
I.J. Information Technology and Computer Science, 2018, 7, 1-12
Published Online July 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2018.07.01

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

SASMEDU: Security Assessment Method of

Software in Engineering Education

Güncel SARIMAN
Computer Technologies Department of Muğla Vocational School, Muğla Sıtkı Koçman University,

48000, Mugla, Turkey

E-mail: guncelsariman@mu.edu.tr

Ecir Uğur KÜÇÜKSİLLE
Computer Engineering of Süleyman Demirel Universoty, Isparta, Turkey

E-mail: ecirkucuksille@sdu.edu.tr

Received: 19 February 2018; Accepted: 06 June 2018; Published: 08 July 2018

Abstract—Security and usability of web and mobile

applications where users share their personal information

have become to be a factor about which users should be

careful. Rapid increase of developers, programming at

early ages, desire for earning money by working

freelance have caused widespread use of web and mobile

applications and an increase of codes which contain

vulnerabilities. Safe and good software development is

also based on software lessons given to the students in

high school or college years. This paper presents a

developed testing and evaluation software in order to find

out the leakages in the web applications which was

developed by using asp.net, php and java languages. It is

aimed that the developed analysis tool was designed to be

used by engineering students as a training tool, in security

courses by trainees and by programmers for testing.

Within the scope of the study, security tests of web

projects were carried out with static code analysis method

in input control, metric analysis and style control phases.

For testing the developed software tool, student web

projects were used which were downloaded from

"www.freestudentprojects.com" website. 10 test projects

were tested in the stages of input control, metric analysis

and style control. According to the results of the analysis,

the errors were concentrated on Structural Query

Language Injection and Cross Site Scripting attacks,

which were developed by the students due to the lack of

security audit in the projects.

Index Terms—Programming and programming

languages, improving classroom teaching, interactive

learning environments, software security assessment.

I. INTRODUCTION

With the spread of the internet, an increase in web and

mobile applications has made daily life easier in many

areas such as banking transactions, defense systems,

booking procedures, etc. Technological developments

and different uses of computer applications make systems

open targets for attackers. Attackers are carrying out

attacks involving a great variety of techniques to achieve

their objectives. For this reason, knowing the types of

attacks, analyzing them accurately, and determining

appropriate precautions are of great importance for

information security [1]. While security vulnerabilities in

information systems have become increasingly common

in software systems, a technology research and consulting

firm called Gartner found in their research that 80% of

violations are caused by software security problems that

are related to information security violations [2]. Since

there are many components and dynamic structures which

make up software, fully secure software is impossible;

however, substantial precautions can be taken on the

coding side by applying secure code development

techniques.

It is widely accepted in the software industry that

fixing vulnerabilities in the early stages of software

development is less costly than fixing vulnerabilities that

are realized in later processes [3]. The quality, security,

and correctness of a developed software can be controlled

in the testing process. Software testing saves time and

cost by reducing the cost of developing forward-looking

code, checking quality and appropriateness to test script

before the product is run, finding mistakes that may have

been missed during development, and preventing these

mistakes from being repeated in the future.

In most web systems, there are many security

vulnerabilities such as XSS (Cross Site Scripting) and

SQLI (Structural Query Language Injection). Ready

website development environments such as PHPBB or

Joomla contain many security vulnerabilities, and as a

result of misconfigurations, systems can easily be broken

[4]. Content management systems attacks generally

consist of DOS (Denial of Service), D-DOS(Distributed

Denial of Service), viruses, system exploits (operating

system, application server, security wall, database), and

software developer faults. Developer faults are caused by

the lack of input control. Good, safe software

development is also dependent on software lessons given

to students in the high school or college years. Secure

code development must be learned early in the education

2 SASMEDU: Security Assessment Method of Software in Engineering Education

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

process, describing and enforcing precautions that can be

taken against coding and architectural design mistakes

from the first stages of software design.

This study is aimed at raising awareness of secure

software development processes in web projects. For the

secure design and development of a web application, an

analysis tool has been developed to report vulnerabilities

such as XSS, url security, session mechanism and code

security, and to correct these vulnerabilities. The analysis

tool reports the security analysis results of the projects

developed by the students and the details of

vulnerabilities that may occur in the projects. While the

fact that software courses start at the high school and

junior high levels has increased the interest in software

development among students, cyber security awareness

and the effect of security on software are not mentioned

in the lessons[19]. With the inclusion of secure code

development principles in the programming curriculum,

the developing of software that can create vulnerability

will be prevented at the beginning of programming

education. Furthermore, we envision that the tool, which

could be a guide for code developers in software groups,

will be beneficial to those who are thinking about having

a career in this field. The developed tool performs input

controls, code metric analysis, and style controls by

performing static code analysis of web-based software

developed in Java, ASP.NET and PHP language.

