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Abstract: Sentiment analysis is a critical component in natural language processing applications, particularly for text 

classification. By employing state-of-the-art techniques such as ensemble methods, transfer learning and deep learning 

architectures, our methodology significantly enhances the robustness and precision of sentiment predictions. We 

systematically investigate the impact of various NLP models, including recurrent neural networks and transformer-

based architectures, on sentiment classification tasks. Furthermore, we introduce a novel ensemble method that 

combines the strengths of multiple classifiers to improve the predictive ability of the system. The results demonstrate 

the potential of integrating state-of-the-art Natural Language Processing (NLP) models with ensemble classifiers to 

advance sentiment analysis. This lays the foundation for a more advanced comprehension of textual sentiments in 

diverse applications. 

 

Index Terms: Binary Text Classification, Natural Language Processing, Deep Learning, Ensemble Methods, Neural 

Networks. 

 

 

1.  Introduction 

In the era of digital communications, the large amount of written content generated daily across various platforms 

has gained popularity in the field of natural language processing (NLP) for a variety of applications, ranging from 

monitoring social media interactions to scrutinizing customer feedback. The difficulty of sentiment analysis lies in the 

precise determination of the emotional tone conveyed in a particular textual composition, which is usually classified as 
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positive, negative, or neutral sentiment. In addition, the study of opinions and public opinion is becoming increasingly 

important, emphasizing the nuances of extracting subjective information from various textual sources [1]. 

In the domain of sentiment analysis, a core task is to examine and extrapolate sentiments and opinions from written 

information using machine learning and natural language processing approaches, thereby classifying processed content 

into different categories. The accuracy and reliability of sentiment predictions are crucial for decision-making processes 

in various areas, especially in the area of binary text classification. Binary text classification, a nuanced subset within 

the broader field of sentiment analysis, is particularly concerned with carefully distinguishing between positive and 

negative sentiments encoded in written information [2, 3]. 

For convoluted and unclear phrases that contain an excess of contextual ambiguity, it may be difficult for 

traditional sentiment analysis techniques to fully represent the complexity of natural language. However, new 

opportunities to improve the accuracy and performance of sentiment analysis predictions have emerged due to recent 

advances in natural language processing (NLP) based on deep learning architectures, transfer learning strategies, and 

ensemble methods. Sentiment analysis, viewed as a whole, plays a crucial role in understanding and researching the 

content of human language. Improving the prediction of sentiment analysis in binary text classification is becoming 

more and more achievable as NLP models and classifiers develop [4]. 

The study's goal is to investigate how sophisticated models of natural language processing (NLP), such as recurrent 

neural networks and transformer architecture, affect tasks involving sentiment classification. With the help of these 

models, emotive texts' subtleties can be more accurately captured, and they are made to comprehend intricate linguistic 

patterns and situations. Additionally, we describe a novel strategy that uses ensemble methods to harness the combined 

intelligence of many machine learning classifiers. We aim to create a strong and resilient sentiment analysis system that 

excels at handling a wide range of text data sources and linguistic subtleties by merging the advantages of several 

classifiers. 

While a large number of optimization algorithms have been presented in the literature, little is known about their 

effectiveness in improving sentiment analysis prediction using sophisticated natural language processing models and 

classifiers, particularly in the context of binary text classification. Through thorough comparative analysis, we hope to 

provide insightful information about the applicability of various language processing models and classifiers for 

producing binary classification prediction results, while presenting their advantages and disadvantages. The main goal 

of this study is to address this gap, focusing on the challenge of integrating numerous models into ensemble classifiers, 

including begging, voting, and batch classifiers, to maximize prediction efficiency and accuracy. 

The performance of the proposed methodology is evaluated through extensive experiments and benchmarking on a 

baseline Disaster Tweets dataset. The results show that our method is superior to traditional sentiment analysis 

techniques and show how sophisticated NLP models and complex classifiers can completely transform the sentiment 

analysis industry. Our work opens the door to more precise, in-depth, and context-sensitive sentiment analysis 

techniques at a time when organizations, policymakers, and researchers need to understand public sentiment. 

Nevertheless, the intrinsic challenges of understanding complex deep learning architectures, especially when it 

comes to comprehending ensemble methods' processes for making decisions, is a major downside. Even if our method's 

precision and accuracy have been substantially enhanced, the complex advanced models may find it difficult to grasp 

the rationale behind certain of the predictions. Since the application of our results to various text datasets and domains 

may show variability, more investigation and validation within a wider framework are required. Regardless of these 

limitations, our research provides significant new insights into the way challenging natural language processing models 

might be used with ensemble classifiers to improve sentiment analysis in binary text classification. 

A number of important objectives are the authors' ambitions. Our main objective is to increase comprehension of 

sentiment analysis within the framework of applications involving Natural Language Processing (NLP), with an 

emphasis on binary text classification specifically. We endeavor to dramatically increase the resilience and accuracy of 

sentiment predictions by utilizing state-of-the-art methodologies, including ensemble techniques, transfer learning, and 

complex deep learning architectures like recurrent neural networks and transformer-based models. We also hope to give 

a thorough overview of the efficacy of these models through our systematic investigation of how various NLP models 

affect sentiment categorization tasks. The system's predictive capacity is meant to be enhanced by the addition of a 

novel ensemble technique that integrates the advantages of several classifiers. Our research aims to show how cutting-

edge NLP models may be integrated with ensemble classifiers to improve text sentiment understanding in a variety of 

applications and pave the stage for future advancements in sentiment analysis. 

The intended results of this research are expected to considerably extend the corpus of existing knowledge about 

the enhancement of sentiment analysis prediction in binary text classification through the utilization of advanced 

Natural Language Processing models and classifiers. With the use of cutting-edge techniques including ensemble 

approaches, transfer learning, and deep learning architectures like transformer-based models and recurrent neural 

networks, our method seeks to improve the accuracy and dependability of sentiment predictions. It is anticipated that 

methodologically analyzing how various NLP models perform on sentiment classification tasks would yield informative 

data that will help us better understand how successful these models are. Using a novel ensemble strategy that makes 

use of many classifiers is also bound to boost the overall prediction capability. 
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2.  Background 

In recent years, there has been a growing interest in enhancing sentiment analysis prediction in binary text 

classification using advanced natural language processing (NLP) models and classifiers. One such model is BERT 

(Bidirectional Encoder Representations from Transformers), which has shown remarkable performance in various 

natural language processing (NLP) tasks, finding that BERTLARGE significantly outperforms BERTBASE across all 

tasks, especially those with very little training data. BERT is a pre-training model that utilizes deep bidirectional 

transformers for language understanding. It has been successfully applied to tasks such as natural language inference 

and paraphrasing [4]. 

