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Abstract: Consolidation of storage into IP SANs (Internet protocol storage area network) has led to a combination of 
multiple workloads of varying demands and importance. To ensure that users get their Service level objective (SLO) a 
technique for isolating workloads is required. Solutions that exist include cache partitioning and throttling of workloads. 
However, all these techniques require workloads to be classified in order to be isolated. Previous works on performance 
isolation overlooked the classification process as a source of overhead in implementing performance isolation. However, 
it’s known that linear search based classifiers search linearly for rules that match packets in order to classify flows 
which results in delays among other problems especially when rules are many. This paper looks at the various limitation 
of list based classifiers. In addition, the paper proposes a technique that includes rule sorting, rule partitioning and 
building a tree rule firewall to reduce the cost of matching packets to rules during classification. Experiments were used 
to evaluate the proposed solution against the existing solutions and proved that the linear search based classification 
process could result in performance degradation if not optimized. The results of the experiments showed that the 
proposed solution when implemented would considerably reduce the time required for matching packets to their classes 
during classification as evident in the throughput and latency experienced. 
 
Index Terms: Performance Isolation, Storage Area Network, Throttling, Optimization, Metrics. 
 

1.  Introduction  

Consolidation of storage into storage area network (SAN) rather than using separate physical infrastructure is a 
common approach meant to save on hardware and operational costs. However, this results into resource contention 
among the network users as they only get a fraction of the resource shared[1,2] such as disk cache and bandwidth. 
Contrastingly, the traditional free for all option is neither a solution as it may end up in significant efficiency 
degradation when the network is shared by multiple users [3,1,4]. To alleviate this challenge, performance isolation has 
been proposed as the appropriate technique for reducing interference among the network users [4,5].  

Consequently, various tools have been developed to provide for performance isolation using either throttling or 
cache partitioning. Façade, Parda ,Triage and Pclock[6,7,8, 9] which implements performance isolation by throttling  
individual I/O requests from multiple clients  to ensure storage devices do not saturate. Argon[11] uses cache 
partitioning and quanta based disk time scheduling  to implement performance isolation between workloads.  

Enforcing performance isolation either using throttling technique or cache partitioning requires packets be 
classified in order to be isolated[12]. This entails association of packets to classes based on the packet header 
information[12,13]. However, all the above named solutions assume that the classification process does not affect 
overall performance of the storage area network when used in implementing performance isolation[15]. We hypothesize 
that this assumption may not be true given that all the performance isolation techniques discussed are dynamic and keep 
on changing with traffic patterns[12,15]. In addition, in the above mentioned techniques the authors employed linear 
search when matching packets to classification rules. Linear classifiers are known to have problems including bigger 
rule problem, redundancies, shadowed rules, delays due to sequential computation and swapping rules problem[16]. All 
these problems result in the change of classification policy and delays if not addressed. 
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For a classification policy consisting of a list of n  unsorted rules 1 2, ,..., nr r r   a packet id is said to match rule ir if 
the fields of rule ir match the header field of packet id . A packet id may match any of the rules ir , 0,1, 2,..., 1i n= − . If 

the matching rule is found on the thi  position, then 1i +  comparisons will have been made. Thus, the average number 
of comparisons for a successful search denoted as C is as illustrated in (1). 
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The optimization problem is to arrive at a legitimate rule order that results in the optimal cost C. 
This paper puts forward a technique that improves on delays experienced when matching packets to rules when 

using linear search based classifiers. The study employs the techniques of sorting rules based on hit ratio, partitioning 
rules, jump search and using the portioned rules to build linear tree rule structure in order to eliminate the problems 
associated with linear search classification. Finally, the paper validates the optimization of the classifier using time 
complexity, response time and accuracy metrics while using the classes generated to bind resources to users in order to 
provide performance isolation. Based on the throughput and response time of the proposed solution, empirical results 
indicate that lack of optimization in classification would lead to considerable degradation of performance in a SAN 
while implementing performance isolation. 

