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Abstract—Image capturing using faulty systems or 

environmental vulnerabilities always degrade the image 

quality and causes the distortion of true details from the 

original imaging signals. Thus a robust way of image 

enhancement and edge preservation is an enormously 

requirement for smooth imaging operations. Although, 

many techniques have been deployed in this area during 

the decades for its betterment. However, the key 

challenges are remain towards better tradeoff between 

image enhancement and details protection. Therefore, this 

study inspects the existing limitations and proposes a 

robust technique based on functional minimization 

scheme in variational framework for ensuring better 

performance in case of image enhancement and details 

preservation simultaneously. A vigorous way to solve the 

minimization problem is also develop to make sure the 

efficiency of the proposed technique than some other 

traditional techniques. 

 

Index Terms—Image enhancement, dual projection, total 

variation regularizer, functional minimization. 

 

I.  INTRODUCTION 

During the last decades, imaging activities all over the 

world have been increasing tremendously due to the huge 

application of cameras, videos or other imaging 

instruments in many areas of application. All most in 

every sectors including medical science, computer vision, 

satellite imaging, classification or segmentation, motion 

detection, fraud or intrusion prevention, traffic security or 

road safety where usages of images are overwhelming. 

Due to the large volume of image applications, it is an 

emerging issue how an image can be smoothed while 

preserving its own and actual properties. Nowadays, it is 

not an issue how much the imaging equipment or video 

capturing instrument is efficient; however, the captured 

images or videos are always found in less or more 

erroneous condition due to the different disturbances 

during its transmission or acquisition. A faulty imaging 

system always hampers image quality by incurring 

unpredicted noises to the original imaging signals. The 

erroneous images subsequently lead malfunctioning 

during image operation or analysis and produce garbage 

output. Therefore, effective and efficient way of image 

smoothing, as well as developing a robust technique to 

remove noise and preserving image properties is 

appreciative and still challenging for the community of 

image vision and analysis. In real applications, image 

smoothing is always a noteworthy issue since its 

preprocessing is urgent to construct a good quality image. 

In the real field of image applications, it is observed that 

the bulk amount of noises is incurred from different 

known and unknown sources during its capturing phase. 

Therefore, an attempt to eliminate these impurities from 

the contaminated images is unquestionably necessary to 

produce a clean version that would be more useful in any 

image related operations.  

During a plenty of times, many approaches for the 

purpose have been discovered in scientific literature. 

However, the image smoothing problems significantly 

come into the notice are reported in many research 

articles including local filtering-based image smoothing 

[1, 2], nonlocal-based methods [3- 6] are also noted in 

literature. Nonlocal wavelet-based method [7, 8], 

nonlocal-based sparse coding strategy [9], nonlocal low-

rank [10], the sparse representation techniques [11], 

shearlet-based model [12], curvelet-based method [13], 

dictionary-based approaches [14, 15], soft-thresholding 

method [16], image deblurring technique using 

regularization [17], the radial basis function (RBF)-based 

method [18] and image retrieval with color and angle 

representation [19] are also remarkable in applications. 

However, many other methods based on variation and 

partial differential equation (PDE) have been proposed 

widely since variational calculus come out recently as a 

powerful tool for image-smoothing and model solutions. 

Moreover, the solution of the models can ensure image 

smoothness and details preservation abilities, those 

abilities are also reported as in the PDE-based methods 

[20, 22]. Similarly, energy minimization or variational-

based approaches such as [23- 25, 27-29] are widely 
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using in image enhancement problems. The nonconvex-

based smoothing approaches such as [30-33] can also 

preserve image details. However, a total variation (TV)-

based scheme known as ROF technique [34] and the 

Chamboll's method [35] in the form of minimization 

problems are famous for  regularizing noisy images. An 

efficient impulse noise removal approach is described by 

Yu et al. [36]. In this approach, the time for denoising 

process is relatively less as their algorithm iteratively 

implemented, however the performance is not good 

enough. A fast minimization method for image 

restoration is proposed by Nikolova et. al. [31]. They 

used nonconvex non-smooth regularization on L2 norm 

to show the advantages over convex regularization with 

edges preservation ability. However, the technique is 

computationally inefficient since it requires a nonconvex 

smoothing. In the same direction, Zuo et al. [32] 

proposed an adaptive nonconvex non-smooth (ANCNS) 

regularization approach to show better restoration of 

image edges, however it incurred time penalty as it 

requires a nonconvex minimization. In [37], Sutour et al. 

proposed a new method with TV regularizer and nonlocal 

means scheme to reduce the residual noise but the method 

still unknown to deal with other types of regularizers 

except TV-based regularizer. In [26], Liu et al. proposed 

a higher order total variational (HDTV) model as the 

form of weighted L1-L2 mixed norms for image 

enhancement but the convergence of HDTV is still 

unknown in this work. In [21], Wang et al. proposed a 

nonlinear fourth-order PDE based denoising method by 

approximating energy to preserve textures only for 

additive noise but the performance still unknown for 

other types of noises. 

