

We suggest that now we have such a relationship
established between ‘safe’ Datalog and IIR, then ‘safe’
Datalog itself may be used to perform further, revealing
analyses of information systems (IS) that can be
represented as probabilistic situations, i.e., an
information source [6, p. 4]. Probability spaces have
been explored by [25], [26]and [24] as a means to
investigate a database. Our efforts attempt to
complement such analyses by using the tools developed
in [5] as a means to understand the behaviours of
information within a site of information content, e.g. a
database, but by representing the information within a

source of information as a probability space, and hence
one of the aims of this paper has been to start to discover
whether there is any kind of linkage between the IIR
framework and ‘safe’ Datalog. IIR is a proven way of
modelling an application domain in terms of information
content. As we have two frameworks, both of which can
represent an aspect of the real world, then it seems
logical that there must be some kind of correspondence
between them. This paper is part of a series which tries
to uncover this assumed correspondence.

Additionally ‘safe’ Datalog, being a subset of FOL
implements one of the two inference rules of FOL [15];
the modus ponens,. This underlies Datalog deduction,
and indeed the vast majority of modern computing [14, p.
156]. By proving such any correspondence between
Datalog and IIR, then we may be close to determining
why computing devices are so useful in modelling
information content, and by extension, the real world.
This may give an information-theoretic justification of
the modus ponens, and thus a possible informational
theoretical justification of some section of FOL -
especially given that all deductions from FOL are certain,
and thus by many definitions of information [30, pp. 94-
109], must as a consequence contain no information
whatsoever.

We note there are other implementations of IIR
used when analysing databases in terms of IIR. We
already know we can model IIR using Prolog [8] and
Oracle PL/SQL [16], [1], [17] and [18]. This would seem
to support the above claim that there is some link
between the fundamentals of computing and the
modelling of such systems using information content. As
seen in the above papers, we can model IIR using
existing computing frameworks. It would therefore, be
useful to possess yet another form of representing such
relationships, which has been formally proven to be able
to represent any given set of IIR. This would allow
further investigation of IS in terms of IIR using a proven
tool. It has already been shown in [27] that for some
specific examples of a given set of IIR and its associated
probability space, then ‘safe’ Datalog, can indeed be
used to model those IIR.

Furthermore, ‘safe’ Datalog has three kinds of
semantics [19, pp. 192-197] which are all equivalent,
these being:
• Model-Theoretic;
• Proof-Theoretic;
• Least Model Theoretic.

Because of the transitive nature of IIR (see section
2.7 - this implies some form of recursion), it should be
noted that in both [8] and [17] when attempts were made
to model IIR using Prolog, difficulties were encountered.
Prolog uses a method known as SLD resolution [10]
which utilises a top-down proof-theoretic strategy to
evaluate Prolog Programs. However, SLD can create
trees which are infinite, i.e. do not terminate. Because of
the cyclic nature of IIR closures, it becomes apparent
why simple definitions of recursive IIR in Prolog do not
work (they produce infinite SLD trees). ‘safe’ Datalog
has been proven to have a least model [19, pp. 192-197] ,

62 Using Logic Programming to Represent Information Content Inclusion Relations

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

and thus using the underlying theorems described in
section 5 to model IIR, then simple IIR recursive models
can be established, as the least model is always finite,
given a ‘safe’ Datalog program. Because of this ‘safe’
Datalog seems an ideal way of representing a given set
of IIR. Because IIR is domain independent, then using
‘safe’ Datalog to model a given set of IIR would allow
us to model the more general situations that IIR covers,
and investigate the relationships between the levels of
IIR in a database shown in table 1.

In summary:
• we can model the transitive nature of IIR using

recursion in Datalog;
• we have the three semantics available for modelled

IIR, namely model, fixpoint and proof theoretic
semantics, which allows the operational semantics
of least fixpoint to be used in generating IIR
closures;

• there are possibly many interpretations of IIR
using Datalog. These are not term order dependent
in the IIR eventual predicate rule set;

• ‘safe’ Datalog can be used as a tool for the
investigation and modelling of any information
source.