Another popular approach to sentiment analysis is the use of convolutional neural networks (CNNs). 

Convolutional Neural Networks (CNNs) are widely used in natural language processing (NLP) for sentence 

classification. These models learn word vector representations through neural language models and perform 

composition over the learned word vectors for classification. The Kim [5] paper shows that simple CNN models built 

on top of pre-trained word vectors can achieve excellent results for sentence classification, and fine-tuning the word 

vectors provides additional gains. 

Furthermore, sentiment analysis has practical applications in various domains, including politics, news, and online 

reviews [1]. In the field of online homestay reviews, a multimedia sentiment model that combines text and image 

sentiment analysis was proposed. This model utilizes Word2vec for topic clustering and Bayesian classifiers for 

sentiment analysis of text data, while Convolutional Neural Networks (CNNs) are used for sentiment analysis of image 

data. The research found that fusing text and image sentiment analysis models through decision-level fusion achieved 

higher classification accuracy (88.6%) than using text or image models alone [6]. 

The authors of the study [7] conclude evidence that augmenting sentiment analysis with advanced NLP can yield 

more accurate predictions, especially for tasks involving subtle or context-dependent sentiment expression. Combining 

linear algebra and probabilistic topic model for Latent Semantic Relations (LSR) revealing allowed to eliminate their 

limitations. Such an approach allowed to bring the average value of the topic recognition recall rate indicator close to 

90–95% and increase the precision indicator from 62 to 70–75% [8]. 

Traditionally, sentiment analysis approaches relied on rule-based methods and basic machine learning algorithms 

such as Naive Bayes and Support Vector Machines [9]. Although these methods were reasonably effective, they often 

struggled to capture the intricacies of natural language and context, resulting in limited accuracy and generalization. 

With the advent of advanced natural language processing techniques and machine learning models, researchers have 

explored innovative methods to improve sentiment analysis predictions in binary text classification. 

A notable advancement in this area is the application of deep learning models, particularly neural networks, which 

have shown remarkable performance in various natural language processing (NLP) tasks. Recurrent Neural Networks 

(RNNs) and Long Short-Term Memory Networks (LSTMs) are the types of neural networks that are widely used to 

analyze sequential data, such as sentiment analysis. These models are able to capture sequential dependencies in text 

data, enabling more accurate sentiment predictions, incorporating additional information like user/product information, 

syntactic/semantic information, cross-domain information to improve performance [10]. 

Furthermore, the introduction of transformer-based architectures, exemplified by models such as BERT 

(Bidirectional Encoder Representations of Transformers) [11] and GPT (Generative Pre-trained Transformer) [12], 

transforming the field of NLP. These transformer models are pre-trained on large amounts of text data and can be 

further optimized for specific tasks, such as binary text classification. Leveraging contextual embeddings from 

transformer models enables the capture of nuanced semantic meanings, improving the accuracy and depth of sentiment 

analysis. 

Additionally, researchers have investigated ensemble methods, which combine predictions from multiple models 

to improve overall performance. Ensemble techniques such as bagging and boosting have been used to improve the 

robustness and reliability of sentiment analysis systems. These methods exploit the diversity of different models to 

collectively make more accurate predictions than individual models. Using a multilayer perceptron network and 

combining the results with both deep learning and traditional feature-based models, Akhtar et al. proposed a stacked 

ensemble method for predicting mood intensity [1]. 

In the context of binary text classification, researchers have also explored the inclusion of advanced classifiers 

such as random forests, gradient boosting machines, and deep neural networks. Empirical results from Leo Breiman's 

research show that Random Forests are more competitive than boosting approaches. Furthermore, the resilience of 

random forests to noise is discussed, which is important for evaluating classifier performance in sentiment analysis [13]. 

These classifiers often outperform traditional machine learning algorithms by capturing complex patterns and 

relationships within the data, resulting in better sentiment prediction. 

This paper builds upon these advancements by proposing an innovative approach to enhance sentiment analysis 

prediction in binary text classification. By utilizing advanced natural language processing models, such as transformer 

architectures, and integrating them with cutting-edge classifiers and ensemble techniques, the proposed methodology 

seeks to greatly improve the precision and dependability of sentiment analysis systems. The following sections detail 

the methodology, experiments, and results, demonstrating the effectiveness of the proposed approach in enhancing 
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sentiment analysis prediction in binary text classification tasks. 

3.  Methodology 

The thorough selection and preprocessing of data are crucial for improving the prediction of sentiment analysis in 

binary text classification. We delve into the intricacies of data preprocessing, which includes tokenization, text cleaning, 

handling unbalanced data, and using embedding techniques to convert textual data into numerical representations. 

These basic procedures lay the foundation for the later utilization of advanced natural language processing models and 

classifiers [14]. 

3.1.  Data Preprocessing 

A.  Text cleaning and Tokenization 

The quality of the input data has a significant impact on the effectiveness and accuracy of text classification 

models and sentiment analysis in the field of natural language processing (NLP). Unstructured, erratic, and noisy text 

data can be obtained from various sources [15,16]. A number of rigorous data pretreatment procedures were used to 

enhance the accuracy and consistency of sentiment analysis prediction in binary text categorization. 

a.  Lowercasing 

The first step in data preprocessing involves converting all text to lowercase. It offers several benefits, including 

text normalization, vocabulary reduction, compatibility with word embedding models, and ensuring consistency in text 

processing pipelines. This standardizes the text and ensures that the model does not treat words with different cases as 

distinct entities [16]. By converting the entire corpus to lowercase, potential discrepancies in capitalization are 

eliminated, thus improving the consistency and comparability of the dataset. However, it is important to consider the 

specific requirements of the task, as lowercasing can lead to the loss of information related to proper nouns and can 

affect the interpretation of acronyms and abbreviations. 

b.  Named Entity Recognition 

Named entities, encompassing phrases specific to individuals, places, organizations, and other entities, may 

introduce noise into the data, resulting in a low sentiment value. To address this, named entity recognition techniques 

were applied to identify and replace these entities with generic tags. This process effectively removed entity-specific 

information while preserving the text's syntactic structure. Streamlining the text through this step significantly improved 

its suitability for sentiment analysis [16, 17]. In a study by Lample et al., the authors examined various sequence 

labeling models and evaluated their performance with and without the use of external labeled data, such as gazetteers 

and knowledge bases. The results showed that the LSTM-CRF model showed significant performance improvement 

over all previous methods, even outperforming models containing externally labeled data [18]. 

c.  URL Link Removal 

Text frequently contains URLs, which are irrelevant for sentiment analysis and can skew the results. As the dataset 

is formed from tweets, it might also contain a number of mentions and hashtags (such as #NYfire and @KyleUps0). 