Information about software security and secure code

development is in the first section, the literature review is

in the second section, static source code analysis is in the

third section, the developed software tool SASMEDU

(Security Assesment Method of Software in Engineering

Education) is in the fourth section, the student projects

evaluation is in the fifth section, and the results of the

study are given in the last section.

II. RELATED WORK

In the literature, software security studies are mostly

focused on static code analysis, web application security,

and software security tests. Myers [5] gives practical

information about tests of written programs in his book

The Art of Software Testing. He also refers to the

important points in the testing process with project

managers and examines the situations in which students

are exposed to the testing of programs (this book can be a

helpful document for students in overcoming problems in

software testing in the early stages of programming

courses). In his doctoral dissertation, Livshits [6] tried to

develop software security with static and runtime analysis.

With the development of web applications, buffer

overflows have become very common. The study was

developed to examine web-based Java applications. The

developed static code control tool can report

vulnerabilities by checking the Java byte codes written in

the compiler. As a result of the study, 98 security errors

were found with false positives in 11 testing projects, and

the results of the study were discussed. Jovanovic et al. [7]

used static code analysis to detect vulnerabilities in recent

web applications. Flow-sensitive, interprocedural, and

data flow analysis methods were used to find

vulnerabilities in the software. The application detects

SQLI and XSS vulnerabilities of codes written in PHP

language. At the end of the study, 15 unknown and 36

known vulnerabilities were found in three different web

applications. The false positive rate is 50%. Huming et al.

[8] aimed to help students at freshman and sophomore

levels not only understand the impact of insecure code

but also gain significant knowledge of safe programming

practice. Surveys and feedback show that this study is of

a great importance for students in their professional lives.

In the first part of the study, the importance of

information security and development of secure coding

was explained. In the course, students gained important

knowledge about secure software development by

understanding the necessity for secure software. After the

training in number overflow and input errors and their

solutions, a laboratory study was carried out to convert

the incorrect codes to secure codes in the implementation

part. According to the preliminary questionnaire, it was

observed that the approach and acquisition of the topics

for each question in the survey modules is 1.5 times

higher as a result of the training. This study shows that

insecure coding and secure programming practices have a

positive effect on students.

Şahinoğlu et al. [9] categorized the problems that they

came across during the testing process. They suggested

solutions for planning, administrative, and intellectual

problems. They mentioned the problems which arose

from lack of documentation related to project

management. Related to the testing method, the existence

of problems such as incorrect testing strategy, incomplete

project, and inadequate test metrics were addressed.

III. STATIC SOURCE CODE ANALYSIS

During software development, additions and changes

cause design and code errors to occur in the software over

time. For this reason, static and dynamic testing

techniques are applied in the development process steps

to detect and eliminate faults in the developed software.

Static testing techniques include code review, automated

code analysis, and unit tests. Dynamic testing techniques

can be applied with various methods such as software

testing, system integration testing and system testing.

Static code analysis can be made by manual reviewing or

by automatic analysis tools. While static analysis tools

often detect programming errors such as assignment and

auditing, the manual review method can also reveal

functional errors [10].

In static code analysis, data flow analysis, and constant

analysis, type checking methods are used. Type inference

is used to determine the type of variables and functions in

a program or whether the objects that come as parameters

are appropriate. Type inference is applied in the detection

of "format string" vulnerability, the operating system

kernel, and vulnerable pointer use [12]. Data flow

analysis, which collects meaningful data from programs,

identifies them later, and uses variables with an algebraic

approach, is used in process programming. The

 SASMEDU: Security Assessment Method of Software in Engineering Education 3

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

parameters sent to potentially vulnerable functions are

followed by data flow analysis from the very first

moment.

If the parameters of the functions entered under user

control are defective, the codes are indicated as

vulnerable when examined. However, the source code

can be removed from vulnerable categories by ensuring

that defective variables are protected by secure functions

[13]. Some programming languages such as Perl and

Ruby allow codes, in some cases, to be passed through

flaw checking such as data which come through the

interface. The following lines of codes show the code

blocks of the basic flaw analysis with PHP, Java, and

ASP.NET web programming language.

In the above code with the PHP example, the "$_user

tainted" variable retrieves value via the global $ _GET

variable provided by the user. The $ user_tainted variable

is transferred to echo (), which gives output to the system.

This is a simple example of XSS vulnerability.