The existing literature reviews reveal many image-

enhancement techniques those have been introduced for 

endeavoring image quality. However, intensive analysis 

is still enduring toward superior way of preserving image 

details and noise removal simultaneously. Although some 

of the existing techniques perform less or more effective 

in some context, but still there are many techniques are 

not good enough. For example, the TV-based image 

enhancement technique [34] uses convex energy to 

protect image properties. However, the high isotropic 

polishing phenomena hamper some important image 

details. To defeat this problem, a nonconvex way of 

enhancement is proposed in [27, 30] which ensure the 

ability of details protection and noise elimination. 

However, it is much slower method and cannot guarantee 

unique solution. The technique also recognizes noises as 

image element in homogeneous regions. As a result, a 

new technique is reasonably necessary to remove noise 

while keeping the original image properties. Therefore, 

the objective of this work is to introduce a robust 

functional minimizing technique for better image 

smoothing performance while keeping the actual image 

details.  

Rest of the paper is separated as follows: Section II 

describes the details of proposed technique including the 

basic image enhancement consequences. The Section III 

shows experimental studies. Performance assessment is 

reported in Section IV. Finally, Section V concludes this 

paper.  

 

II.  DETAILS OF PROPOSED TECHNIQUE 

During the last decades, imaging activities all over the 

world have been increasing tremendously due to the huge 

application of cameras, videos or other imaging 

instruments in many areas of application. Generally, 

faulty imaging systems, environmental problems or 

distortions during capturing process often degrade image 

quality by incurring enormous noises. Eliminating these 

susceptible artifacts from the original images is the vital 

requirement for smoothing and recovering the image 

details.  For the purpose, the key concern in image 

smoothing is to protect details while eliminating noise or 

other vulnerable objects.  A good balance between noise 

elimination and details protection is extremely necessary 

for constructing high quality images. Therefore, we 

attempt to investigate the existing limitations and aim 

towards a robust way of image quality improvement 

using a new methodology as describe in the subsequent 

section.  

Noise reduction simply refers to the way of eliminating 

disturbance-artifacts from the actual images. Let pij  is 

the real or authentic image where 2:p R R  and 

  is image domain, qij is the noisy image with 

Gaussian noise ij , then mathematically, the degraded 

image can model as Eq. (1): 

 

q pij ij ij                               (1) 

 

The reconstruction of pij  from qij  here is the ultimate 

objective. An approximation to pij  can be ensure from 

the following minimization problem (2): 

 
2

min q pij ij


                             (2) 

 

To manage the ill-posed issue [38] in minimization, an 

image regularization or smoothing term as in Eq. (3) is 

essential with the original signal to resolve the 

minimization problems (2): 

 

   
2

2

min

L p F p
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p dxij





 
 

 
 
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 
 
   
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                      (3) 

 

In (3), the first and second terms treat as fidelity and 

the regularizer or smoothing term respectively. In TV-

based image restoration [34], the fidelity and 

regularization terms describes the noise levels and image 
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smoothness respectively. In practice, the image 

enhancement performance largely depends on smoothing 

terms. In (3) second term regularizes the images where 

  is the balancing parameter. The dilemma (3) can be 

flourished by Euler-Lagrange Equation as (4) which 

pledge a unique solution:  

 

0p q pij ij ij                              (4) 

 

with boundary conditions:  

 

0 on (D indicates the outward normal to )
p

D




    

 

and the necessary mathematical propositions to solve the 

problems are discussed below:  

The Gradient of p refers to p  as the gradient vector, 

which can be defined as: 

 

1

( ) , ..., n

n

p p
p x

x x

  
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The divergence on p  as the following terminology: 

 

1
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n

i i

p
div p

x


  
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The Laplace p  ( p ) can be expressed as: 

 
2

2
1

( )
n

i i

p
p div p
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The TV-based technique [34] utilizes 1L norm of pij  

in (4) instead of 2L  in (3), and it express as in the form 

of Eq. (5): 

 
2

q p dx p dxij ij ij
 

                       (5) 

 

where the term pij

  in (5) stands for the total 

variation (TV) of pij  image. For implementation, we 

need to introduce a discrete form of TV-based approach 

as in the following way.  If the minimization problem of 

discrete functional F  then: 