Various approaches, such as regular expressions, library functions, and preprocessing tools, were employed to detect 

and remove URL links from the dataset. 

d.  Punctuation Removal 

Punctuation marks, including periods, commas, and exclamation points, are essential for language structure but do 

not significantly contribute to sentiment analysis. Removing these symbols minimizes noise and reduces the 

dimensionality of the dataset. By eliminating punctuation, the model can focus on the semantic meaning of the words 

and phrases, thereby enhancing the accuracy of sentiment prediction. 

e.  Spelling Correction 

Misspelled words are common in unedited text data and can result in misinterpretation during analysis. To address 

this issue, a spelling correction mechanism has been implemented. Leveraging advanced algorithms, misspelled words 

are identified and replaced with their correct counterparts. SymSpell uses a prefix tree data structure to efficiently store 

and search for words. 

The core idea lies in the Symmetric Delete spelling correction method. It starts by generating a dictionary that 

contains correctly spelled words. For each word in the dictionary, it generates a set of candidate words by deleting one 

or more characters from the original word (1). 

 

)]}(,[],1[]:0[|{)( wlenoiiwiwwwwC ii ++==                                                 (1) 
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The method utilizes an edit distance algorithm, specifically the Damerau-Levenshtein (DL) distance or 

Levenshtein distance, to quantify the similarity between two words, showcasing a greater improvement over previous 

algorithms across time, space, and energy metrics [19,20]. This distance metric calculates the number of single-

character edits (insertions, deletions, substitutions, or transpositions) required to change one word into another. After 

generating a list of candidate words for a misspelled word, the system ranks these candidates based on their frequency 

in the corpus. 

f.  Lemmatization 

Lemmatization, a technique for morphological analysis, involves reducing words to their base or root form. By 

lemmatizing the text data, variations of words (such as 'running' to 'run' or 'better' to 'good') are standardized. This 

process reduces the dimensionality of the dataset, simplifies the feature space, and ensures that the sentiment analysis 

model focuses on the core meaning of words, thereby enhancing prediction accuracy. The main difference between 

lemmatization and stemming is that lemmatization takes into consideration the context and converts the word to its base 

form, whereas stemming only removes the last few characters of the word. 

g.  Stop Words Removal 

Stop words are common words such as 'and', 'the', and 'is' that occur frequently in a language. These words do not 

carry significant sentiment value and can be safely removed from the text. Removing stop words reduces noise in the 

dataset, making it more focused and meaningful for sentiment analysis [14]. The exclusion of stop words ensures that 

the model gives priority to words that express sentiment, resulting in more precise predictions in binary text 

classification. 

B.  Handling Imbalanced Data with Entity Recognition 

Imbalanced data poses a challenge in binary text classification tasks, where one class significantly outnumbers the 

other. One common challenge faced during the preprocessing stage is handling missing data. In the field of sentiment 

analysis and binary text classification, it is crucial to ensure data completeness and address the challenge of missing 

data. As investigated in the research by Jacob Eisenstein et al., the Stack LSTM model exhibits a notable characteristic 

as it integrates a transition-based algorithm that draws inspiration from shift-reduction parsers. This particular approach 

effectively enables the creation and attribution of segments that represent the stack within the input, thereby harnessing 

the power of stack LSTMs to enhance the performance of the model [18]. 

Upon initial data inspection, it was identified that the dataset contained missing entries, particularly in important 

fields such as keywords and locations. These missing data points can significantly impact the accuracy of sentiment 

analysis and text classification models. Entity recognition, a subtask of information extraction, involves identifying and 

classifying entities in text into predefined. In our research, entity recognition serves a dual purpose: not only does it help 

in populating missing location entries by identifying relevant geographical entities, but it also contributes to filling gaps 

in the keyword column by extracting essential keywords from the text. As a result, missing entries in the imbalanced 

keyword and location columns were intelligently populated, ensuring a more complete dataset and it enhanced the 

quality and relevance of the imputed data. This nuanced approach mitigated the impact of missing data on the 

subsequent analysis, ensuring a more accurate representation of the dataset. 

C.  Embedding Techniques for Transforming Textual Data into Numerical Representation 

Transforming textual data into numerical representation is imperative for machine learning models to process the 

information effectively. Embedding techniques, especially word embeddings such as Word2Vec, GloVe, or fastText, 

are used to transform words or tokens into compact vectors of real numbers [14,16]. These embeddings capture 

semantic relationships between words while preserving contextual information. Additionally, techniques such as 

Doc2Vec extend this concept to entire documents, providing numerical representations for complete texts. These 

embeddings serve as crucial features for Natural Language Processing models, allowing them to understand the textual 

content and acquire significant patterns. 

In the context of Twitter data related to disasters, these preprocessing steps are particularly crucial. Disaster-related 

tweets often contain noisy information, abbreviations, and misspellings, making text cleaning pivotal. Additionally, 

imbalanced data may occur, where tweets expressing sentiments about disasters might be significantly outnumbered by 

neutral or unrelated tweets. Through appropriate preprocessing techniques and robust embedding methods, the proposed 

Sentiment Analysis Prediction model can leverage the capabilities of advanced Natural Language Processing, leading to 

more precise and insightful binary text classification outcomes. 