In defect analysis, three data rows including sources,

vulnerable functions, and cleaning functions are used in

the steps of detecting and clearing potential

vulnerabilities. Resources are possible dirty data which

are obtained from users, files, databases, or other user

controlled inputs. “Echo ()”, “print ()”, “printf ()”

functions that are in PHP language can cause possible

security vulnerabilities such as XSS or SQLI. Lexical

analysis divides the code into sub-parts for easier

processing by converting the source code from symbolic

status to meaningful information. Thus, "token_get_all"

and "token_name" functions are used in the PHP

programming language [14].

By static analysis, many different errors such as

runtime errors and source and security leaks can be found,

and software metrics can be calculated. In order to

simplify and improve the maintenance of the program,

the application of accepted coding standards in different

programming languages for measured code metrics is

also a task of static code analysis.

Despite the advantages of static analysis, the most

common complaint about automated analysis tools is that

security vulnerabilities generate too many false positive

errors commonly known as false alarms [11]. For

example, static code analysis can not detect logical errors.

Since static code analysis tools can not know the whole

program, they are not aware of the functionality which

should be available to individual users by analyzing the

source code. Static code analysis tools are limited to the

rules written by developers. These rules can be very

limited or very wide-ranging depending on the given

model.

IV. SASMEDU: SECURITY ASSESSMENT METHOD OF

SOFTWARE IN ENGINEERING EDUCATION

The SASMEDU tool has been developed to teach

software security principals to students and programmers

who take software courses. This tool demonstrates that

the development of software is not just about coding or

publishing projects but also promotes the concept that

codes should not create vulnerability. The SASMEDU

tool is based on the fact that the developed code snippets

are passed through various security tests before they are

compiled. These tests are conducted by analyzing the

source codes. SASMEDU can perform code analysis of

web applications developed in Java, ASP.NET and PHP

languages. With the analysis tool, students can save their

analysis and examine the removal rate of the

vulnerabilities of their code snippets. By taking

retrospective reporting in the software, information about

the developer's coding level can be extracted The analysis

tool consists of an input analysis section to prevent

security vulnerabilities in web applications, a metric

analysis section to find code quality, and a style checking

section for coding standards.

This source code analysis tool was developed as a

desktop application in the Visual Studio environment

using WPF(Windows Presentation Foundation)

technology. The project interface is designed for users to

analyze easily. The software consists of the pages where

analysis and reporting tabs are located. While there is

general information on the Software Security tab, all

settings related to the analysis can be made in the

Analysis Configuration section. After making

adjustments like selection of project files and analysis

language, code analysis of all the files in the uploaded

project or the selected file can be performed. On the left

side of the screen, uploaded project files can be seen, and

in the middle of the screen, the contents of the uploaded

project's files and necessary settings are visible.

In the input control stage, input acceptance methods of

web applications in different programming languages are

taken into consideration. The data exchange and

processing methods in Java, ASP.NET and PHP

languages are the most important reasons for security

vulnerabilities. In the logic of the input control module,

the first stage is processing of source code files that are

received from the user. Filtering is performed by

removing file types like images and videos from the

projects which do not require analysis. In order to analyze

the sanitized files, the code lines which can get

parameters from the outside in each programming

language are detected. After the detection of accepting

input fields in the web applications, reviews are

performed on methods of sending data and the code lines

where they are used according to the types of

vulnerabilities. The choice of vulnerability for Input

Analysis can be done from the Vulnerability Type section.

Only that type of an analysis can be performed by

selecting the type of vulnerability that may arise due to

insufficient input control. The vulnerability types are

given in Fig.2.

4 SASMEDU: Security Assessment Method of Software in Engineering Education

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

Fig.1. Analysis Configuration of SASMEDU

Fig.2. Vulnerability Types of Input Control

In the metric analysis stage, statistical data are obtained

to make meaningful deductions about the code lines and

to comment on the quality of the software. Statistical

calculations can be done with similar methods in different

programming languages. The metrics measured using the

analysis tool in ASP.NET, Java and PHP languages are

code line counts, source lines of codes, blank line of

count, empty lines of code, comment lines of code,

cyclometic complexity, method number, maintainability

index, weight method of class, and halstead metrics.

In the style checking stage, ASP.NET applications are

expected to develop to certain standards. In order for the

codes to develop to certain standards, style checking can

be performed using standardized and accepted rules in

ASP.NET,Java and PHP languages. In style checking

modules, the first stage is processing project files which

are received from the user. Filtering is performed by

removing file types such as images and video in the

projects which do not require analysis. The filtered files

are analyzed line by line according to style checking rules.

Efficiency and performance comes after reliability and

maintenance in software where the developed codes are

considered to be high-performance. The fact that written

codes are not readable and sustainable causes a lot of

time to be spent on identifying problems and

understanding program flow. Especially in big software

companies, more time is spent keeping the developed

software easier to maintain in the foreground rather than

on the fast development of software. To perform analysis

using SASMEDU, all the modules can be run together or

separately. Fig.3. shows the module selection screen.

