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Abstract—In this paper, we present a study on the design 

optimization of the 6-RUS Stewart platform using a 

hybrid algorithm. The geometric and kinematic models 

are calculated. The optimization problem is formulated 

after determining the design parameters and defining a set 

of cost functions related to the size of the workspace and 

to the indices of the kinematic and static performance, 

which are the global conditioning index (GCI) and the 

global stiffness index (GSI). 

We started by studying the relation between the design 

parameters and the proposed cost functions, and then we 

invested the genetic algorithm to optimize each cost 

function separately. Moreover, we adopted a weighted 

cost function method to solve the Multi-Objective 

optimization problem.  

The convergence performance of the genetic algorithm 

(GA) and the particle swarm optimization (PSO) were 

compared, where the PSO algorithm showed better 

performance. Based on this, a hybrid PSO–PS method 

was proposed and the results are highly competitive as we 

obtained better general convergence performance. 

 

Index Terms—Stewart platform, RUS, optimization, 

performance indices, GA, PSO. 

 

I.  INTRODUCTION 

Parallel manipulators are increasingly used in various 

industrial applications for their high capacity of load 

carrying, good dynamic properties, and high precision in 

positioning. These manipulators consist of several serial 

chains supporting a single mobile platform or an end-

effector. Parallel manipulators can be classified based on 

degree of freedom, number of arms, order of joints in 

each chain and type of actuators. According to this, 

various 6-DOF parallel manipulators have been proposed. 

One of the most important 6-DOF parallel manipulators 

is 6-RUS manipulators that Revolute joint, Universal 

joint, and Spherical joint are used in each arm, 

respectively. 

The most important advantage of 6-RUS manipulators 

is the low weight of movable parts because of installing 

the motors on the fixed platform. Therefore, bigger and 

cheaper electrical motors can be used. Moreover, these 

manipulators can be balanced statically [23]. 

Although this type of manipulators has some 

disadvantages such as bending in connecting rods and 

complicated mechanical analysis. Also, because of the 

large number of chains and of the movement limitations 

of passive joints, such as spherical and universal joints, 

the workspace of the 6-RUS manipulators is restricted. In 

addition, the performance of parallel mechanisms is 

heavily dependent on their geometric parameters. 

For all these reasons, the determination of the 

geometric parameters, i.e., the optimum design, of 

parallel mechanisms is relatively more important and 

difficult, and it has been attracting more and more 

researchers. 

Optimizing the parallel manipulators has many 

difficulties. First, optimizing the parallel manipulators is 

a multi-objective and multi-criterion problem based on 

different performance specifications, and sometimes the 

considered specifications have diverse relationships. 

Another issue is that there are no direct relationships 

between the performance specifications and the structural 

parameters, and therefore, solving the optimization 

problems will have several responses. 

The optimal design problem of parallel manipulators 

consists of determining a set of design parameters to 

guarantee an optimal criterion. Generally, some 

performance criterions, such as control accuracy (isotropy 

or dexterity), speed, payload capability, and stiffness may 

be involved in this process. 

However, only limited studies have been proposed on 

the optimal design of the 6-RUS manipulators compared 

with the studies on the other parallel platforms with linear 

actuators (such as the 6-PUS platform). Stoughton and 

Arai presented a modification of the Stewart platform and 

optimized its design with respect to a weighted sum of 

dexterity and workspace volume [1]. Zhou proposed an 

optimal design method based on dynamic isotropy [2]. Su 

used the condition number of Jacobian matrix as an 

objective function to get accurate trajectory tracking [3]. 

Merlet proposed a general methodology for multi-criteria 

optimization of parallel manipulators based on interval 

analysis [4]. A. Taherifar proposed a solution for the 

kinematic optimization of Stewart platform for simulators 

using genetic algorithm which used a multi-objective cost 

function to maximize the workspace and to minimize the 

singularity condition within the workspace at the same 

time [5]. Gao et al. described the implementation of 

genetic algorithms and artificial neural networks as an 
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intelligent optimization tool for the dimensional synthesis 

of the spatial 6-DOF parallel manipulator. The multi-

objective optimization (MOO) problem consisted of two 

functions: system stiffness and dexterity, which are 

derived according to kinematic analysis of the parallel 

mechanism [6]. C. Bonilla and A. Alexander proposed a 

solution for the optimization of the orientation workspace 

of the Stewart 6-RUS platform using the PSO algorithm 

[7]. Mirshekari et al. presented a structure comparison 

and optimal design of 6-RUS parallel manipulator based 

on kinematic and dynamic performances, where the 6-

RUS manipulator structure is optimized using the 

modified multi objective Bees Algorithm [8]. 

Actually, the first step in the optimal design of the 

parallel platforms is determining the platform structure, 

i.e., its geometrical configuration. Three samples of the 

most well-known 6-RUS group manipulators are 

classified in [8], and these samples include Hunt type 

(Hunt, 1983), Hexa (Pierrot, 1990) and a manipulator 

named Zamanov type (Merlet, 2006) ( Fig. 1). 