The disaster Twitter dataset, which has been robustly preprocessed and enriched through these techniques, will be 

used as input for the advanced Natural Language Processing models and classifiers discussed in the following sections 

of this paper. 

a.  Word Embeddings 

The use of pre-trained word embeddings, such as Word2Vec and GloVe, is crucial in converting words from the 

disaster Twitter dataset into dense vectors of real numbers [16]. These embeddings capture semantic relationships 
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between words, enabling the conversion of textual context into meaningful numerical representations. By utilizing these 

embeddings, the model acquires a comprehension of the fundamental meaning of words, facilitating a more 

sophisticated sentiment analysis. 

b.  BERT Embeddings 

Transformer-based language models, particularly BERT (Bidirectional Encoder Representations from 

Transformers), are utilized to generate contextual word embeddings. BERT embeddings provide a deep understanding 

of word meanings by considering the context in which they occur within a sentence [11]. This contextual 

comprehension allows for a deeper analysis of tweets related to disasters, capturing subtle nuances and intricacies in 

language usage. BERT embeddings enhance the model's ability to capture the contextual variations in sentiment 

expressions, thereby improving the accuracy of sentiment analysis predictions. 

c.  Token Embeddings 

Token embeddings are generated using tokenizers specifically designed for transformer models. These embeddings 

represent individual tokens within a sentence, providing a detailed analysis of textual data [14,16]. Token embeddings 

are particularly valuable for transformer-based architectures as they enable the model to focus on the detailed semantics 

of each token. By incorporating token embeddings, the model can discern sentiment-related nuances at the token level, 

effectively capturing variations in sentiment within tweets. 

d.  Term Frequency-Inverse Document Frequency 

TF-IDF (Term Frequency-Inverse Document Frequency) is a numerical statistic used in natural language 

processing and information retrieval to quantify the significance of a word in a document compared to a collection of 

documents (corpus). TF-IDF is a popular technique for extracting text features and is commonly employed in tasks such 

as text mining, information retrieval, and text classification [21]. 

In TF-IDF based learning models, each document is represented as a vector where each dimension corresponds to 

a unique term in the corpus. The TF-IDF score of a term in the document is used as the value in the corresponding 

dimension. These numerical vectors can then be fed into machine learning models like logistic regression, Naive Bayes, 

SVM, or any other model capable of handling numerical data for tasks such as text classification, sentiment analysis, 

and information retrieval. 

In TF-IDF-based learning models, textual data is transformed into numerical vectors using the TF-IDF 

representation. Here's what TF-IDF stands for: 

 

• Term Frequency: It measures the frequency of occurrence of a term (word) in a document (d). The more 

frequently a term appears in a document, the higher its TF score (2). 
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• Inverse Document Frequency: It measures how important a term is across a collection of documents (corpus). 

Words that occur frequently in many documents have a lower IDF score, while words that occur rarely have a 

higher IDF score (3). 
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• TF-IDF Score: The TF-IDF score of a term in a document is calculated by multiplying its TF score and IDF 

score (4). 

 

),(*),(),,( DtIDFdtTFDdtIDFTF =−                                                        (4) 

e.  Sequence Padding 

To ensure consistent input shapes for deep learning models, sequence padding is applied. This involves padding 

shorter sequences with zeros to ensure that all sequences have the same length. Uniform sequence length is essential for 

the proper functioning of deep learning architectures [1]. By standardizing the input sequence length through padding, 

the model can consistently process textual data, enabling smooth integration into advanced Natural Language 

Processing models and classifiers. 

Through the application of embedding techniques and sequence padding, the disaster Twitter dataset is 

transformed into a format that is suitable for comprehensive sentiment analysis. These processed numerical 

representations serve as the foundation upon which advanced Natural Language Processing models and classifiers can 
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be trained and optimized. This ultimately enhances the accuracy and reliability of sentiment analysis predictions in 

binary text classification scenarios. 

3.2.  Advanced Natural Language Processing Models 

In order to enhance sentiment analysis prediction in binary text classification, it is crucial to integrate advanced 

Natural Language Processing (NLP) models. The proposed methodology involves the utilization of advanced NLP 

techniques, leveraging the capabilities of deep learning architectures and transformer-based models to improve the 

precision and comprehensiveness of sentiment analysis. Recurrent neural networks capture temporal dependencies, 

while transformer-based architectures excel at long-term dependency capture and semantic understanding [22]. The 

chosen methods push the boundaries of the precision of sentiment analysis and demonstrate the potential for integrating 

NLP models with each other: 

• Recurrent Neural Networks (RNNs) 

RNNs are employed due to their sequential nature, making them suitable for processing sequential data, such as 

text. Specifically, Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) networks are utilized 

to capture long-term dependencies in textual data. This allows the model to comprehend the contextual relationships 

between words and phrases, which is crucial for achieving accurate sentiment analysis. 

• Convolutional Neural Networks (CNNs) 

CNNs, primarily designed for image recognition, can be adapted for text analysis. By treating words or phrases as 

local patterns similar to image pixels, CNNs can capture hierarchical features in textual data. CNNs excel at identifying 

patterns within text, making them valuable for sentiment analysis tasks where specific textual patterns convey 

sentiments. 

• Ensemble Models 

Ensemble models, which combine predictions from multiple base models, are constructed to leverage diverse 

learning patterns. Techniques such as bagging and boosting are applied to combine the strengths of different models. 

This amalgamation ensures a comprehensive and balanced sentiment analysis approach, thereby enhancing the overall 

accuracy and reliability of predictions. Ensemble methods have drawbacks and challenges such as being 

computationally expensive and time-consuming due to training and storing multiple models, and combining their 

outputs, as well as being sensitive to the quality and diversity of data and base models, as they depend on assumptions, 

limitations, representativeness, and independence of the data samples and features. 

3.3.  Classifiers and Ensemble Techniques 

A.  Logistic Regression 

For its interpretability and simplicity, Logistic Regression is commonly employed as a fundamental and 

dependable linear classifier. It serves as a baseline model, offering a standard against which the effectiveness of more 

complex classifiers can be evaluated. Logistic regression is most helpful when there is a roughly linear relationship 

between the target variable and the features. 

The logistic regression equation models the relationship between a binary dependent variable (y) and one or more 

independent variables (x). In the case of a single independent variable, the logistic regression equation takes the form (5) 

where P(x) represents the probability of the dependent variable, b0 is the intercept term (constant), b1 is the coefficient 

associated with the independent variable x. 
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B.  Support Vector Machines (SVM) 

Support Vector Machines (SVMs) are employed because of their ability to handle high-dimensional data and 

capture complex nonlinear relationships. By utilizing suitable kernels, Support Vector Machines (SVMs) can identify 

complex patterns within textual data, rendering them highly valuable for sentiment analysis tasks. The flexibility of 

SVMs in choosing different kernel functions allows for the exploration of various feature spaces. 