Fig.3. Module Selection of Input Control

The analysis can be started by clicking the Start

Analysis button with the selection of related choices in

the Analysis Type and Test Type sections. Detailed

representations of performed analysis are available on

different tabs for input control, metric analysis, and style

control.

After the input control is performed, the results

obtained from the input control in the Analysis Result tab

are shown in a list. If any line is clicked on, a new

window will show information about possible

vulnerabilities and the related code line and how to secure

it. Fig.4&5. show the results and detail windows of the

input control analysis.

 SASMEDU: Security Assessment Method of Software in Engineering Education 5

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

Fig.4. List of Input Control Analysis Results

Fig.5. Detail Interface of Input Control Analysis Result

The results obtained from the metric analysis are listed

in Fig.6. File-based calculations are made with metric

analysis. By selecting the file, which is desired to be

viewed as a result of the metric analysis, the calculated

metrics of the relevant file can be seen.

The results of the project's style checking can be seen

in the Style Checking section. The results that occurred

according to the style checking rules in the whole project

can be seen as a list in Fig.7.

Details of previous analyses can be accessed on the last

tab of the SASMEDU tool. Under the heading of

Analysis Name, input control, metric analysis and style

checking are displayed graphically and detailed

information can be read by selecting the name of the

project whose analysis results are wanted to be displayed.

The report interface is shown in Fig.8.

6 SASMEDU: Security Assessment Method of Software in Engineering Education

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

Fig.6. Metric Analysis Results

Fig.7. Style Checking Analysis Results

 SASMEDU: Security Assessment Method of Software in Engineering Education 7

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

Fig.8. Report Interface of SASMEDU

V. SECURITY TRAINING WITH SASMEDU

The use of mobile and web applications are increasing

rapidly with the developments in the internet world. Fig.9.

shows the increasing number of internet users in the

world over the years.

Fig.9. Number of internet users in the world by years [15]

The exponential increase of interest in internet over the

last 15 years has led to the explosion of demand for web

and mobile software and has caused web applications to

be produced at random. Software that are developed in a

fast and uncontrolled way are driven to the market

without safety inspections. In programming courses,

security of developed software remains on the second

plan. It has been identified by examining curricula of

different universities that information security courses are

offered as elective courses in the final year of

undergraduate and graduate schools or never offered at

all [16,17]. On the contrary, the knowledge of secure

code development and software security in the beginning

of the programming education will help developers to

develop projects which do not have vulnerable codes.

Rapid spread of software development all over the world

has descended from the university to junior high school

and even elementary school in recent years [18]. With

this study, a tool named SASMEDU has been developed

for students and professional developers to learn security

principles and to develop software faster that will not

create security vulnerabilities. The application diagram of

the developed software is given in Fig.10.

Fig.10. The Application Diagram of SASMEDU

The SASMEDU tool was developed to allow students

who take programming courses both to learn application

security and test developed projects instantaneously. In

the learning model, the teacher ensures that the

SASMEDU tool is installed on all the computers in the

lab after talking about the general concepts of secure code

development in the first place. Students can access the

tool with their own account information. The students

.0

1000000000.0

2000000000.0

3000000000.0

4000000000.0

2
0
0
1

2
0
0
3

2
0
0
5

2
0
0
7

2
0
0
9

2
0
1
1

2
0
1
3

2
0
1
5

2
0
1
6

Internet Users in the World

8 SASMEDU: Security Assessment Method of Software in Engineering Education

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

prepare source codes of their developed project, upload

them into the system and then continue operations by

selecting the analysis type. The projects which are

developed in ASP.NET, PHP and Java languages, can be

uploaded to the analysis tool. While a different feature is

not selected for metric analysis and style checking if

desired only one type of vulnerability can be analyzed for

input control. At the last stage, the students can analyze

all the files in the project as well as the selected file, if

desired. After clicking on the Start Analysis button, the

analysis report can be examined by the students.

According to the analysis report, the students upload the

code lines to the system again by improving them and

continue the analysis. If there is no problem in the

analysis results, the report is automatically sent to the

teacher's system. The system which is established

between teacher and student with SASMEDU tool, can

also be established between project managers and

employees in software companies. Thus, a healthier

progress of a developed project and performance of

programmers can be measured.