 

 

Fig.1. 6-RUS parallel manipulators (a): Hunt type (b): Hexa (c): 

Zamanov type. 

In our research, we have adopted the study of the 

Zamanov type, for its relatively intermediate advantages, 

in order to improve its kinematic performance by 

achieving its optimal design. 

The main objective of this study is to introduce a 

hybrid method that combines particle swarm optimization 

(PSO) and Pattern search method (PS) in the context of 

solving multi-objective optimal design problem under 

some equalities and inequalities constraints. 

The rest of the paper is organized as follows. The 

proposed optimal design process is described in Section 

II. In Section III, our case study of 6-RUS manipulator is 

described and its geometric and kinematic models are 

recalled. Then, the corresponding multi-objective 

optimization problem is formalized in Sections (IV- V) 

by defining the set of cost-functions and determining the 

design parameters and the limitations of the platform. 

Section VI presents the results of the optimization 

problem; it discusses the results of GA, PSO and hybrid 

algorithm. Finally, Section VII summarizes our 

contributions as we propose some perspectives to this 

work. 

 

II.  OPTIMAL DESIGN PROCESS 

The optimal design of the parallel platforms requires a 

set of mathematical models for the geometric and 

dynamic characterization. Initially, we adopted a process 

that combines the modeling stage with the optimal design 

stage (Fig. 2). 

The geometrical information resulting from the 

modeling stage forms an input to the design stage, while 

the information resulting from the design stage 

constitutes a feedback to the modeling stage. This loop is 

applied until the ideal design is achieved. 

First, we have to define the problem to be solved. 

Depending on the objectives of the study, the applied 

steps may vary; it could be finding the geometric, kinetic, 

or dynamic models of the robot using different techniques. 

These models are important to apply high performance 

control algorithms, to improve stiffness, to increase 

payload or to improve force/torque capacity.. etc. The 

objective could be also finding the optimal design that 

aims at enhancing the performance indexes by adjusting 

the structural parameters, such as the dimensions of the 

platform. In the optimal design, several performance 

indices are involved such as stiffness, volume of 

workspace, transmission ratio and accuracy. 

 

III.  THEORETICAL STUDY 

In this paragraph, we present the mathematical formula 

for the geometric and kinematic models of the studied 

platform. 

A.  Geometric modeling 

The modeling stage starts by the geometric modeling 

which represents the relations between the location vector 

of the end-effector X and the joint coordinate vector q. 

Several methods and notations have been proposed to 

find the geometric model; the most widely used one is 

that of Denavit-Hartenberg [9]. However, this method is 

developed for simple serial-structured robot. Khalil and 

Klein have proposed a unified description of parallel and 

tree structured robots [10]. 

 

 

Fig.2. Work process (modeling stage and optimization design stage). 

The direct geometric model (DGM) of the Stewart 

platform is defined as follows: 
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The inverse geometric model (IGM) is also known as: 

 
1( )q f X                               (2) 

 

In general, finding the inverse geometric model in the 

case of parallel robots is easier than finding a direct 

geometric model. The IGM is based on relatively simple 

geometric relationships compared to the complex 

methods needed to find the DGM, which is generally 

based on numerical and iterative processes [11]. 

In our case, the inverse geometric model is determined 

in a geometric method according to the following 

relationships [12] (Fig. 3): 
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Fig.3. Modeling the 6-RUS mechanism. 

B.  Kinematic modeling 

Kinematic model aims to find the relation between the 

end-effector velocity and the joint velocities. Kinematic 

model could be written using the Jacobin matrix J which 

appears in calcula                                     

                                                   

                                                       

variations                                           

     u     ,     k y               “b   k”              

man  u           “      ”               taking into 

consideration the mechanical constraints. 

 

( ).X J q q                                (4) 

The Jacobian matrix has multiple applications in 

robotics as it facilitates the calculation of singularities 

and of the dimension of accessible operational space of 

the robot [13]. In static force model, we use the Jacobian 

matrix in order to calculate the forces and torques of the 

actuators in terms of the forces and moments exerted on 

the end-effector. The static model is essential in structural 

analysis as well as in formulating the optimal design 

problem. 

For the 6-RUS platform, the kinematic model is 

derived from the derivation of the inverse geometric 

model [12] according to the following relationships: 
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IV.  FORMULATION OF THE OPTIMAL DESIGN ISSUE 

The optimal design aims to reach the optimal 

geometric configuration according to objective functions 

and geometric constraints. In general, optimal design 

problem is described as follows: 

What are the best values of the design parameters 

which ensure that the set of performance criteria is met 

under the set of imposed geometric constraints? 