2.  Related Works  

Various techniques have been proposed to optimize the performance of list-based classifiers. In their work, Hamed 
and others in [17] proposed a technique for optimizing firewall filtering rules by calculating the traffic statistics then 
using the results to dynamically reorder firewall rules. When implemented the solution proved to be simple and light 
weight. However, its early rejection property may cause more packets to be dropped which would be detrimental to 
overall QOS especially for storage area networks. The paper uses the dynamic reordering of classification rules based 
on priority which is calculated from hit ration of rules. 

El-Atawy, Samak, Al-Shaer, & Hong in [19] proposed two methods namely  segment based tree search and 
segment based list search. The segment based tree search uses Huffman trees and traffic characteristics for each 
segment to reduce the search time. However the technique was proven to have a lot of overhead especially when it 
comes to maintaining the tree[20]. To eliminate this overheard, they [21]  used the segment based list search which 
included a most recently used list which is placed at the top of the classification rule list to reduce the search time. 
However, it was observed that this method is more useful when the traffic is steady [19].In the paper jump search which 
is similar to segment based search is used to reduce overall search time. 

Trabelsi & Zeidan in [23] proposed a method which rejects packets early and also accepts packets as early as 
possible. The early acceptance is achieved with the use of splay trees decisions which are updated with networking 
history of the traffic characteristics to ensure more frequent packets are processed faster. For rejection a multilevel 
approach for filtering packets is used before the decision for rejection is made. This is done in an attempt to ensure that 
users are not denied service[19].In the proposed technique all packets are compared to all rules belonging to all 
segments to ensure fewer packets are dropped. In the paper this is achieved by eliminating the problems of shadowed 
rules and bigger rules. Shadowed rules are removed while bigger rules are put at the end of the list. 

Named and Al-Shaer[24] used a branch and bound technique to resolve the optimal rule ordering problem by 
ensuring that the minimum number of rules are matched to the packets as well as maintaining the relationship among 
the rules. However, Vasu & Ganesh [25] observe that the proposed approach has linear space complexity  and the 
resulting time complexity was proven to be polynomial. To reduce on time complexity the paper implements a linear 
tree structure. To reduce on the time taken for matching rules the paper adopts jump search as well as linear tree 
structure. 

To reduce on the observed complexity, Vasu  and  Ganesh [19] proposed a technique for reordering packets based 
on the current network statistics and splitting the packets into P partitions to reduce the search time. The window size is 
used to store the history of the traffic pattern. To improve on this solution, we partition the rules instead of the traffic to 
reduce the match time since the overhead incurred on segmenting packets is more than that of segmenting rules. This 
follows from the fact that  even in a medium sized organization the network could generate millions of packets unlike 
number of rules which could be far much less[24,25].  

All the above approaches indicate the need and lack of integration of optimization techniques to achieve minimum 
number of matches for a classification action to be performed. Consequently, the proposed approach differs with the 
discussed approaches in its integration of rule ordering, rule splitting, use of jump search and use of linear tree rule 
structure to optimize the classification process. In addition, the proposed technique will be implemented in an IP SAN 
unlike previous solutions.  
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2.1.  Limitations of Linear Search Based Classifier 

Linear search based classifiers experience a number of limitations ranging from shadowed rule(s) to redundant 
rules. In order to put these limitations to perspective, we use Table 1 which illustrates a list of rules for a typical linear 
search based classifier policy.  

Table 1. Sample List Based Classification Policy 

 
A.  Shadowed Rule 

A shadowed is a rule that won’t get to match since a rule preceding it will have matched all its packets[21]. In 
Table 1 R12 is shadowed by R1. Shadowed rules may bring about speed problems as well as security issues[28]. 
Shadowed rules therefore can be deleted without changing the classification policy[32,33,34]. 

B.  Limitation about Swapping Position between Rules 

Swapping rules can change the classification policy if the swapped rules result in putting packets in different 
classes that can be able to match the same packet. Changing the packet action would alter the accuracy of the 
classifier[32]. In Table 1 swapping R325 with any other rule would result in a different action[36,37]. 

C.  Limitation on Redundant Rules  

A redundant rule is one that has been implied by another one below it[32].In Table 1 R14 is redundant to 
R10.Redundant rules result in reduction in the speed of processing packets which waste classifiers processing 
time[38,39,40]. 