Finally, IIR itself is a framework that describes
information content of a given state of affairs and
relationship therein. As we are able to successfully
model IIR, and IIR is not necessarily tied to an IS, and
furthermore we can model such IIR with several
implementations (as shown above), it would seem that
IIR itself must represent some kind of generalised
framework, with which to undertake informational
analysis of virtually any situation that can be represented
in probabilistic terms.

8 Future Work
We have shown that there is some kind of

transformation from IIR to ‘safe’ Datalog. In future
papers we propose to show that the reverse is also true;
that is, there is some kind of transformation from ‘safe’
Datalog to IIR.

Additionally why are there so many ‘safe’ Datalog
representations of IIR rule sets available? Does this
reflect the fact that FOL (of which ‘safe’ Datalog is a
subset) is not quite correct when describing
informational relationships? To determine the number of
interpretations, and why this should be the case may be
the subject of future work. Indeed, it would appear that
such a paradigm as first-order logic is not stringent
enough to be isomorphic with information-theoretic
views of domains of discourse. This would agree with
Devlin’s claim that first-order logic is insufficient to
describe informational relations [31]. The multiplicity of
representations and the reason for this needs further
investigation. Also, there is no proof in the above, that
this is the only method by which IIR can be represented
in ‘safe’ Datalog. We believe, that because IIR is a more
general framework, and thus, in some ways, possibly a
specialised, or, on the contrary a more generalised
version of FOL. If so, then there must be a specific
morphism between a subset or super-set of First Order

Categorical Logic to IIR which we believe is a category,
with events as objects, IIR as arrows, composition as IIR
under transitivity, with reflexivity as the identity [32].

Because of this formally proven linkage between
IIR and ‘safe’ Datalog, we know we can represent any
information source, that is any situation that can be
presented as a state space, in ‘safe’ Datalog. Furthermore
such a linkage suggests that there must be a more formal
link between ‘safe’ Datalog and IIR than that explored in
the previous parts of this paper. Lastly we suggest that
IIR itself is not limited to an IS. In fact it is a general
purpose description of any suitably constrained domain
of discourse. As there appear to be many ways of
representing such a relationship, listed above, then there
is some evidence to show such IS representations must
be some kind of subset of the IIR framework. What this
subset is, and what parts of, say for instance, ‘safe’
Datalog contains, is also the subject for future work. In
particular, as we have now successfully proved that ‘safe’
Datalog can be used to represent a given set of IIR. This
now allows us to investigate each of the four levels of
IIR in a database, as in table 1, and we should now be
able to cast some light on the nature of such databases,
which at heart are representation systems, after [11]. The
source representation system is the database itself, and
the target of the representation system is the domain of
application. Furthermore what is the nature of this
linkage or correspondence? ‘Safe’ Datalog can
successfully represent certain aspects of an application
domain. That is, at one level, it is such a representation
system, and there must exist constraints between the
database and the domain of application it is trying to
model. However, the source of this representation, e.g. a
database resident on some computing device, when, as
mentioned previously, looked at from the purely physical
viewpoint is at best just variances in electrical potential
within the internals of that computing device [14, p.
156].Eventually these symbols can be used to represent
aspects of the real world. We define these differences of
electrical potential with values of 0 or 1, and in turn use
groups of these symbols to represent other symbols.
Hence a computing device is merely a contrivance for
manipulating symbols (ibid), and consequently
computing devices do not exhibit cognition. It is this
linkage via these constraints to the real world by this
accumulation and refinement of such symbols that we
believe information content can arise. We intend to use
Datalog to model such area of information content, and
uncover reasoning at a distance for such representation
systems.