Mathematically, this issue is formulated as in the 

following relationships: 
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In this formulation, p is the vector of the design 

parameters and F is the vector of the considered 

performance criteria within the optimal design issue, 

while g and h are vectorial functions involved 

respectively in the inequality and equality constraints, 
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which are imposed on the parallel platform. 

Problems without any constraint g and h are called 

unconstrained while the others are constrained. 

The following sections describe the design parameters 

of the Stewart platform 6-RUS and the constraints of the 

optimization problem. 

A.  Design parameters: 

To formulate an optimization problem that can 

optimize the kinematic performance indices, appropriate 

design parameters must be selected. The design 

parameters must influence the objective function directly 

or indirectly. Design parameters can be regarded as free 

variables, as they can be assigned any value within a 

given range or subset by the optimization algorithm. This 

range or subset is mathematically formulated as 

constraints. The design parameters should be independent 

of each other as far as possible. In general, the number of 

design parameters determines the degree of freedom for 

the optimization problem. Optimization complexity is 

increased according to the degree of freedom of the 

problem. Thus, the number of design parameters should 

be kept as low as possible. 

The Stewart-Gough platform geometry was defined 

with two coplanar semi regular hexagons; the first 

corresponds to the base hexagon and the second to the 

movable platform (Fig. 4). 

In our case we need at least six basic geometric 

parameters, which include the lengths of the arms of the 

platform and the dimensions of its bases. 

Therefore, the vector of the design parameters can be 

defined as follows: 

 

1 2 1 2 1 2[ , , , , , ]b b p pP d d d d                  (8) 

 

 
Fig.4. Dimensions of the lower and upper bases. 

B.  The constraints: 

While designing a practical manipulator, the physical 

constraints of the kinematic chains, such as limits of the 

rotary actuators, arm interferences and limitations on the 

passive joints should be considered. 

As for the constraints on the rotary actuators in the 

platform, each of them has a specific range of work. In 

our case, we considered a range of work as follows: 
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For the constraints of spherical and universal joints, the 

limits on the cone angle of a spherical joint should be 

considered because of the difficulties in manufacturing of 

spherical joints. In our case, each joint within the 

platform has a specific range of work, as follows: 
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Where 
1i  expresses the angle of the universal joint that 

is formed between the vertical vector on the upper base 

pn  and the unit vector according to the ineffective arm 

2 i
n , while 

2i  denotes the angle of the spherical joint.  

The arm interference is also considered in the 

evaluation of the minimum distance between two arms in 

order to avoid collision. 

In addition, the dimensionality of the design 

parameters is taken also into consideration. Each 

parameter of the design parameter P takes its value within 

a specific range of work. Table 1 shows the limitations 

that we considered in our case. 

Table 1. Upper and lower limits of the design parameters. 

Parameter 2
 

1
 2pd 

1pd 
2bd 

1bd 

Lower limits 

(cm) 
10 5 5 10 20 20 

Upper limits 

(cm) 
35 20 15 30 30 35 

 

V.  COST FUNCTIONS 

In this paragraph, we present the mathematical formula 

for the set of famous cost functions, special for parallel 

platforms. 

A.  Workspace 

The workspace is defined as the set of space 

operational points that the terminal body of robot can 

access. The workspace of a parallel manipulator is one of 

the most important criterion which reflects its capacity. 

So it is necessary to analyze the shape and the size of the 

workspace for enhanced applications of parallel 

manipulators. 

In general, the workspace is defined for the parallel 

platforms using the geometric methods or the 

discretization methods. 

Within the recursive optimization algorithm, the 

workspace computation process must be run numerous 

times. Hence, importance of the efficiency of the 

algorithm and the reduction of total execution time of the 

workspace computation algorithm are highlighted. 

We chose to rely on the numerical search method due 

to its efficiency and speed of implementation. This 

method is based on Cartesian coordinates to find the 

boundaries of the workspace and its size (Vworkspace). Fig. 

5 presents the result of implementing of the discretization 

algorithm in MatLab environment in order to determine 

the translation workspace of the studied platform with 

Constant Orientation [ 0 , 0 , 0 ]     . 

This study was carried out for a set of the geometric 

parameters shown in table 2 which correspond to the 
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values of a real experimental platform. 

Table 2. Values of the design parameters adopted in the tests. 

parameter 2
 

1
 

2pd 
1pd 

2bd 
1bd 

Value 

(cm)  
5252 11 6 03 53 56 

B.  The Kinetic-Static performance indices: 

In general, the Kinetic-Static performance indices are 

considered as the most important criteria during the 

optimal design process of robotic platforms, and in 

particular, for the parallel platform [14]. 