Although software security testing and secure code

development approach lead to serious time losses in the

development of projects, nowadays with the increase of

cyber attacks, they are one of the most important areas. In

this context, while students are learning secure code

development approach with the developed tool, it also

helps students save time. E-learning tools are very

important in this scope. E-learning has made education

universally available, more affordable and convenient,

thus, the unprecedented increase in the online colleges,

universities and training centres [20]. In addition to the

finished project, the developing code snippet, function,

class, or design codes can be uploaded to the system for

instant reporting and the required state of the codes can

be retrieved as output.

VI. EVALUATION OF STUDENT PROJECTS

Only explaining the coding logic in programming

lessons, not paying attention to secure coding, and rapid

project development under the pressure of the market are

causing the cyber attacks to increase especially at the

application level. In order to verify this finding, open-

source student projects that can be downloaded from the

www.freestudentprojects.com website were evaluated

during the testing phase of the study. The evaluation was

made on the projects that undergraduate students used as

project homework or developed.

The results obtained from the input control were

classified into risky and semi-risky categories. For

example, if the query is in the code line and is getting the

parameter directly in SQLI, the query was evaluated in

the "risky" category. If a normal parameter or request

object was used in non-query lines, the query was

evaluated in the “semi-risky” category for SQLI attacks.

In the XSS vulnerability, if the external parameter was

reflected directly on the screen, it was evaluated in the

category of "risky," and if just the string value was used

in the place where it was reflected on the screen, it was

evaluated in the category of "semi-risky." In the other

vulnerability types, the code line that created the

vulnerability was categorized according to the situations

where it was used. Common types of vulnerabilities such

as SQLI, XSS, and Web Config are caused by lack of

secure code development. Code snippets that are

developed in a fast, uninformed and careless way can

lead to significant software vulnerabilities in a developing

project over the course of time. In Table 1, Table 2 and

Table 3, the number of risky code lines are given as a

result of the input control.

Table 1. The number of vulnerabilities in the input control in Asp.Net Projects.

Project Name Vulnerability Type Semi Risk Line Risky Line ToTal

Campus

Management
System

SQL Injection 16 8 24

Cross Site Scripting 17 76 93

Web Config 1 0 1

Restaurant
Management

System

SQL Injection 4 32 36

Cross Site Scripting 53 33 86

Redirect Checking 0 3 3

Web Config 1 0 1

furniture

SQL Injection 0 5 5

Cross Site Scripting 34 14 48

Web Config 1 0 1

EnoticeFinal

SQL Injection 0 49 49

Cross Site Scripting 4 118 122

Redirect Checking 0 7 7

 SASMEDU: Security Assessment Method of Software in Engineering Education 9

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

Table 2. The number of vulnerabilities in the input control in Php Projects.

Project Name Vulnerability Type Semi Risk Line Risky Line ToTal

elibrary

SQL Injection 314 193 507

Cross Site Scripting 63 347 410

File Validation 1 20 21

File Inclusion 227 80 307

Header Injection 0 17 17

Check BackTick 0 0 1

Lodge

Management
System

SQL Injection 300 228 528

Cross Site Scripting 71 477 548

File Validation 0 28 28

File Inclusion 151 18 169

Header Injection 0 45 45

Check BackTick 20 0 20

Web File

Manager

SQL Injection 115 141 256

Cross Site Scripting 6 147 153

File Validation 75 18 93

File Inclusion 9 1840 1849

Header Injection 0 7 7

Check BackTick 0 1 1

Table 3. The number of vulnerabilities in the input control in Java Projects.

Project Name Vulnerability Type Semi Risk Line Risky Line ToTal

Bookstore
SQL Injection 0 165 165

Cross Site Scripting 337 268 605

Restaurant

Management
System

SQL Injection 0 68 68

Cross Site Scripting 120 80 200

furniture
SQL Injection 1 0 1

Cross Site Scripting 8 3 11

After the input control analysis, the number of risky

lines obtained from the student projects were divided into

categories according to Java, ASP.NET and PHP

languages. While code lines that could create

vulnerabilities were detected, precautions were also

discovered. In the replace method, unwanted characters

can be removed from code lines and statements that do

not cause any problems are created in ASP.NET or Java

projects. However, “str_replace” and

“mysql_real_escape_string” functions can remove html

characters in PHP language. In addition, developers are

able to eradicate input control problem by preparing their

own sanitization functions.

Whitelist control was performed in the control function

of the developed software to prevent SQLI. Web

applications provides a platform for attackers to heck into

the database; therefore, their security becomes a major

issue [21]. In addition to the white list, the ready

functions, which are used depending on the platform of

the developed software, were controlled. Possible

vulnerability lines in the projects were determined by

checking and setting the "prepareestatement" function

and the parameters in Java language, "prepare ('query’)"

and "bind_param" parameters in PHP, and

"parameters.addWithValue" function in ASP.NET.