D.  Bigger Rule Problem  

A big rule is one that matches all packets. In Table 1 R325 is the bigger rule. In other words, the default rule. If 
bigger rule is placed before other rules, it shadows them. This brings about a design problem since the rules position is 
of significant importance[41,21]. 
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E.  Sequential Computation Limitation 

In a listed based firewall the computation for packet classification is sequential which brings about speed problems 
when rules are many[26]. The time required for packet classification will increase with an increase in the number of 
rules[21]. 

2.2.  Definition of User Classes and their Operational Metrics  

The information technology industry classifies storage users as either task users, knowledge users or power users. 
Table 2 illustrates the operational resources required per user for the corresponding class and their associated limits in 
terms of disk space and IOPS. 

Table 2. Operational Metrics per Class of User  

Class of user Description Disk space IOPS 

Task user 
Perform repetitive tasks 

Such as creating 
Simple documents 

25 GB 
Disk space 5 IOPS 

Knowledge 
user 

Create complex 
Documents such 
As spreadsheets 

40 GB 
Disk space 10-20 IOPS 

Power user Use CPU and graphics 
Intensive applications 

40 GB 
Disk space 25 IOPS 

 
Metrics for measuring storage performance include throughput in IOPS/KBs, latency and response time[39]. Block 

size is a unit of data that is read during and I/O operation[40]. The block size impacts throughput[42,43].Throughput is 
a product of IOPs and block size. Their relationship is as illustrated in the equation (2) [43,44]. 

 
Throughput IOPs BlockSize= ×                                                                (2) 

 
Queue depth is the number of I/O commands that can be queued at a time on a storage controller at the initiator 

side or at the target side. For small midsized storage area networks, a queue depth of 32 is recommended. Equation (3) 
is used to calculate the queue depth [43,44]; 

 
ReQueueDepth IOPs sponseTime= ×                                                         (3) 

 
Storage level objective(SLO) is a quality of service aspect that can be used for measuring performance of a storage 

system or storage service provider[5]. A SLO is a combination of one or more QOS metrics with their corresponding 
values[4,42,44]. 

3.  Methods and Materials 

Various methods were used in this study as outlined in the in the following sections. 

3.1.  Methods 

This study embarked on optimizing the process of packet matching during classification process for linear search 
based classifier. The methods of sorting the rule list, partitioning the rule list, jump search and building a linear tree rule 
structure to optimize the classification process.  

To begin with, the system to be emulated was modelled for comparison purposes. To obtain the standard SLO 
requirements for each class of users, we used Table 2 and equation (3) and (4) to derive the SLO for classes of users 
based on the IOPs, block size and queue depth. The values for the SLO are throughput in Kb/s followed by IOPS and 
then response time. For a block size of 4kb the SLO for task, knowledge and power users is as follows; task 
users(20kb/s,5IOPS,6.4ms), Knowledge users(60kb/s,15IOPS,1.6-3.2ms) and power users(100kb/s,25IOPS,1.3ms). The 
same case applies for 64kb and 1 Mb block sizes.  

A.  Rules Priority Estimation and Sorting  

Rule hits were established in order to determine the priority and order of the rules. Rules with highest number of 
hits are to be placed at the top t reduce the search time. The hits were to determine the positioning of rules for optimal 
performance[35,42,43].After the establishment of  hits distribution then the  sorting Algorithm 1 was applied.Algorithm 
1 takes an array of rules and priorities as input then returns a sorted array or rules based on priority. For optimal 
performance rules with the greatest hits are placed at the top and those with fewer hits follow[2,47,48].This is expected 
to reduce the time taken for searching since the most commonly hit rules will be at the top. Therefore, most hits will be 
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made without traversing the whole list. The formula for calculating priority is as illustrated in Equation(4). 
The priority of the rules was established using the following equation 

 

i

ih
P

N
=                                                                                      (4) 

Where ih  the hit is count of rule i and N is the total number of rules. 
An experiment was performed to determine the rule hits ratio and the results are as illustrated in Fig.3.   
 