These indices include the Kinematic and Static 

Dexterity. The Kinematic Dexterity is defined as the 

ability of the terminal body of the platform to move 

accurately and with high repetition within the workspace, 

whereas the Static Dexterity is defined as the terminal 

body's ability to apply force and power in all directions 

within the platform's workspace. Dexterity is an 

important issue for design, trajectory planning, and 

control of manipulators. These coefficients are based 

mainly on the Jacobian matrix J, which is used in the 

linear conversion of both velocity and force within the 

mechanism. Thus, this matrix contains useful information 

regarding the transformation between the associative and 

operational spaces. 

 

 

Fig.5. Translation workspace with Constant Orientation. 

The following section describes the most important 

kinematic performance indices of the Stewart platform 6-

RUS which are considered in this research. The two 

Global performance indices GCI, GSI are widely adopted 

for the evaluation of global behavior of manipulators. 

a.  Global Conditioning Index (GCI): 

This parameter is very important during the process of 

the optimal design of parallel platforms, where the value 

of Kinematic Dexterity is measured through it. The 

definition of this parameter depends on the conditional 

number of the jacobian matrix, which is calculated by 

taking the ratio between the maximum and minimum 

value of the singular values of the matrix J: 
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Kinematic dexterity is determined at a particular pose 

of the end-effecter within the workspace, and calculated 

by taking the inverted value of the conditional number in 

that position [15]. Thus, the value of local kinematic 

dexterity varies from zero (Which corresponds to a 

singular position) to one (Which corresponds to an ideal 

position). 

Fig. 6 shows changes in the value of the local 

kinematic dexterity (LCI) of the studied platform (6-RUS) 

within the XY plane (where Z=24.5 cm), using the values 

of the design parameters shown in table 2. 

 

 
Fig.6. Local kinematic dexterity changes within XY plane. 

We notice that this parameter always reaches its 

maximum value in the center of XY plane, where this 

value starts decreasing as we move away from this center 

in all directions. 

The Kinematic dexterity is determined over the whole 

workspace of the parallel platform by GCI coefficient, 

which is defined according to the following relationship 

[16]: 
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Where W denotes the workspace of the platform. 

The GCI coefficient may be defined in the discrete 

description as follows: 
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Where n denotes the number of the active points 

forming the workspace of the platform. 

During the optimal design process of the platform, we 

aim to reach the highest possible value of the GCI 

coefficient to obtain an ideal isotropic mechanism on its 

whole workspace. 

b.  Global stiffness index (GSI): 

The manipulator stiffness affects the dynamics and the 

position accuracy, for which stiffness is considered also 

as an important criterion during the optimal design 

process of the parallel platforms. Practically, the terminal 
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body of the parallel platform is subjected to distortions 

due to the influence of external forces. These distortions 

depend on the stiffness of the mechanism and on the 

value of external forces. Theoretically, in spatial 

coordinate system, the stiffness matrix K relates the 

external forces vector   at the moving platform to the 

output displacement vector D according to the following 

platform stiffness model: 

 

.K D                                 (14) 

 

Considering a unit vector of applied external forces, 

the maximum and minimum values of the terminal body 

deformities vector are determined using the following 

relationships: 

 

max minmax( ) & min( )Di DiD D       (15) 

 

Where 
Di  denote the Eigen values of the matrix 

1 1( )TK K  . 

The maximum and minimum values of deformities 

constitute the Deformation ellipsoid, whose main axis is 

based on the directions of the Eigen vectors of the matrix 
1 1( )TK K  . Depending on these maximum and minimum 

values of deformities, GSI parameter can be defined on 

the whole workspace of the mechanism using the 

following relation: 
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The aim is to minimize the values of deformities of the 

platform by increasing the value of GSI coefficient [17]. 

 

VI.  PRACTICAL RESULTS 

After formulating the optimization problem, the next 

step is to find an optimal design solution using an 

appropriate algorithm. 

In this paragraph, we present at first the results of the 

study on the effect of the geometric design parameters on 

the considered cost functions, then we present here the 

practical results of the single-objective and the multi-

objective optimization problem. 

A.  The Effect of design parameters on Cost functions: 

We present here the results of the study on the effect of 

the geometric design parameters on two of the considered 

cost functions, which are the size of the workspace and 

GCI coefficient.  We study the effect of the lengths of the 

arms ( 1 2, ), and the effect of the difference between 

the dimensions of the platform bases. We chose to fix the 

dimensions of the lower base and adjust the dimensions 

of the upper base ( 1 2,p pd d ). Fig. 7 shows the effect of 

previous parameters on the volume of the translation 

workspace of the Stewart platform 6-RUS. We notice the 

direct effect of the arms (
1 2, ) on the size of the 

workspace as the size increases by increasing their value, 

with a greater influence of the parameter 
1

 (fig.7-(b)). 

The effect of the dimensions of the upper base is different, 

the size of the workspace increases as the value of the 

parameter 
2pd  increases. However, it reaches its 

maximum near the central value of 
1pd  (near 20cm) 

(fig.7-(a)). 

 

 
(a) 

 
(b) 

Fig.7. The effect of design parameters on the volume of the workspace. 