In addition to the whitelist control to prevent XSS

vulnerabilities, the "requestValidation" feature was

checked in the developed projects with ASP.NET. The

injection of malicious code was prevented with

“<%@Page validateRequest=’false’%>” in each page.

“<Pages validateRequest="false"/>” and “<httpRuntime

requestValidationMode="2.0" />” were controlled in the

web config file to close "requestvalidation" feature in the

whole project. Just checking these parameters is not

enough for ASP.NET 4.0 and later versions. Setting the

mode Encode in Literal control will also provide XSS

protection. AntiXSS library is also one of the precautions

to be taken. In the lines of code,

“<%=Microsoft.Security.Application.Encoder.HtmlEnco

de ("");%>” lines were checked. In the AntiXSS library,

texts which contained html code were removed from

harmful codes using htmlSanitizationLibrary. Microsoft.

Security.Application.Sanitizer.GetSafeHtml (‘html text’)

and GetSafeHtmlFragment(‘’) functions were examined

in the XSS control function in the project.

In order to control the projects deveoped in Java,

functions of ready libraries developed within the Owasp-

Esapi project were also used as well as the whitelist

control. “<%Esapi.encoder().EncodeForJavaScript

()%>”,”<%Esapi.validator()%>”,”<%Esapi.encoder().En

codeForHTML()%>”,”.getValidSafeHTML()” were the

functions used. The whitelist control is also the most

important rule for PHP. The filter methods which are

available in PHP were used for validation and sanitization.

10 SASMEDU: Security Assessment Method of Software in Engineering Education

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

It is used to check whether the data coming from the

server resources with get, post, cookie were passed

through the validation process with the "filter_input"

method. The addition of malicious codes was also

prevented by checking “Htmlspecialchars” function.

The http referer header was checked to control CSRF

(Cross-Site Request Forgery) attacks. It was checked to

see whether the “Owasp.CSRFGuard library” was

available for Java projects and viewstate feature was

enabled and whether the “<pages enableviewstate=’true’”,

“enableViewStateMac=’true’” and “antiForgeryToken”

were used in web.config file for ASP.NET.

The Whitelist check was done to prevent command

injection attacks. The Owasp-Esapi project was

controlled for Java. If Esapi was not used, the "match"

and "replace" methods of the language were checked. It

was checked as to whether the entries were passed

through the "escape" operation by using

"escapeshellarg()" and "escapeshellcmd" methods for

PHP language.

Object oriented types, McCabe, and classical metric

types were measured in the software metrics part of the

analysis tool. LOC (Line of Code) number of lines,

BLOC (Blank Line of Code) number of blank lines,

CLOC(Comment Line of Code) number of comment

lines, CC (Cyclometic Complexity), CP (Comment

Percentage ofCcodes), Mindex (Maintainability Index of

Codes), HV (Halstead Volume Number), WMC(Weight

Method of Code), weight of function, and NOM (Number

of Method) defines the function number in codes. The

total values of the project metrics that were measured on

a class or function basis were given. To calculate CP,

WMC, and Mindex metrics values, the average values of

the project metrics were calculated and added to the table.

The codes measured in the developed software can be

seen together with the details on the analysis results tab.

Table 4. Metric Analysis Numbers in Projects

Project Name Type Loc Bloc Sloc Cloc CC CP Mindex HV WMC NOM

Campus

Management

System

Asp.Net 2142 401 1096 212 55 12,07 53,47 31,43 55 77

EnoticeFinal Asp.Net 2887 276 1580 134 96 9,44 41,48 38,03 96 137

Restaurant

Management
System

Asp.Net 683 89 399 7 10 1,05 55,32 31,34 10 54

furniture Asp.Net 789 120 466 15 14 1,95 51,86 32,74 14 44

elibrary Php 8589 18 8561 10 73 0,07

0 0 0

Lodge
Management

System

Php 8432 24 8005 403 89 3,98 0 0 0 0

Web File

Manager
Php 5066 5 5018 43 65 2,89 0 0 0 0

Bookstore Java 9575 1188 7939 448 1964 5,85

0 2

Events

Management
System

Java 3817 445 3202 170 840 5,53 0 0 0 2

GSM based

Wireless System
Java 1464 215 1223 26 75 1,76 0 0 17 24

Table 5. Style Checking Numbers in Projects.