C.  Random Forest 

Random Forest, an ensemble learning method based on decision tree classifiers, is utilized for its capability to 

handle high-dimensional data and capture feature interactions. By aggregating predictions from multiple decision trees, 

Random Forest mitigates overfitting and provides a robust framework for sentiment analysis. Its inherent parallelism 

allows efficient processing of large datasets [13]. 

D.  Gradient Boosting Machines (GBM) 

GBM constructs a series of decision trees sequentially, with each tree aiming to correct errors made by the 
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previous ones. This iterative learning process allows GBM to focus on misclassified instances, thereby enhancing 

prediction accuracy. GBM is adept at capturing complex relationships in the data and is particularly useful for 

improving accuracy in the presence of noisy or ambiguous features. 

E.  Voting Classifiers 

Voting classifiers combine predictions from multiple base classifiers, such as Logistic Regression, SVM, Random 

Forest, and GBM, using various voting strategies (e.g., majority voting, weighted voting) [23]. By aggregating diverse 

perspectives, voting classifiers capitalize on the collective intelligence of individual models, resulting in more accurate 

and robust predictions. Different combinations of base classifiers are explored to identify the optimal ensemble 

configuration. 

F.  Stacking 

Stacking, a meta-ensemble technique, combines predictions from multiple base classifiers using a meta-learner. 

Base classifiers, such as Logistic Regression, SVM, Random Forest, and GBM, generate predictions that are 

subsequently used as inputs for the meta-learner. The meta-learner learns to combine these predictions, optimizing the 

overall performance of the ensemble. Stacking leverages the strengths of diverse classifiers, enabling the intricate 

capture of sentiment nuances [23]. 

3.4.  Evaluation Metrics 

Evaluation metrics are essential for assessing the performance of the proposed methodology in enhancing 

sentiment analysis prediction in binary text classification. The following metrics are used to comprehensively evaluate 

the accuracy, precision, recall, and overall effectiveness of the model [24]: 

• Accuracy 

Accuracy measures the proportion of correctly classified instances out of the total instances in the dataset. It 

provides a comprehensive evaluation of the model's accuracy in predicting both positive and negative sentiments. 

• Precision 

Precision represents the ratio of correctly predicted positive instances to the total instances predicted as positive. 

High precision indicates that when the model predicts a positive sentiment, it is likely to be correct. 

• Recall (sensitivity) 

Recall calculates the proportion of correctly predicted positive instances out of the total number of actual positive 

instances in the dataset. It assesses the model's ability to identify all positive sentiments. 

• F1-Score 

The F1-score, calculated as the harmonic mean of precision and recall, strikes a balance between these two metrics, 

accounting for both false positives and false negatives. This metric is especially valuable in scenarios with class 

imbalances in the dataset. 

• Area under the ROC Curve (AUC-ROC) 

The ROC (Receiver Operatinsg Characteristic) curve is a graphical representation of a model's discriminative 

capacity between positive and negative sentiments across various decision thresholds. To quantitatively assess the 

model's overall performance, the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC-ROC) is 

employed. The AUC-ROC value functions as a scalar metric, with higher values signifying enhanced discriminatory 

prowess in distinguishing between positive and negative sentiments. 

• Confusion Matrix 

The confusion matrix provides a detailed breakdown of the model's predictions, including true positives, true 

negatives, false positives, and false negatives. It offers insights into specific errors made by the model, aiding in 

understanding its strengths and weaknesses. 

• Receiver Operating Characteristic (ROC) Curve 

The sensitivity or true positive rate is plotted versus the false positive rate (also known as 1-specificity) at various 

classification thresholds using a ROC curve. The trade-off between sensitivity and specificity is visualized, which aids 

in choosing the best categorization threshold. 

The F1 score (6) is computed as the harmonic mean of precision and recall, resulting in a well-balanced metric 

whereby the model's precision is not prioritized over recall, or vice versa. Consequently, the F1 score exhibits a robust 

capability in identifying positive instances while simultaneously reducing the occurrence of false positives and false 

negatives. 

 

recallprecisoin

recallprecision
F

+
=

*
*21

                                                                        (6) 
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The quality of positive predictions is determined by the precision (7) metric. It is calculated by dividing the 

number of true positive outcomes by the sum of true positive and false positive predictions. The formula employed in 

the computation of precision is: 

 

FPTP

TP
precison

+
=                                                                           (7) 

 

The measure known as recall (8), which is also referred to as sensitivity, examines the model's capacity to 

accurately identify positive events. Specifically, it represents the percentage of positive events that are correctly 

predicted out of the total number of positive events that actually occurred. When determining the recall of a 

classification model, the calculation involves employing the following formula: 

 

FNTP

TP
recall

+
=                                                                              (8) 

 

The metric of accuracy (9) assesses the comprehensive accuracy of predictions by dividing the count of accurately 

predicted positive and negative events by the total count of events. The accuracy can be calculated using the following 

formula:  

 

FPTPFNTN

TPTN
accuracy

+++

+
=                                                             (9) 

 

The attributes used in equations are as follows: 

 

• True Positive [TP] = prediction = 1, ground truth = 1 – positive prediction, correct. 

• False Positive [FP] = prediction = 1, ground truth = 0 – positive prediction, incorrect. 

• True Negative [TN] = prediction = 0, ground truth = 0 – negative prediction, correct. 

• False Negative [FN] = prediction = 0, ground truth = 1 – negative prediction, incorrect. 

 

By utilizing these comprehensive evaluation metrics, the proposed methodology ensures a thorough assessment of 

the model's performance. This enables a nuanced understanding of how it enhances sentiment analysis prediction in 

binary text classification tasks. 

4.  Experiments and Setup 

The basic idea of sentiment analysis is based on predicting the limited categories into which the target object could 

be divided, as already suggested in the study. Traditional polarized classification differs from advanced sentiment 

analysis because it may include more than two categories. On the other hand, the more categories are included, the 

higher the likelihood of errors and inconsistencies, which increases the complexity of the results. This phenomenon 

results from the input data consisting of expressed textual opinions and the technique that uses tangible scales to 

recognize and distinguish text tokens. 