We also studied the effect of the design parameters on 

the value of GCI (Fig. 8). The inverse effect of the value 

of the parameter 
2pd  on the value of the GCI is obvious. 

In contrast, the parameter 1pd  has a significant effect 

within a specific range [13-16 cm], where we obtain the 

maximum value of the studied coefficient (GCI) (fig.8-

(a)). For the effect of the arms of the platform, we notice 

the lack of significant impact of the parameter 1  on GCI 

coefficient, while the value of the parameter 1  as a great 

effect within the range [18-23 cm] as the value of GCI is 

reaches its maximums and begins to decrease as it moves 

away from this area (fig.8-(b)). 

B.  Single-objective optimization 

As a result, the optimal design problem of the Stewart 
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platform 6-RUS is described as follows: 
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(b) 

Fig.8. The effect of design parameters on the GCI coefficient. 

An optimization method should be selected to obtain 

the optimum values of the design parameters. However, it 

is hard to solve this problem analytically. Furthermore, 

derivative–based methods are not appropriate because of 

the non-smooth behavior of these objective functions. In 

addition, they are unable to escape local minima. 

Therefore, intelligent and direct search methods are 

suitable such as Genetic Algorithm (GA), Particle Swarm 

optimization (PSO) or Pattern Search (PS) methods or 

their combination. 

In this work, we invested the most famous algorithm 

(the GA) to optimize each cost function separately, and 

we aim at maximizing the three proposed objective 

functions in the optimization process. GAs are heuristic 

search algorithms based on the mechanism of natural 

selection and natural genetics initially proposed by 

Holland [18]. GAs are high performance and robust 

optimization methods used to solve engineering problems.  

The problem was modeled in MatLab environment, 

with the formulation of a set of cost functions. For each 

cost function separately, the genetic algorithm was 

applied according to the parameters described in table 3 

and table 4 presents the obtained results.  

Table 3. Genetic algorithm parameters. 

Parameter Setting 

Population size 022 

Encoding type Real 

Selection strategy Stochastic 

Crossover type Scattered 

Mutation type Adaptive 

crossing probability 2.0 

probability of mutation 2.0 

 

 
Fig.9. Results of convergence of the genetic algorithm for the  

size of workspace. 

The Vworkspace is maximized in the first cost function. 

The evolution of workspace size as a function of 

generations is shown in Fig. 9. The maximum workspace 

volume is 25504 cm3, where the genetic algorithm 

converged to this optimal solution within 25 generations, 

and the corresponding design vector are shown in table 4. 

The obtained values of the design parameters meet the 

results of our study on the effect of design parameters on 

cost functions (in previous paragraph). As for the GCI 

coefficient, the obtained maximum value was 

(GCI=0.0772), and the algorithm converged to the 

optimal solution in 30 generations. The evolution of GSI 
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coefficient as a function of generations is shown in Fig. 

10. The best value was (GSI=0.008) reached in 27 

generations and the corresponding design vector are 

shown in table 4. 

We notice in table 4 the differences between the 

resulting optimal solutions for each cost function. The 

optimal solution that achieves a greater size of workspace 

decreases the GCI to 31.8% of its maximum value, as 

well as the GSI to 8.1% of its maximum value. Therefore, 

there is a conflict in the resulting solutions which means 

that there is no optimal common solution for all these 

cost functions. 

C.  Multi-objective optimization 

The principle of multi-objective optimization is 

different from single-objective optimization. In the 

single-objective optimization case, the solution of the 

optimization aims to obtain the best solution over all 

other alternatives. In the case of multi-objective 

optimization, there is not necessary a best solution due to 

conflicts among all objective functions. Therefore, the 

result of the multi-objective optimization is a set of 

solutions which are called non-determinant or Pareto-

optimal solutions when an improvement in one objective 

requires a degradation of another. 

 

 

Fig.10. Results of convergence of the genetic algorithm for GSI 
coefficient. 

Table 4. Results of single-objective optimization. 

Single-

Objective 
2pd

 
(cm)

 1pd
 

(cm)
 

2bd
 

(cm)
 1bd

 
(cm)

 2 
(cm)

 
1 

(cm)
 

Vworkspace 14.97 26.77 24.05 20.09 34.99 19.79 
GCI 5.02 12.65 20.74 31.79 25.63 14.99 
GSI 5.10 10.31 20.00 29.16 12.76 17.21 

 

In order to realize a multi-objective optimization, we 

adopted the weighted sum method which, according to 

Arora [19], is the most commonly used method. 

Mathematically the multi-objective cost function is 

formulated using the weighted sum method by: 

 

1

. : 1
j

m

j j
j

C I 


 
 

 
                (18) 

 

The weights Wj can be changeable according to the 

user demands. 

The optimal design parameters are determined by 

finding the global minimum of the weighted sum function 

C, using numerical algorithms. Optimization with regard 

to multiple objectives often requires normalization of the 

individual objective functions to obtain similar order of 

magnitudes. 