Algorithim1: Sorting algorithm  
Input: An array of rules and their priorities  
Output: sorted array of rules and their priorities  

1. For ( 1; ; )i i n i= < + +  
2. If ( 1 1i ip p ANDi i+> + = ∅ then 
3. itemp r=  
4. 1i ir r +=  
5. 1ir temp+ =  
6. Endif  
7. End for 

B.  Partitioning the Rule List   

To reduce the amount search time, we use jump search instead of linear search. In its simplest implementation the 
jump search algorithm operates with jumps the size of the square root of the number of items[4,49,50,51,52] see 
Equation (5).Partitioning the rule list reduces the number of rules in each portion which makes searching take less time. 
This so due to the fact that partitions with more hits are placed ahead of those with less hits. Therefore more matches 
are made without traversing all the partitions present.Algorithim 2 was used for the jump search. 

Therefore, we have 
 

m N=                                                                                     (5) 
 

For Table 1 we have 324 rules therefore we have m=18. 
 

Algorithm 2: Jump Search 
1. m N=  
2. If . .i i i id f r f==  
3. Perform action i  
4. Else  
5. If . .i i i id f r f>  then  
6. n n m= +  
7. go to step 2 

 
Algorithm 3: Splitting the rules 
Input: array consisting of priorities of rules, 
Output: partitioned array 
1. . ();N array Length=  

2. size N=  
3. Function portion (array, size) { 
4. const dividearray = []; 
5. For ( 0; ; )i i n i= < + +  {  
6.  [ . 1];const tail dividearray dividearray length= −  
7. if (! .tail last length size== ) 
8. dividearray.push([array[ i ]]); 
9. } else { 
10. tail.push(array[ i ]); //Else add the current element into the chunk }} 
11. return dividearray;} 
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Algorithm 3 will take input as an array of priorities of the rules. The algorithm will then proceed to split the array 
into chunks of length size. Then the algorithm will return a nested chunk of arrays. 

C.  Linear Tree Rule Structure Design 

The listed classification rules in Table 1 have been theoretically analyzed in section 2.2 and proven to have 
conflicts and redundant rules. To eliminate these problems we built a linear  tree rule  structure to be used by the 
classifier[53,19,54]. The tree rule structure was arrived in two steps that is sorting step and the partitioning step as 
illustrated in sections 3.2 and 3.3. With a tree rule structure the cost of sequential file computation is reduced from O(N) 
to O(Log N) using the proposed tree rule structure. To further improve on the design, we use range matches instead of 
exact matches as the root node. 
 

 
Fig.1. Linear Tree Structure Building 

The root node contains as many lines as there are users in the network. Since we are focusing on allocation of  
resources we have specified the source IP address as the root node to guarantee resources to packets as they traverse the 
network from source to destination[32]. 

The linear search optimization technique is integrated in the design of the classifier. Fig.1 illustrates how the tree 
rule was built while Fig.2 illustrates the result of building the tree rule.  
 

Algorithm 3: Optimized Classification Algorithm  
We define the following for the algorithm  
N-Total number of rules.  
m N= ; m  is the number of the partitions.   
n = Number of rules in each partition. 
R-A list of rules. 1 2{ , ,.., }nR r r r=  
D- A list of packets. 1 2{ , ,..., }nD d d d= . 
F-A set of packet header fields/column fields. 1 2 3 4 5{ , , , , }F f f f f f= . 
P-Partitions of rules. 1 2{ , ,..., }nP p p p=  
A- A set of packet classes 1 2{ , ,..., }nA a a a=  
W-default class. 
Update()-a function that keeps track of recent traffic history. 
Reorder () - a function that reorders rules based on traffic characteristics. 
Resplit ()-a function that re-splits the reordered rules into partitions.  

1. INPUT; R, A, W 
2. OUTPUT; 
3. For( 0; ; )m m n m= < + +  
4. For( 0; ; )i i n i= < + +  

Action  

Partition 1 

Partition N 

Partition 2 

Field 1 Field N 
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5. If . . .i i i i id f r f p=  then 
6. Output ia  
7. Else 
8. Output w  
9. Endif,Endfor ,Endfor  
10. If( m n== ) 
11. Update(); 
12. Reorder(); 
13. Resplit(); 
14. Endif 

 
Algorithm 3 will take input as incoming packet id .The fields of the packet id  is compared to the fields of rule ri.If 

they match then the corresponding action is performed. If none of the rules match in the current block of rules then the 
counter m  is incremented to move to the next block. If none of the rules match then the packets are placed in the 
default class w . When all the portioned blocks are searched then the update function is called for capturing current 
network changes in terms of hit ratio. Then again, the rules are reordered based on the new hits statistics using reorder () 
function. After reordering, the resplit() function is called which splits the rules into partitions which are used to build 
linear tree rule. 