References

[1] X. Wu and J. Feng, “A framework and implementation of
information content reasoning in a database,” WSEAS Trans.
Info. Sci. and App., vol. 6, no. 4, pp. 579–588, 2009.
[2] J. Feng, Y. Wang, and S. Wang, “Causes and types of
connection traps in data schemata,” WSEA Transactions on

 Using Logic Programming to Represent Information Content Inclusion Relations 63

Copyright © 2012 MECS I.J.Information Technology and Computer Science, 2012, 1, 50-63

Information Science and Applications, vol. 4, pp. 1303 –1311,
July 2007.
[3] L. Floridi, “Philosophical conceptions of information,” in
Formal Theories of Information: From Shannon to Semantic
Information Theory and General Concepts of Information,
pp. 13–53, Springer-Verlag, 2009.
[4] L. Floridi, “Is information meaningful data?,” Philosophy
and Phenomenological Research, vol. 70, no. 2, pp. 351–370,
2005.
[5] K. Xu, J. Feng, and M. Crowe, “Defining the notion of
“information content” and reasoning about it in a database,”
Knowledge and Information Systems, vol. 18, pp. 29–59, Jan.
2009.
[6] F. I. Dretske, Knowledge and the Flow of Information.
Cambridge University Press, new edition ed., May 1999.
[7] W. Hu and J. Feng, “Considering norms and signs within
an information Source-Bearer-Receiver (S-B-R) framework,”
in Virtual, Distributed and Flexible Organisations, pp. 183–184,
Springer Netherlands, 2005.
[8] K. Xu, The Notion of “Information Content of Data” for
Databases. Doctoral thesis, University of the West of Scotland,
July 2009.
[9] R. Elmasri and S. B. Navathe, Fundamentals of Database
Systems. Benjamin-Cummings Publishing Company, Subs of
Addison Wesley Longman, Inc, 2nd revised edition ed., Feb.
1994.
[10] M. Dahr, Deductive Databases. International Thomson
Computer Press, Dec. 1996.
[11] A. Shimojima, On the Efficacy of Representation. PhD
thesis, Indiana University, May 1996.
[12] J. Barwise and J. Seligman, Information Flow: The Logic
of Distributed Systems. Cambridge University Press, July 1997.
[13] H. Xu and J. Feng, “Towards a definition of the
“information bearing capability” of a conceptual data schema,”
in Systems Theory and Practice in the Knowledge Age,
pp. 431–438, Springer, 1st ed., June 2002.
[14] K. Devlin, Goodbye Descartes: End of Logic and the
Search for a New Cosmology of the Mind. John Wiley & Sons,
new edition ed., Mar. 1998.
[15] P. J. Cameron, Sets, Logic and Categories (Springer
Undergraduate Mathematics). Springer, illustrated edition ed.,
Jan. 1999.
[16] S. Zhu, Reasoning about the information content of data:
The use of ontology. PhD thesis, University of the West of
Scotland, Aug. 2009.
[17] X. Wu, An Architecture of System of ’Information
Content’ Reasoning in Databases. Masters dissertation,
University of the West of Scotland, Dec. 2008.
[18] S. Zhu and J. Feng, “Using an ontology to help reason
about the information content of data,” Journal of Software
Engineering and Applications, vol. 3, pp. 629–643, July 2010.
[19] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass,
V. Subrahmanian, and R. Zicari, Advanced Database Systems.
Morgan Kaufmann, May 1997. Part III.
[20] T. Eiter, G. Gottlob, and H. Mannila, “Disjunctive
datalog,” ACM Trans. Database Syst., vol. 22, no. 3, pp. 364–
418, 1997.
[21] F. Sáenz-Pérez, “Datalog educational system v1.6.2
user’s manual,” 2004. Technical Report SIP 139-04.
[22] S. Abiteboul, R. Hull, and V. Vianu, Foundations of
Databases. Addison Wesley, facsimile ed., Feb. 1995.
[23] Das, Deductive Databases and Logic Programming.
Addison Wesley, July 1992.
[24] M. Arenas and L. Libkin, “An information-theoretic
approach to normal forms for relational and XML data,” J.
ACM, vol. 52, pp. 246–283, Mar. 2005.