For the problem discussed in this paper, we define the 

following weighted sum cost function: 

 

1 2 3

,max max max

( ) ( ) ( )
workspace

workspace

V GCI GSI

V GCI GSI
C        (19) 
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j

j
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

 
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 
  

 

The variation ranges of the proposed cost functions are 

quite different. So we used its maximum values to 

normalize the functions between zero and one. These 

three maximum values (Vworkspace,max , GCImax , GSImax ) 

can be calculated by performing  single-objective 

optimization for each function as we did in the previous 

section. Choosing the values of the weights Wj, in order 

to characterize a particular performance of the platform, 

is quiet tricky as the final result depends strongly on that 

choice. 

Optimization of manipulator design is a nonlinear 

problem with nonlinear constraints, and often with one or 

more integer variables. The optimization can be achieved 

in various ways, from basic grid search, where the 

objective function is simply calculated for a set of 

variable values, to gradient based search, where a 

gradient is found for each step, providing a search 

direction for the next step, and to more or less advanced 

stochastic methods such as Monte Carlo simulation, GA 

and PSO. 

In this work, we adopted two algorithms: the genetic 

algorithm GA and the PSO algorithm, and the Multi-

objective cost function problem was solved for several 

values of weights Wj, using both algorithms in order  to 

compare between their performances. 

PSO has become increasingly popular in the field of 

robotic manipulators design as it emulates the behavior of 

a flock of birds or a swarm of bees [20] where each 

individual in the population is searching through the 

space for the best possible solution. 

In MatLab (R2016a) environment, using a computer 
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with Intel (R) Core (TM) i5-3450 CPU @ 3.10GHz 

(8GB), the problem is practically formulated using the 

weighted sum cost function C, for 4 different cases of 

weights Wj as follows: 

 

1 2 3

1 2 3

2 1 3

3 1 2

1. 1/ 3

2. 1/ 2, 1/ 4

3. 1/ 2, 1/ 4

4. 1/ 2, 1/ 4

  

  

  

  

  

  

  

  

             (20) 

 

A comparison of the two algorithms (GA, PSO) 

requires the selection of identical parameters. Table 5 

shows the used PSO algorithm parameters, which are 

similar to the genetic algorithm parameters shown in 

table 3 . 

In (table 6 & table 7), we present the optimal values of 

the design parameters P, which were reached for each of 

the four studied cases of the weights Wj. In addition, the 

minimum value of the weighted cost function was 

calculated too. We also show the number of iterations 

necessary to converge towards the optimal solution as 

well as the time needed to implement them. 

We note that the results have been reached using 

Parallel Computing in MatLab, in order to exploit the full 

capabilities of the computer in the practical 

implementation of the algorithm. 

Table 5. PSO algorithm parameters. 

Parameter Setting 

Swarm Size 022 

Encoding type Real 

Selection strategy Stochastic 

Crossover type Scattered 

Min Neighbours Fraction 0.25 

Social Adjustment 

Weight(C1,C2) 
1.49 

Inertia (W) 1.1 

 

Table 6. Results of multi-objective problem using the GA. 

Multi-

Objective 
Time 

(s) 
Gen 

Cost 

Function 
2pd

 

(cm)

 
1pd

 

(cm)

 
2bd

 

(cm)

 
1bd

 

(cm)

 2 

(cm) 

1 

(cm)

 

First case 1:49:40 43 -0.6067 5.03 12.43 20.03 30.08 24.01 19.99 

Second 

case 
0:80:35 26 -0.5932 14.90 28.19 25.61 20.04 34.93 19.71 

Third case 1:47:52 40 -0.7216 5.01 10.21 20.11 29.18 27.13 16.29 

Fourth 

case 
1:34:48 34 -0.7249 5 10 20.28 32.57 30.90 16.74 

Table 7. Results of multi-objective problem using the PSO. 

Multi-

Objective 
Time 

(s) 
Gen 

Cost 

Function 
2pd

 

(cm)

 
1pd

 

(cm)

 
2bd

 

(cm)

 
1bd

 

(cm)

 2
 

(cm) 

1
 

(cm)

 

First case 1:43:32 43 -0.6346 5 10.05 20 35 30.94 20 

Second 

case 
0:76:23 26 -0.6087 15 22.34 20 20 35 20 

Third case 1:42:36 40 -0.7479 5 10 20.01 35 30.58 18.58 

Fourth 

case 
1:27:04 34 -0.7380 5 10 20 35 30.59 18.57 

 

Fig. 11 to Fig. 14 show a comparison between the 

performances of the two algorithms (GA & PSO) in their 

convergence towards the optimal solution. The evolution 

of the weighted cost function C (for the first studied case 

of weights Wj) as a function of generations is shown in 

figure 11. 