For instance, within the realm of emotion detection semantic analysis, a well-known aspect is the distinction 

between positive, negative, or neutral variations of a given passage, commonly known as polarity. On the contrary, 

more sophisticated classification systems surpass the realm of polarity and encompass emotional states such as fear, 

surprise, disgust, anger, happiness, and so forth. Similar to the classifiers of naive Bayes, this technique often involves 

the estimation of a probability distribution across all categories. The attributes of the data will dictate whether and how 

a neutral class should be employed; if the data is clearly divided into specific language domains, it would be logical to 

eliminate the neutral language and make the priority of the polarity of positive and negative sentiments. Conversely, this 

approach may impede a clear differentiation between the two extremes if the data predominantly consists of neutral 

language with minimal deviations towards positive and negative emotions. 

To eliminate the risk of additional error in the comparative analysis of proposed models while retaining the 

subjectivity of the data, It was decided to focus predominantly on datasets with binary classifications. However, 

addressing this concern, it is crucial to ensure that the chosen dataset is not only representative but also effectively 

challenge the model. First of all, the relevance and timeliness of the data, ensuring recent data is crucial for capturing 

the dynamics of public sentiment during different types of disasters. Second, the dataset should include tweets from a 

broad geographical range to capture variations in sentiment based on the location of the disaster. As well, the data 

model should provide details in the features available, sentiment labels, and any preprocessing steps applied. This 

documentation should cover metadata, variable descriptions, and any potential biases or limitations in the dataset. 

Twitter has grown to be a crucial means of emergency communication. People can instantly announce an 

emergency they're observing because to the widespread use of smartphones. Consequently, an increasing number of 
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agencies—such as news organizations and disaster assistance organizations—are interested in programmatically 

monitoring Twitter. However, it’s not always evident whether a person's words are truly heralding a disaster. Consider 

the following scenario, where the author employs the term "IGNITED" in a metaphorical sense. While this 

interpretation is readily apparent to a human observer, particularly with the support of visual context, it presents a 

greater challenge for automated systems to discern. 

In this research, the experiments conducted for building machine learning models on a dataset aimed at predicting 

whether tweets are about real disasters or not. The dataset consists of 10,000 tweets, each hand-classified into one of 

two categories: target 1 denotes tweets about actual disasters, and target 0 denotes tweets that are not related to real 

disasters, as shown in figure 1. 

 

 

Fig.1. Distribution of training dataset tweets based on the target class 

The dataset was sourced from a machine learning task “Natural Language Processing with Disaster Tweets”. It 

consists of two main files: train.csv and test.csv. The training set contains labeled tweets for model training. The test set 

is used to evaluate the performance of the trained model. The dataset size provides a substantial volume of data for the 

experiments. 

Each sample in both the train and test sets includes the following information: text (the actual content of the tweet, 

used for analysis), location (the geographical location from which the tweet was sent, which may be blank), keyword (a 

specific keyword from the tweet, which may be blank), and target (the ground truth for classification during model 

training). 

The primary objective of the experiment was to develop and evaluate machine learning models capable of 

predicting the relevance of tweets to actual disasters. By utilizing the textual content, along with additional contextual 

features such as location and keywords, the goal was to accurately classify tweets into the predefined categories (target 

0 or target 1). 

The text data underwent cleaning processes, including the removal of special characters, stopwords, and irrelevant 

symbols, to ensure consistency and enhance model accuracy. Proper handling of missing values in the location and 

keyword columns has been implemented to prevent biases during training. The training data was further divided into 

training and validation subsets to facilitate model training and performance evaluation. The text, location, and keyword 

columns were selected as features for model training. The experiments utilized evaluation metrics such as accuracy, 

precision, recall, F1-score, and possibly the area under the ROC curve (ROC-AUC) to assess the performance of the 

model. 

The experiments were conducted using popular machine learning libraries such as scikit-learn, SciPy, TensorFlow, 

and PyTorch. Text data was cleaned, tokenized, and transformed into TF-IDF vectors. Each tweet was represented as a 

sparse vector, where each dimension corresponded to a unique word, and the value indicated the importance of that 

word in the tweet relative to the entire dataset. For Word2Vec and GloVe embeddings, each word in the text data was 

replaced by its pre-trained vector representation. The resulting tweet was represented as a matrix of word vectors, 

capturing semantic information. Tokenization of text was performed using specialized tokenizers provided by the 

Transformers library. The tokenized input was then fed through the BERT or GPT models, producing contextual 

embeddings for each token. These embeddings were aggregated (e.g., mean pooling) to obtain fixed-size numerical 

vectors representing the entire tweet. Data manipulation and analysis were performed using tools like pandas and 

NumPy. Visualization of results and data exploration were aided by libraries such as Matplotlib or Seaborn. 

There are complexities associated with the use of machine learning models and datasets that require careful 

consideration of potential limitations and biases. To ensure the robustness and reliability of research findings, it is 

important to acknowledge these inherent challenges. In the context of the models and datasets we select, it is imperative 

to examine various aspects that may introduce nuances that affect the accuracy and generalizability of our analyses. 

One way to add noise and uncertainty to a data set is through ambiguous labeling. The degree to which the labeled 

data is subject to subjectivity impacts the ground truth reliability for model training. Because tweets are typically short, 

little context may be provided, making it difficult for machine learning models and annotators to identify the actual 
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nature of the events being referenced. The model may not adequately adapt to a wider range of disaster scenarios if the 

data collection process places an excessive emphasis on certain types of disasters or relies too heavily on certain sources. 

Predictions from the model may be biased with respect to certain time periods or geographic areas if the dataset consists 

primarily of tweets from such time periods or locations. 

5.  Results and Discussions 

In this section, we present the results of our experiments aimed at enhancing sentiment analysis prediction in 

binary text classification. We utilized a blend of sophisticated natural language processing models and classifiers, 

utilizing techniques such as TF-IDF, word embeddings (Word2Vec, GloVe), and advanced contextual embeddings 

(BERT, GPT). The models were evaluated on a dataset of 10,000 tweets, each classified as either related to real 

disasters (target 1) or not (target 0). 

The Table I contains evaluation metrics for various traditional machine learning models applied to binary text 

classification using TF-IDF as the feature representation method. The evaluation metrics include precision (P), recall 

(R), F1-score (F1), accuracy (A), and area under the receiver operating characteristic curve (AUC) for two classes 

(Class 0 and Class 1). These metrics are important for assessing the performance of sentiment analysis prediction 

algorithms. 