 

 
2

min min
,
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2,

F L p qij ij
i j

p q pij ij ij
i j



 
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where    
2 2

p p px yij ij ij      

1,p p px ij iji j    and , 1p p py ij iji j    

 

Although TV-based method can enhance images, 

however it eliminates some valuable image details 

simultaneously due to its polishing effects. Thus, an 

alternative regularizing term for the quality solution is 

introduced in [27, 30] and illustrate the efficiency of this 

nonconvex technique as (6): 

 

 
2

q p dx p dxij ij ij
 

                   (6) 

 

The function  
1

r
r

r








 where   is a positive 

parameter. The vital advantage of this nonconvex 

technique (6) is the ability of details preservation but 

alarming issues are uncertainty of unique solution and 

allow noise as original detail particularly in boundary 

regions. As a remedy, we examine the respective 

limitations and propose a robust functional minimizing 

technique that can be modeled as in the following form of 

functional (7): 
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The functional (7) can ensure the better noise reduction 

and edge protection ability simultaneously since it 

inherits the benefits  of both TV and nonconvex-based 

techniques by assigning 1   and 0   respectively. 

The use of discrete variational principle to the discrete 

functional is necessary to solve the minimization problem. 

The appropriate parameters and weight estimation always 

influence the better trade-off during image smoothing 

process. However, the direct solution of (7) is obscured 

due to nonconvex functional. Therefore, we need to 

handle the image regularizer i.e. handling smoothing term 

by iteratively reweighted method as (8): 
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In (8), we define a robust weight   as:
1

1 | |pij







 
 

where   is the arbitrary positive parameter 

ranges[0.01, 0.09] . For eliminating noise and protecting 

image details to construct visually high quality image, our 

robust technique (8) can be implemented by solving the 

following functional minimization problem (9): 
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As  is given, the above Eq. (9) is convex and unique 

solution is confirmed. The Chambolle’s projection 

algorithm [35] is used to attain the solution of the 

functional minimization (9), which is specified as Eq. 

(10): 

 

i i ip q div  z                         (10) 

 

where div z is the divergence (div) of the vector 

:z  expresses a vector function and 
n

i z  

is selected by a fixed point principle : given 
0

0z  is a 

first estimate and suppose time-step = , then we iterate 

the scheme (11) for the solutions: 
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III.  EXPERIMENTAL STUDIES 

To verify the effectiveness of diverse image 

enhancement techniques, the experimental details are 

presented in this section. Matlab 2017a on a computer 

configured with core-i5 and 3.20 GHz is used for 

implementing the algorithms. For experimental setup, the 

parameters , , and     are required to be initialized 

before execute the experiments. The standardize image 

size is  256 256 and range of intensity is  1, 256  

respectively. The controlling parameter   is equivalent 

to the noise level and   is selected from a fixed range 

 0, 0.6  as in [27, 30], however we choose  for any 

values from the range  0,1 . In experiment, the 

parameters   and   are for the role of controlling the 

smoothness. We set  for any random value from the 

ranges  0 1  . The value of  is determined from the 

random ranges  0.01, 0.09 . To assess the performance, a 

set of reference clean images in (a) and their 

corresponding noisy images in (b) of Fig.1 are used 

respectively. The parameter N is connected to the 

standard deviation of the noise . To condense the pages 

of the paper, the noise parameters N is fixed from the set 

 10, 20, 30, 40  where higher N specify stronger noise 

intensity. However, any intervals of noise intensity can be 

tested for the experiments.  

 

IV.  PERFORMANCE ASSESMENTS 

The performance comparisons can be validated by both 

visual and numerical improvements. Based on original 

and restored images, signal to noise ratio (SNR), peak 

signal to noise ratio (PSNR) and structural similarity 

(SSIM) can be the evaluation indicators. The qualitative 

indicator SSIM is used for image quality comparisons 

between proposed and existing techniques. There are 

huge numbers of reference images have been used for 

performance assessment in this domain. However, we use 

several images for experimental analysis and quality 

evaluation as it facilitates to minimize the length of the 

paper, it does not mean the limitation of diversified using 

of other images.  

The SSIM index is calculated based on the similarity 

between the clean image and restored image. The vale 

between the range 0 and 1 is used as the SSIM index. The 

high value of SSIM index signifies more structure 

similarity between the original image and resorted image. 