Through the set of previous results and the graphs of 

both algorithms (for the 4 studied cases) we can state the 

following: 

 

 For the same number of generations for both 

algorithms, the PSO algorithm always needs less 

execution time than the GA algorithm. 

 The PSO algorithm has better performance as it 

has a faster convergence to optimal solution than 

genetic algorithm. 

 The PSO algorithm reaches a better solution (a 

more optimal) than the one reached by the genetic 

algorithm. 

 

Thus, the performance of the PSO algorithm 

outperforms the performance of the GA algorithm in 

solving the multi-objective optimization problem within 

this research, with regards to time consumption and 

accuracy. In some respects, PSO is similar to continuous 

GA but PSO has some advantages over GA [21]. PSO 

does not require extra operations such as crossover, and it 

has fewer parameters to adjust. In addition, convergence 

of PSO to optimum region for cost functions, with many 

variables, is better and faster than GA and constraining 

the variables in PSO is easier. For these reasons, we 

chose PSO algorithm to solve our optimization problem.
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Fig.11. Comparison of the (GA & PSO) in the first case. 

 

Fig.12. Comparison of the (GA & PSO) in the second case. 

 
Fig.13. Comparison of the (GA & PSO) in the third case. 

A common problem to all optimization techniques, 

including stochastic optimization algorithms, is that they 

do not generally guarantee convergence to the global 

optimum[22], and the random behavior of this algorithms 

leads to different solutions for various runs. So, the 

problem now is to make sure that the PSO algorithm 

solution is the best global minimum solution. This 

problem can be solved by using the hybrid optimization 

algorithm. 

 

 
Fig.14. Comparison of the (GA & PSO) in the fourth case. 

Thus, the performance of the PSO algorithm 

outperforms the performance of the GA algorithm in 

solving the multi-objective optimization problem within 

this research, with regards to time consumption and 

accuracy. In some respects, PSO is similar to continuous 

GA but PSO has some advantages over GA [21]. PSO 

does not require extra operations such as crossover, and it 

has fewer parameters to adjust. In addition, convergence 

of PSO to optimum region for cost functions, with many 

variables, is better and faster than GA and constraining 

the variables in PSO is easier. For these reasons, we 

chose PSO algorithm to solve our optimization problem. 

A common problem to all optimization techniques, 

including stochastic optimization algorithms, is that they 

do not generally guarantee convergence to the global 

optimum[22], and the random behavior of this algorithms 

leads to different solutions for various runs. So, the 

problem now is to make sure that the PSO algorithm 

solution is the best global minimum solution. This 

problem can be solved by using the hybrid optimization 

algorithm. 

As a result of the large complexity of the proposed cost 

functions, and due to the possibility of local minimum 

solutions, it is necessary to propose reliable strategies to 

ensure reaching the global optimal solution, taking into 

account the efficiency of fast convergence towards the 

desired solution. 

To this end, we searched a solution based on the 

coupling between two or more different optimization 

algorithms which have complementary characteristics. 

This is what is so-called hybrid algorithms. It is common 

to find hybrid algorithms involving an algorithm of 

stochastic type used to cover the entire search space to 

identify the region where the global minimum may be 

found, and a deterministic algorithm with mathematical 

reasoning able to quickly reach the minimum, since the 

region has been identified. This type of strategy improves 

reliability compared to methods of non-linear 

programming as it is more likely able to find the global 
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minimum, and besides, it increases efficiency compared 

with pure stochastic algorithms. However, combining 

stochastic and deterministic methods into a hybrid 

solution can prevent both inability to converge, and 

premature convergence tendencies. 

In this work, we proposed the combination between 

PSO algorithm and the generalized pattern search PS 

algorithm to achieve the desired optimal global solution. 

Hence, a pattern  search  function  in  our  hybrid  method  

will  start from  the  final  solution  obtained  by  PSO, so  

their  combination  leads  to  a  unique  solution. 

PS techniques are a class of direct search methods for 

optimization. Like genetic algorithm, PS  is often useful 

for global optimization.  It is suitable for non-smooth or 

discontinuous objective functions. PS algorithm searches 

a set of points, called a mesh, around the current point.  

The mesh is created by adding the current point to a 

scalar multiple of a set of vectors called a pattern.  If  the  

algorithm  finds  a  point  within  the  mesh that  

improves  the  objective  function,  the  new  point 

becomes the current point at the next iteration. The search 

terminates after a minimum mesh size is reached. 

Based on the optimal results obtained by the PSO 

algorithm, we implemented a PS algorithm, whose 

parameters are shown in table 8. The problem of multi-

objective optimization is formulated using the weighted 

sum cost function C, for the 4 different cases of weights 

Wj. 

Table 9 shows the results obtained by the hybrid 

algorithm (PSO - PS). 