3.2.  Materials  

Parkdale, was the tool of our choice for generating traffic as it uses a queue depth of 32 which is the default for 
windows, given that the initiators run on windows. Parkdale is freeware tool developed by the SZ development and is 
used for measuring the performance of local, optical, external and network drives.  For all the experiments a file size of 
4GB which is the maximum file size possible with the Parkdale tool was simulated for reads and writes. To characterize 
system behavior during experiments different tools were used to collect the various aspects of the system behavior 
during execution.  

Data was collected using Parkdale, wireshark and the tc statistics command. Parkdale was used to measure 
throughput and response time. The tc –s qdisc dev eth 0 was used to show class statistics with information under each 
class. The tc –s qdisc dev eth 0 displays the statistics of a particular class including number of packets sent, number of 
packets dropped and latency. The wireshark tool was used to collect information on hit ration as per the initiators IP 
address. Wireshark is an open source and cross platform tool used for network analysis. It was developed by the 
wireshark team. 

For our experiments we used three computers (Intel 2.8 GHZ CPU with 2GB of RAM and 500 GB hard disk). 
Their roles were that of target, router and initiator respectively. The router contains two Ethernet cards of 100 Mbps and 
it was directly connected with the target and the initiator. The router is the computer sitting at the middle. To generate 
storage traffic, we used Parkdale.  

4.   Results and Discussion  

In the following sections we outline the results based on time complexity analysis, hit ratio, performance 
evaluation and classifier accuracy. 

4.1.  Time complexity analysis  

Time complexity for a listed rule in Table 1 is O(N)[55,56].Time complexity for sequential tree rule is Log(N)  but 
since we have used IP address and port ranges the time complexity for the tree rule slightly increases to 
1 ( )Log N+ .Where N  is the number of rules.[35,57,58]. 

From Table.1 if we assume that the chances for a match is the same for each rule. Then the average number of 
matches is (18 / 2) 5 30C C× × =  where C the time is required to compare one field of a packet to one field of a rule. 
Five is the number of fields in the table that require comparison. 

With the tree rule in Fig.2 we have on average 5 lines in the source  IP field to get 5(1 )Log C+ ,one line in the 
destination port field to get 1(1 )Log C+ ,three  lines in the destination IP field to get 3(1 )Log C+ , one line in the source 
port field 11 )Log C+  and one line in the in the protocol field 1(1 )Log C+  [29]. 

Consequently, with the tree rule classifier we have 
5 1 3 1 1{(1 ) (1 ) (1 ) (1 ) (1 ) 6.1Log C Log C Log C Log C Log c C+ + + + + + + + + = .The mathematical simulation show that 

optimization strategy applied result in reducing the operational cost by 20%. 
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Fig.2. Linear tree rule structure 

4.2.  Hit Ratio  

Fig.3 shows the distribution of the hit for rules over an attempt to read/write files of size 4GB with blocks of size 
4KB, 64KB and 1MB.The results show that heavy hit rules are experienced from the power users followed by the 
knowledge users and lastly the task users. Therefore, to optimize performance, rules associated with power users are put 
at the top. Based on the rule hit distribution we apply the sorting algorithm[56].  

 

 
Fig.3. Rule hits distribution over varied block sizes 

4.3.  Performance Evaluation   

Experiments were done to determine how well the proposed solution conforms to the SLO of various users. Our 
evaluation was composed of experiments that examine the following questions:  

 
1. How throughput vary with changes in the number of rules and the block size? 
2. How does response time vary with changes in the number of rules and the block size? 
 
In Figs.4(a) and 5(a) we observe a steady throughput degradation for the list based classifier due to an increase in 

the number of rules. Initially when numbers of rules are less, the throughput of the list based classifier is similar to that 
of the proposed solution. As the number of rules increases the performance of the list based classifier deteriorates while 
that of the proposed system stabilizes. Another observation is that since the throughput is a product of block size the 
higher the block size the higher the throughput. 