[25] T. T. Lee, “An Information-Theoretic analysis of
relational databases part i: Data dependencies and information
metric,” IEEE Trans. Softw. Eng., vol. 13, no. 10, pp. 1049–
1061, 1987.
[26] T. T. Lee, “An Information-Theoretic analysis of
relational databases part II: information structures of database
schemas,” IEEE Trans. Softw. Eng., vol. 13, no. 10, pp. 1062–
1072, 1987.
[27] J. Feng and D. Salt, “Information content inclusion
relation and its use in database queries,” Journal of Software
Engineering and Applications, vol. 3, pp. 255–267, Mar. 2010.
[28] T. M. Connolly and C. E. Begg, Database Systems: A
Practical Approach to Design, Implementation and
Management. Addison Wesley, 5 ed., Apr. 2009.
[29] H. Xu and J. Feng, “The “how” aspect of information
bearing capability of a conceptual schema at the path level,” in
7th Annual Conference of the UK Academy for Information
Systems, UKAIS, vol. 9, (Leeds), pp. 209–215, 2002.
[30] M. Bremer and D. Cohnitz, Information and Information
Flow: An Introduction. ontos verlag, July 2004.
[31] K. Devlin, Logic and Information. Cambridge University
Press, Sept. 1995.
[32] B. C. Pierce, Basic Category Theory for Computer
Scientists. MIT Press, Sept. 1991.

Douglas Salt: BSc Hons was born in the UK and

graduated with the Open University. Before graduating he
spent 25 years in the commercial computing industry, working
as a developer through to project lead. He has a wide
experience of many database and development paradigms. He
is currently undertaking a PhD at the University of the West of
Scotland.

Junkang Feng:, BSc, MPhil, PhD was born in

Shanghai China and studied at the Shanghai High School in
Shanghai and then graduated from the Institute of Military
Engineering of the People’s Liberation Army (PLA), the
Chinese armed forces, majoring in Guided Missiles
Engineering. In China, he lectured at the National University of
Defence Technology of the PLA and then worked as a
Research Engineer in a research institute of the Shanghai
Academy of Spaceflight Technology. In the UK, he received
his MPhil from the University of Portsmouth and PhD from the
University of the West of Scotland (the UWS) both in
Computer Science. He worked as a Research Assistant at the
University of Manchester, a Part-time Lecturer at the
University of Portsmouth, and a Lecturer at the University of
the West of Scotland. Currently Dr Feng is a Senior Lecturer
and the Leader of the Database Research Group of UWS. He is
also a Visiting Professor of Donghua University and Beijing
Union University in China. Dr Feng's research interests include
qualitative information and information flow theories,
distributed information systems and database theory and
systems, and has published widely in journals, conferences and
books in these fields, altogether 195 items thus far. Dr Feng
has completed or been involved in 9 externally (some from EU
and China) funded research projects. His work was submitted
to RAE (Research Assessment Exercise) in UK. He was
Convener of Central Scotland of UK Academy of Information
Systems. He reviewed funding applications for the British
Council, research manuscripts for the Journals of Knowledge
and Information Systems, Information Systems Frontier,
Systemist and various WSEAS Transactions, and conferences
of UKAIS and ICISO. He has supervised 3 PhD programmes
(1 as 2nd supervisor) and 33 MSc dissertation projects to
successful completion. He currently supervises 8 PhD and 2
MSc students for their thesis/dissertation research.

	1. Introduction
	2 Definition of Information Content Inclusion Relations
	2.1 IIR and IIR Inference Rules
	2.2 IIR underlying a database
	2.2.1 Types of IIR and their sources
	2.2.2 How IIR work for a database
	2.2.3 Information and meaning of a data construct

	3 Purpose of Investigation
	4 Brief Definition of ‘safe’ Datalog
	4.1 ‘Safe’ Datalog syntax
	4.1.1 constants
	4.1.2 variables
	4.1.3 terms
	4.1.4 built-in predicates
	4.1.5 predicates
	4.1.6 facts
	4.1.7 rules
	4.1.8 Programs
	4.1.9 Querying in Datalog

	5 Theoretical justification of the transformation of IIR to Datalog.
	5.1 How to construct IIR from ‘safe’ Datalog
	5.1.1 Sum
	5.1.2 Product
	5.1.3 Transitivity
	5.1.4 Union

	6 Examples of IIR converted to Datalog
	6.1 Closure example
	6.2 Student database example

	7 Conclusions
	8 Future Work
	References