The following figures (Fig. 15 to Fig. 18) show the 

results of the pattern search algorithm PS, for the 4 

studied cases of the weighted cost function. In each of 

these figures, we present first a graph of the algorithm 

convergence towards the optimal solution as a function of 

iterations, as well as the evolution of the mesh size in the 

second graph, and finally we present the obtained optimal 

values of the design parameters. 

Table 8. PS algorithm parameters. 

Parameter Setting 

Poll Method GPS Positive 
 basis 2N 

Complete Poll on 
Search Method MADS Positive basis 2N 

Complete Search on 
Initial mesh size 1 
Expansion Factor 2 

Contraction Factor 0.5 
Max Iteration 200 

Mesh Size to stop 10^-6 

 

Table 9. Results of multi-objective Optimal Design problem using the hybrid algorithm (PSO+PS). 

Multi-

Objective 

Time 

(s) 
Gen 

Cost 

Function 
2pd

 
(cm)

 
1pd

 
(cm)

 
2bd

 
(cm)

 1bd
 

(cm)
 2 

(cm) 

1 
(cm)

 

First case 0:14:27 31 -0.6350 5 10.06 20 34.97 30.94 20 

Second case 0:25:11 62 -0.6091 14.99 22.34 20 20 35 20 

Third case 0:27:25 57 -0.7493 5 10.03 20 34.98 30.58 18.58 

Fourth case 0:15:18 26 -0.7381 5 10 20 34.99 30.59 18.57 

 

 

Fig.15. Results of PS algorithm for the first case. 

 

 

Fig.16. Results of PS algorithm for the second case.
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Fig.17. Results of PS algorithm for the third case. 

 
Fig.18. Results of PS algorithm for the fourth case. 

Through the previous set of results for the hybrid 

algorithm, and compared with the results of the PSO 

algorithm alone, we note the following: 

 

 The value of the global minima solution of 

weighted cost function, within the results of the 

hybrid algorithm is better than for the result of the 

PSO algorithm; this proves the importance of the 

hybrid algorithm by ensuring that the global 

optimal solution is reached. 

 The values of the optimal design parameters 

resulting from the both algorithms (hybrid, PSO) 

are very close, which confirms that the PSO 

algorithm is also very close to the global solution 

while the hybrid algorithm reached this global 

solution accurately. 

 The convergence of the PS algorithm to the global 

solution is faster, and this is because it starts from 

the final solution obtained by PSO, which is very 

close to the optimal solution. 

 The proposed hybrid method has led to the 

reduction of total execution time of the algorithm 

compared to other methods. 

 The proposed (PSO–PS) technique has overcome 

an important drawback of the PS methods which is 

the need to provide a suitable starting point. This 

shortcoming of the PS methods was highlighted in 

the previous work of the authors as it makes any 

optimization method relying on a good choice of 

the initial point possibly more susceptible to 

getting trapped in local minima. 

 

Thus, the efficiency of the proposed hybrid algorithm 

(PSO-PS) to solve the multi-objective optimization 

problem in this research is demonstrated by ensuring that 

the only optimal global solution of the studied problem is 

achieved. 

In this paper, the hybridization of PS method and PSO 

are incorporated in the optimization process in order to 

look for the global optimal solution in solving the mutli-

objective cost function and determining the design 

variables with minimum computational CPU time. 

 

VII.  CONCLUSION 

This work tackles the optimal design of a 6-DOF 

Stewart platform (6-RUS Zamanov Type) with respect to 

multi-objectives based upon the hybrid (PSO-PS) method. 

We have modeled the studied platform geometrically and 

cinematically, and the reachable workspace of the 

platform is generated using numerical search method. 

The Optimal design problem was formulated by 

determining the set of design parameters (the dimensions 

of the platform bases and the arms 

1 2 1 2 1 2[ , , , , , ]b b p pP d d d d ). Moreover, we defined a set 

of required cost functions related to the size of the 

workspace, and to the two Global Kinetic-Static 

performance indices (the GCI and GSI coefficients), 

where we have studied the effect of the design parameters 

on this studied cost functions. 

The single-objective optimization design problem was 

solved through the GA algorithm for each cost function 

separately, and there was a conflict in the obtained 

optimal solutions. The Multi-objective optimization 

problem was solved through the weighted sum method, 

where the problem was solved for several values of 

weights Wj (in the weighted cost function) using both 

algorithms: the genetic algorithm GA and the PSO 

algorithm. As the PSO algorithm showed better 

performance, a hybrid algorithm that combines (PSO-PS) 

was proposed in order to achieve the unique global 

optimal solution and to obtain more accurate results. The 

results are valuable in designing these kinds of 

manipulators under different conditions, where the 

proposed hybrid algorithm showed the best performance 

with regards to time consumption and accuracy. 

The proposed algorithm and the described approach are 

absolutely generic and can be used with different 

objective functions and constraints. Moreover, this 

approach can be extended to other types of parallel 

manipulators. 
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