The SSIM is measured as Eq. (12) based on clean image 

p  and reconstructed image p :  

 

   
   

1 2

2 2 2 2
1 2

2 2p p pp
SSIM

p pp p

    

     

 


   
         (12) 

 

where p  and p  are the mean values of the clean and 

restored image, respectively. Similarly, p and p  are 

the variance values of the clean and restored image, 

respectively. pp  is the covariance of images p and p ;  

two variables 1  and 2  are assigned with a weak 

denominator to stabilize the division.   

We exhibit image smoothing results including image 

details preservation ability in (c)–(e) of Fig.1 for visual 

assessment, and the results in Table 1 for quantitative 

assessment respectively. From the Table 1, it is observed 

that our proposed technique on average attain higher 

SSIM values than the other traditional techniques. 

Evaluating the results in (c)–(e) of Fig.1, it can make sure 

that the proposed technique can wipe out much noise and 

protect image true details more competently, particularly 

in edge regions. For example, the smoothed results in (c) 

of Fig.1 are generated by TV-based technique still take 

hold of visible noise and produce over enhancement 

while iteration increased. The images by nonconvex-

based technique are revealed in (d) of Fig.1. The results 

show that some image details are also removed in (d) and 

over-smoothed in (c) than the results exposed in (e) of 

Fig.1.  

For more precise comparisons, we enlarged restored 

images in (c)-(e) of Fig.1. From the magnified 

observation, the restored images by proposed technique 

in (e) make sure the visually better quality images than 

the same images restored by TV-based and nonconvex-

based smoothing technique as shown (c) and (d) in Fig.1 

respectively. In (e) of Fig.1, the restored boundary objects 

or edges are much clean and sharper with more scene 

details. However, images (c) still contain noises and over-

smoothed the boundary areas; and images (d) restore 

noises with image details in homogeneous regions. It 

indicates that the proposed technique simultaneously can 

remove more noise in homogeneous regions and preserve 

edge details efficiently than other methods. 
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Fig.1. Performance comparisons: a original image, b noised image with N = 30, c TV-based technique d  

Nonconvex-based technique and e proposed technique 
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Table 1. SSIM comparisons and performance evaluation for different techniques  

Name N Noisy Image TV-based (5) Nonconvex-based (6) Proposed 

House 

10 0.611 0.829 0.854 0.867 

20 0.501 0.706 0.738 0.743 

30 0.409 0.635 0.663 0.671 

40 0.365 0.593 0.612 0.622 

Peppers 

10 0.631 0.899 0.919 0.933 

20 0.559 0.839 0.863 0.871 

30 0.514 0.794 0.817 0.830 

40 0.466 0.756 0.779 0.798 

Butterfly 

10 0.663 0.896 0.920 0.927 

20 0.591 0.821 0.846 0.853 

30 0.497 0.761 0.785 0.792 

40 0.399 0.713 0.736 0.741 

Cat 

10 0.626 0.879 0.894 0.907 

20 0.538 0.797 0.817 0.831 

30 0.478 0.736 0.760 0.775 

40 0.397 0.698 0.718 0.722 

Flower 

10 0.619 0.887 0.908 0.925 

20 0.583 0.833 0.858 0.865 

30 0.506 0.789 0.812 0.821 

40 0.498 0.754 0.774 0.791 

Barbara 

10 0.632 0.869 0.884 0.891 

20 0.528 0.792 0.809 0.817 

30 0.493 0.741 0.760 0.769 

40 0.391 0.701 0.723 0.734 

Carpet 

10 0.679 0.934 0.959 0.975 

20 0.586 0.848 0.876 0.919 

30 0.491 0.752 0.789 0.853 

40 0.397 0.693 0.714 0.793 

Lake 

10 0.617 0.886 0.896 0.906 

20 0.481 0.784 0.808 0.819 

30 0.402 0.719 0.741 0.755 

40 0.376 0.662 0.688 0.701 

HandXray 

10 0.611 0.882 0.890 0.917 

20 0.509 0.791 0.806 0.835 

30 0.496 0.727 0.748 0.788 

40 0.394 0.683 0.707 0.749 

* Bold indicates the corresponding maximum SSIM values 
 

V.  CONCLUTION 

In this paper, a robust functional minimization 

technique is presented for image enhancement while 

protecting the actual image details from the 

environmental disturbances. An efficient algorithm has 

been introduced and implemented under variational 

framework for finding the robust solutions. Moreover, the 

key challenges in order to edge and image details 

protection from high polishing affects have been 

addressed and tackled efficiently in cooperation with 

designated smoothing term. The performance of the 

proposed technique is also tested and verified by a 

number of sample experiments. The visual and  

quantitative results ensured the efficiency of the proposed 

technique in order to protect valuable image details while 

eliminating noise in homogeneous or edge regions than 

other methods.  
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