Project Name Project Name Standard Semi Risky Risky

Campus Management System Asp.Net 385 0 48

EnoticeFinal Asp.Net 366 0 107

Restaurant Management System Asp.Net 262 0 36

furniture Asp.Net 212 0 25

elibrary Php 14302 229 2204

Lodge Management System Php 12708 327 2653

Web File Manager Php 8220 197 1326

Bookstore Java 246 0 66

Events Management System Java 90 0 27

GSM based Wireless System Java 32 0 20

Style checking is a stage that should be applied during

static code analysis of projects. Implementing coding

standards at every stage of software is an important part

of the static analysis for development and sustainability

of projects. The last part of the analysis tool included

style checking. By using acceptable coding standards

according to different languages, the lines of code were

divided into “risky,” “semi-risky,” and “standard”

categories.

VII. CONCLUSION

Ensuring security in web based applications is one of

 SASMEDU: Security Assessment Method of Software in Engineering Education 11

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

the key issues nowadays. Due to tremendous increase in

online transactions, there has been an equal rise in the

number [22]. The rapid increase in the number of

developers, in those learning programming at an early age,

and in the desire to earn money by working freelance

have caused the widespread use of web and mobile

applications and an increase of codes which contain

vulnerabilities. Many of the vulnerabilities arise from

developers' lack of awareness in code development.

In this study, security vulnerabilities were detected in

web applications. The SASMEDU software tool was

developed for security analysis. For testing the developed

software tool, open source web projects were used which

were downloaded from the www.freestudentprojects.com

website. Four ASP.NET and three Java and PHP projects

were tested in input control, metric analysis, and style

checking stages. When the input analysis results in Table

1, Table 2 and Table 3 were examined, it was seen that

XSS vulnerabilities were more common in three

programming languages than other vulnerabilities. XSS

should be given more consideration in web application.

Although SQLI attacks have recently been recoverable by

many frameworks, it has also been seen that they are still

at the top of the vulnerability grading lists in the student

projects because of simple coding errors. High ratios of

XSS and SQLI vulnerabilities in the annual security

reports confirmed the validity of the tests [23]. In our

study, it was determined that the vulnerability types

resembled each other but there were also different

vulnerability types for specific languages. While XSS and

SQLI vulnerabilities were more common in ASP.NET

and Java projects, various vulnerability types such as

“Check BackTick” and “File Inclusion” were also

reported in PHP. According to the results of the metric

analysis, it was found that the maintenance index in the

projects was over the threshold value of 20, and it made

project maintenance difficult. It was also found that the

number of comment lines in projects could not maintain

the recommended ratio of 1/6. As a result of style

checking, the number of code lines that were out of the

standards differed according to the sizes of the projects;

however, the parameters and variables that did not

conform to the standards in PHP and Java languages were

found to be higher in number than in the ASP.NET

language. The evaluations revealed that the rate of

vulnerability in student projects is higher than

professionally developed projects. This reveals that

security education should be given to student developers

from the earliest stages of software lessons.

The developed analysis tool was designed to be used

by engineering students as a training tool, in security

courses by trainees, and by programmers for testing.

Thanks to this study, software companies can develop

software development standards and reduce project costs

by testing the software which they develop. To further

this study, we plan to add artificial intelligence

techniques and new vulnerability types to the system for

faster and more accurate analysis. It is also thought that

vulnerabilities can be avoided by similar methods in

mobile software.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain

integrals of Lipschitz-Hankel type involving products of

Bessel functions,” Phil. Trans. Roy. Soc. London, vol.

A247, pp. 529–551, April 1955.

[2] Ç. Çebi, Bilgi Güvenliği, http://www.cagataycebi.com

/security/bilgi_guvenligi.pdf, Accessed June 2017.

[3] F. Karayumak, Yazılım Güvenliği Programı.

http://www.bilgiguvenligi.gov.tr/yazilim-

guvenligi/yazilim-guvenligi-programi.html, Accessed

February 2013.

[4] C.C. Michael, Risk-Based and Functional Security

Testing.https://buildsecurityin.us-cert.gov/articles/best-

practices/security-testing/risk-base-and-functional-

security-testing, Accessed September 2016.

[5] Ulakbim, Web Güvenliği Çalışma Grubu.

http://csirt.ulakbim.gov.tr/gruplar/zayiflik.uhtml,

Accessed July 2017.

[6] J.G. Myers, The Art of Software Testing, John Wiley &

Sons, Inc., 2004.

[7] B. Livshits, Improving Software Security with Precise

Static and Runtime Analysis, Ph.D. Dissertation. Stanford

University, Stanford, CA, USA. 2006.

[8] N. Jovanovic, C. Kruegel, E. Kirda, Pixy: a static analysis

tool for detecting web application vulnerabilities, Security

and Privacy, IEEE Symposium, 2006, pp 263-269.

[9] Y. Huming, N. Jones, G. Bullock, Y. Y. Yuan, Teaching

Secure Software Engineering: Writing Secure Code.