The efficacy of conventional models in sentiment analysis may be limited by their inability to handle intricate 

linguistic patterns and contextual subtleties found in textual data. Complex semantics and long-range dependencies are 

easily understood by advanced NLP models. In comparison to more sophisticated approaches, the simplicity of 

traditional models may lead to suboptimal performance. 

Table 1. Results comparison. Traditional machine learning models (TF-IDF). The model column represents algorithms such as linear regression (LR), 

naive bayes (NB), support vector machine (SVM), random forest (RF), extreme gradient boosting (XGB), catboost (CatB), adaboost (AdaB), gradient 

boosting classifier (GDB), decision tree (DT) and k-nearest neighbors (K-NN) 

Model 

Evaluation parameters 

Class 0 Class 1 
A AUC 

P R F1 P R F1 

LR 0.80 0.82 0.81 0.77 0.74 0.76 0.79 0.86 

NB 0.77 0.92 0.84 0.86 0.65 0.74 0.80 0.85 

SVM 0.80 0.85 0.83 0.80 0.73 0.76 0.80 0.86 

RF 0.77 0.91 0.84 0.85 0.66 0.74 0.80 0.85 

XGB 0.76 0.91 0.83 0.84 0.62 0.72 0.78 0.83 

CatB 0.77 0.89 0.83 0.83 0.65 0.73 0.79 0.85 

AdaB 0.71 0.88 0.79 0.78 0.55 0.64 0.73 0.80 

GBC 0.72 0.93 0.81 0.85 0.55 0.67 0.76 0.81 

DT 0.77 0.75 0.76 0.69 0.71 0.70 0.73 0.73 

K-NN 0.77 0.86 0.81 0.79 0.66 0.72 0.77 0.81 

 

Algorithms such as SVM, LR, NB, and RF achieve relatively high accuracy, indicating their overall effectiveness 

in binary classification tasks. They also exhibit high AUC values, which indicate strong discriminative power between 

classes. AdaB and GBC have slightly lower accuracy, indicating room for improvement in correctly classifying tweets. 

However, despite having lower AUC values, they still demonstrate a reasonable ability to distinguish between disaster-

related and non-disaster tweets. 

In terms of model selection, the Naive Bayes (NB) algorithm stands out for its excellent recall in identifying 

disaster-related tweets. This makes it particularly suitable for scenarios where minimizing false negatives is crucial. 

SVM demonstrates balanced precision, recall, and F1-score, making it a reliable choice for general applications where 

accuracy is crucial. RF, XGB, and CatB exhibit balanced performance across metrics, making them versatile choices for 

a wide range of applications. On the other hand, AdaBoost (AdaB) and Gradient Boosting Classifier (GBC), although 

reasonable, could benefit from further tuning to enhance their performance, particularly in precision and F1-score for 

class 1. Meanwhile, the DT (Decision Tree) model shows room for improvement, possibly requiring feature engineering 

or ensemble techniques to enhance its predictive power. 

The Table II presents the evaluation metrics for advanced neural network models used in binary text classification. 

We can see that all models achieve reasonable accuracy, indicating their overall effectiveness in binary classification 

tasks. However, CNN, RNN, and LSTM show slightly higher accuracy, suggesting their proficiency in distinguishing 

between disaster-related and non-disaster tweets. 

Regarding the AUC parameter, the CNN exhibits the highest AUC value (0.84), indicating a strong discriminative 

power between classes. RNN, LSTM, and GRU closely follow, highlighting their effective ability to distinguish 

disaster-related content. 
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Convolutional Neural Network (CNN) stands out for its high recall in identifying disaster-related tweets, making it 

well-suited for applications where minimizing missed disaster-related tweets is crucial. Recurrent Neural Network 

(RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) demonstrate balanced performance 

across various metrics, making them versatile choices for different applications. 

Table 2. Results comparison. Deep learning models. The model column represents algorithms such as multi-layer perceptron (MLP), convolutional 

neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM), gated recurrent unit (GRU). 

Model 

Evaluation parameters 

Class 0 Class 1 
A AUC 

P R F1 P R F1 

MLP 0.78 0.79 0.78 0.70 0.74 0.72 0.76 0.83 

CNN 0.77 0.84 0.80 0.77 0.67 0.72 0.77 0.84 

RNN 0.78 0.82 0.80 0.75 0.70 0.73 0.77 0.82 

LSTM 0.78 0.81 0.79 0.74 0.70 0.72 0.76 0.81 

GRU 0.76 0.78 0.77 0.71 0.69 0.70 0.74 0.81 

 

Even though deep learning models may identify intricate relationships and patterns in text, they might not be easily 

interpreted. The intricacy of their decision-making procedures makes sentiment estimations less transparent. It is 

concerning because overfitting training data could make results less transferable to other datasets. Furthermore, huge 

labeled datasets may be necessary for deep learning models, which may not always be possible in some applications. 

The table 3 presents the evaluation metrics for ensemble classifiers (Voting Classifier, Bagging Classifier, and 

Stacking Classifier) in binary text classification. These metrics provide insights into the performance of ensemble 

models in identifying disaster-related tweets. All ensemble models exhibit reasonable accuracy, suggesting their 

effectiveness in binary classification tasks. The Stacking Classifier (StackC) demonstrates superior discriminative 

power, indicating its strong ability to distinguish between disaster-related and non-disaster tweets. 

Stacking Classifier (StackC) stands out for its high recall in identifying disaster-related tweets, making it ideal for 

applications where minimizing the number of missed disaster-related tweets is crucial. Bagging Classifier (BagC) 

demonstrates a good balance between precision and recall, indicating its effectiveness in capturing true disaster-related 

tweets while minimizing false positives. The Voting Classifier (VoteC) demonstrates moderate performance, providing 

a balanced approach to capturing both false negatives and false positives. 

Further fine-tuning and optimizing ensemble strategies could enhance performance, especially in addressing subtle 

linguistic nuances in disaster-related tweets. Exploring additional ensemble techniques or combining different models 

may result in a more robust sentiment analysis system, capable of addressing the limitations of individual models. 

Additionally, it is crucial to underscore the importance of classifiers in addressing the scarcity of annotated data across 

diverse contexts, as the accurate identification and classification of semantic roles are essential for extracting valuable 

insights [25]. 

Table 3. Results comparison. Ensemble classifiers. The model column represents such classifiers as voting classifier (VoteC), bagging classifier 

(BagC) and stacking classifier (StackC). 