From Figs.4(a) and 5(a) we further observe that the storage users are not able achieve their SLO with the list based 
classifier, this is because the list based classifier causes delays due to the increase in the number of rules and therefore 
results in reduced performance as the rules increase. 
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Fig.4. Writes throughput comparison (a) Without the proposed solution and (b) With the proposed solution for varied block sizes. 

However, with the proposed solution as illustrated in Figs.4 (b) and 5(b), rule search time is reduced during the 
classification process and therefore all the classes of users are able to achieve an SLO close to the system being 
emulated. This is intuitively consistent with what we expect that the users should meet SLOs close to the system 
modelled in section 4 irrespective of the number of rules[29]. 

In addition these results are consistent with what we would expect and also with research done in  [32] where 
experiments were performed to compare the performance of a IPtabels which is a list based firewall versus the 
optimized list based firewall. The results showed that the performance of the optimized list based firewall is not 
drastically affected by the increase in the number of rules unlike that of list based firewall[2]. 
 

 
Fig.5. Writes throughput comparison (a) Without the proposed solution and (b) With the proposed solution for varied block sizes. 

From Figs.6 (a) and 7(b) we observe that the response time for the list based classifier steadily increase with the 
number of rules. On the other hand the response time of the proposed classifier slightly increases then stabilizes[29]. 
Indicating that the performance of the proposed classifier is not adversely affected by the number of rules[2].  
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Fig.6. Response time comparison for reads (a) Without proposed solution and (b) With the proposed solution. 

 
Fig.7. Response time   comparison for writes (a) Without proposed solution and (b) With the proposed solution  

From Figs.6(a) and 7(a) we further observe that the emulated classes of users are not able achieve their SLO with 
the list based classifier. However with the proposed  solution as illustrated in Figs.6(b) and 7(b)  all the classes of users 
are able to achieve an SLO close to the system being emulated[57]. These results are consistent with those in [9] where 
the authors varied the number of input output operations. In the experiments without the proposed solution, the latency 
was more compared to that without[57]. 

4.4.  Classifier Accuracy  

To evaluate for accuracy a file of 4GB was simulated for reads and writes with a queue depth of 32 and a block 
size of 64KB.The decision to use a block size of 64kb due to the fact that it’s the default block size for windows. For 
queue depth of 32, it’s the default in Parkdale and 4GB is the maximum file size possible for simulation while using 
Parkdale. After the reads and writes were completed the command tc-s qdisc ls dev etho was run on the router to 
generate the total packets generated and the classification per class[58]. Table 3 summarizes the results. 
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Table.3. Statistics of packet classification 
 List Based U32 Classifier Proposed Optimized Solution 

Class Number of Packets Number of Packets 
Power user 4871229 4973264 

Knowledge user 4813052 4935052 
Task user 4812035 4922035 

Total number of packets 
classified 14496316 14830351 

Total number of packets 
classified 8117936 13199012 

 
With the list based classifier, the accuracy is 56 percent as compared to that of optimized solution of 89%. There is 

an improvement of 33% in the classification accuracy. 

5.  Conclusion and Future Scope 

This paper embarked on the problem of performance isolation. Performance isolation is the segregation of traffic in 
order to prevent interference between classes traffic and also offer differentiated services. To achieve performance 
isolation packets form initiators needs to be classified for them to be offered differentiated treatment. During 
classification arriving packets are sequentially compared against a list of rules until a match is found. Due to increase in 
network speeds and mix of traffic in IP SANs it’s important for packet classifiers to inspect packets as fast as possible. 

The paper has discussed in details the problems associated with linear search and techniques for optimizing linear 
search. The paper presents a solution for optimizing packet classification process for purposes of achieving performance 
isolation through throttling of flows. 

The proposed solution has been tested and compared with traditional implementation of a linear search based 
classifier and established that the proposed solution gives better performance in terms of throughput and response time 
when used to classify traffic for performance isolation. The proposed solution was tested on an IPSAN and was found 
to be more suitable than the traditional implementation of linear search.  

In future we would also like to explore techniques of using performance isolation in providing availability and 
reliability guarantees. In addition, we would like to implement our proposed solution in non-storage systems where 
performance isolation is required. 
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