Software Engineering Conference in Russia (CEE-SECR),

7th Central and Eastern European, 2011, pp 1-5.

[10] M. Şahinoğlu, M. Sari, A. Kurt, S. Kurnaz, M. Özbek,

Problems and Solution Suggestions in Software Testing,

7th National Software Engineering Symposium, 2013.

[11] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P.

Hudepohl, M. A. Vouk, On the Value of Static Analysis

for Fault Detection in Software, IEEE Transactions on

Software Engineering, 32(4), 2006, 240-253.

[12] B. Chess, J. West, Secure Programming with Static

Analysis, Pearson Education, 2007.

[13] V. Satyanarayana, M. V. B. C. Sekhar, Static Analysıs

Tool for Detecting Web Application Vulnerabilities.

International Journal of Modern Engineering Research

(IJMER) 1 2011, 127-133.

[14] J. Dahse, RIPS-A static source code analyser for

vulnerabilities in PHP scripts. Horst Görtz Institute Ruhr-

University, 2010, 19p.

[15] R. Dewhurst, Implementing Basic Static Code Analysis

into Integrated Development Environments (IDEs) to

Reduce Software Vulnerabilities. University of

Northumbria, Project Report 2012, pp 86.

[16] Internet Users in the World,

http://www.internetlivestats.com, Accessed January 2016.

[17] Welcome to the Undergraduate Computer Engineering

Program, http://www.engineering.pitt.edu/

Departments/ElectricalComputer/_Content/Undergraduat

e/Computer-Engineering/COE-Undergraduate. Accessed

May 2018.

[18] Graduate Curriculum, https://ceng.metu.edu.tr/ graduate-

curriculum. Accessed February 2017.

[19] J. Cowart, Elementary school students develop coding

skills. http://cranstononline.com/ stories/elementary-

school-students-develop-coding-skills. Accessed August

2017.

[20] H. Alhejaili, Usefulness of Teaching Security Awareness

for Middle School Students. Rochester Institute of

Technology. Master of Sciences. New York, 2013.

12 SASMEDU: Security Assessment Method of Software in Engineering Education

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 1-12

[21] Olugbenga W. Adejo, I. Ewuzie, A. Usoro, T. Connolly,

"E-Learning to m-Learning: Framework for Data

Protection and Security in Cloud Infrastructure",

International Journal of Information Technology and

Computer Science (IJITCS), Vol.10, No.4, pp.1-9, 2018.

DOI: 10.5815/ijitcs.2018.04.01.

[22] Sobia Usman, Humera Niaz, "Building Secure Web-

Applications Using Threat Model", International Journal

of Information Technology and Computer Science

(IJITCS), Vol.10, No.3, pp.52-62, 2018. DOI:

10.5815/ijitcs.2018.03.

[23] Acunetix, Web Application Vulnerability Report 2016.

http://www.dotforce.it/wpcontent/uploads/2016/09/acuneti

x-web-application-vulnerability-report-2016.pdf.

Available June 2017.

Authors’ Profiles

Güncel Sarıman: He was born in Muğla in

1986. He was graduated from Computer

Systems Teaching Department in Faculty of

Technical Education in Süleyman Demirel

University. He completed his master’s

degree in The Department of Computer

Engineering in Süleyman Demirel University.

He has started his PhD and has been writing his thesis in The

Department of Electronic and Communication Engineering in

Süleyman Demirel University. He worked as a software

engineer in the Computing Division in Suleyman Demirel

University between 2010 and 2012. He has worked as a

software engineer in the Computing Division in Muğla Sıtkı

Koçman University since 2012. He has been working as an

Assistant Professor Doctor in school of computer technologies

in Muğla Sıtkı Koçman University. He has also worked on

Computer, Security, Machine Learning and Artificial

Intelligence.

Ecir Uğur Küçüksille: He was born in

Isparta in 1976. He was graduated from

Computer Systems Teaching Department in

Faculty of Technical Education in Gazi

University. He completed his master’s

degree in The Department of Machine

Learning in Institute of Science in Süleyman

Demirel University. He completed his Phd in The Department

of Business/Quantative Methods in Institute of Social Sciences

in Süleyman Demirel University. He has been working as a

Asscociate Professor in The Department of Computer

Engineering in Faculty of Engineering in Süleyman Demirel

University. He has also worked on Computer, Security, and

Artificial Intelligence.

How to cite this paper: Güncel SARIMAN, Ecir Uğur

KÜÇÜKSİLLE, "SASMEDU: Security Assessment Method of

Software in Engineering Education", International Journal of

Information Technology and Computer Science(IJITCS),

Vol.10, No.7, pp.1-12, 2018. DOI: 10.5815/ijitcs.2018.07.01