Model 

Evaluation Parameters 

Class 0 Class 1 
A AUC 

P R F1 P R F1 

VoteC 0.78 0.81 0.79 0.74 0.70 0.72 0.76 0.83 

BagC 0.77 0.88 0.82 0.80 0.66 0.72 0.78 0.85 

StackC 0.80 0.85 0.82 0.79 0.73 0.76 0.80 0.86 

 

Ensemble classifiers perform well in terms of accuracy in deep learning models. The stacking classifier is superior 

with an average improvement of over 4%. No notable improvement is observed when comparing NB, SVM, and RF, 

but there is a 7% increase in accuracy for AdaB and DT models. There is a disparity in F1 scores between class 0 and 

class 1, with class 0 being more viable due to a 7% increase in dataset data. Overall, the discussed models show 

improvements in F1 score and AUC compared to individual models. BagC and StackC have enhanced recall for Class 1, 

indicating better identification of positive sentiments. StackC demonstrates balanced performance with improved AUC. 

The quality and diversity of the base models are critical to the performance of ensemble classifiers. The ensemble 

might not increase robustness if these base models share the same flaws or biases. Computational limitations may also 

arise for ensemble methods when handling large datasets or a wide variety of classifiers. Ensemble models may become 

more difficult to interpret, making it more challenging to determine how each model contributes to the final forecast. 

As shown in Figure 2, logistic regression demonstrates a balanced ROC curve, indicating its ability to effectively 

discriminate between disaster and non-disaster tweets. NB shows a strong performance with an ROC curve skewed 

towards the upper left corner, indicating high true positive rates and low false positive rates. NB effectively captures 
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disaster-related tweets while minimizing false positives. SVM exhibits a smooth ROC curve, highlighting its ability to 

maintain a balance between true positive and false positive rates. Other models showcase ROC curves that indicate 

reasonable discriminative power. While not as steep as the Disaster Tree (DT), they still effectively differentiate 

between tweets related to disasters and those that are not. 

 

 

Fig.2. Receiver operating chracteristic for traditional machine learning models 

In Figure 3, the CNN and Stacking Classifier models stand out with steep ROC curves, indicating their exceptional 

ability to accurately classify disaster-related tweets. These models are ideal for applications where minimizing false 

positives is a top priority, such as emergency response systems. MLP classifier, RNN, LSTM, GRU, Voting Classifier, 

and Bagging Classifier show reasonable discriminative power, making them versatile choices for a wide range of 

applications. These models offer a balanced approach between precision and recall, making them suitable for various 

contexts. 

 

 

Fig.3. Receiver operating chracteristic for deep learning models and ensemble classifiers 

To further analyze the specific errors made by the model, we can refer to Figure 4, which displays the confusion 

matrices. We can observe that SVM tends to capture some disaster-related tweets, resulting in a significant number of 

true positives. However, it also misclassifies a significant number of non-disaster tweets as disaster-related (false 

positives). This indicates a lack of specificity, possibly due to limitations in feature representation. 

The model lacks sensitivity, suggesting that there is room for improvement in capturing subtle linguistic cues 

associated with disasters. Bagging Classifier maintains a balanced false positive and false negative count, achieving a 

similar trade-off between precision and recall as SVM. However, it misclassifies a significant number of non-disaster 

tweets as being related to disasters, leading to a high count of false positives. Convolutional Neural Network (CNN) 

demonstrates a relatively balanced false positive and false negative count and captures more true non-disaster tweets 

compared to Support Vector Machine (SVM), indicating a higher specificity. However, it struggles to capture subtle 

patterns in disaster-related language, which affects recall. 
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Fig.4. Confusiong matrices for support vector machines, convolutional nueral network and baggging classifer algorithms 

Considering the complementary strengths and weaknesses of individual models, an ensemble approach should be 

explored. Combining the balanced trade-off of Support Vector Machines (SVM), the specificity of Convolutional 

Neural Networks (CNN), and the structure of the Bagging Classifier may result in a more robust sentiment analysis 

system that optimizes both precision and recall. 

The improvements in robustness and precision have important consequences in fields like marketing, customer 

relationship management, social media monitoring, and product development. Better sentiment analysis can help 

businesses understand customer sentiments, tailor marketing strategies, and improve customer satisfaction. In social 

media, more accurate sentiment predictions can aid in sentiment monitoring, public opinion analysis, and crisis 

management. Our methodology can also be applied in healthcare to analyze patient reviews and assess the effectiveness 

of healthcare services. In the legal domain, sentiment analysis can assist in evaluating public sentiments toward legal 

cases and policy changes. Our approach enables a better understanding of textual sentiments and opens possibilities for 

diverse applications, highlighting the versatility and practical significance of our research findings. 

6.  Conclusions 

In the ever-expanding landscape of digital communication, understanding sentiment in textual data has become 

crucial. Our research focused on enhancing sentiment analysis predictions in binary text classification, specifically in 

the challenging domain of disaster-related tweets. Through a thorough investigation of advanced Natural Language 

Processing (NLP) models and classifiers, our objective was to improve the precision, sensitivity, and specificity of 

sentiment analysis in this critical field. 

Our investigation illuminated the diverse strengths and weaknesses of different models. Traditional machine 

learning models, such as Support Vector Machines (SVM), have shown balanced performance but struggle with 

detecting subtle linguistic cues, resulting in a trade-off between precision and recall. Deep learning models, including 

Convolutional Neural Networks (CNN), have demonstrated specificity but have struggled with capturing nuanced 

disaster-related language patterns, which highlights the complexity of the task. Ensemble classifiers, while promising, 

still struggle with optimizing the delicate balance between true positives and true negatives. 

In our pursuit of refining these models, we have identified specific areas for improvement. Fine-tuning strategies, 

such as adjusting decision thresholds and experimenting with class weights, have emerged as key approaches to 

optimize the balance between false positives and false negatives. Furthermore, the potential of ensemble methods, 

which leverage the complementary strengths of individual models, offers an exciting prospect for future research. This 

approach promises to create a more robust sentiment analysis system. 

In conclusion, our research advances our understanding of sentiment analysis in binary text classification, shedding 

light on both the challenges and opportunities within the domain of disaster-related tweets. By acknowledging the 

limitations and capitalizing on the strengths revealed through this study, we are paving the way for future advancements 

in sentiment analysis. This will ensure its continued relevance and effectiveness in deciphering the ever-changing 

language of the digital age. 
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