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Abstract—The method of construction adaptive observers 

for linear time-varying dynamical systems with one input 

and an output is offered. Adaptive algorithms for identifi-

cation are designed. Adaptive algorithms not realized as 

an adaptive system contains parametric uncertainty (PU). 

Realized adaptive algorithms of identification parameters 

system are offered. They on the procedure of the estima-

tion PU and algorithm of signal adaptation are based. The 

algorithm of velocity change system parameters estima-

tion is proposed. Estimations PU and its misalignments 

are obtained. Boundedness of trajectories an adaptive 

system is proved. Exponential stability conditions of the 

adaptive system are obtained. Iterative procedure of con-

struction a parametric restrictions area is proposed. Simu-

lation results have confirmed the efficiency of the method 

construction an adaptive observer. 

 

Index Terms—Identification, adaptive observer, time-

varying dynamical system, Lyapunov function, uncertain-

ty, vector combined equations of comparison. 

 

I.  INTRODUCTION 

Construction of adaptive observers (AO) is one of the 

rapidly developing areas of control theory. The basis of 

theory AO for the linear class of dynamic systems has 

been obtained in the end of past century [1-6]. The class 

of the adaptive systems having special identification rep-

resentation in space "input-exit" has been proposed. De-

spite this, the research in this area continues. In particular, 

attempts of construction AO for time-varying plants are 

made. The majority of the approaches are based on the 

generalization of the results which are obtained for linear 

time-invariant dynamic systems. 

Problem of combined identification and control of the 

discrete dynamic system with time-varying parameters is 

considered in [7]. It is supposed that parameters are 

piecewise constant, and the modification time is deter-

mined by means of the Markov chain. Convergence of 

adaptive algorithms is proved. The set of criteria allowing 

minimizing an error of forecasting an output system, is 

applied to improve efficiency of control. Such approach 

complicates identification systems. Problem of adaptive 

identification time-varying nonlinear plant is considered 

in [8]. It is supposed that the plant state vector is meas-

ured and description of a nonlinear part of the system is 

known. The unknown vector of parameters system ap-

proximates Taylor series. The adaptive algorithm of iden-

tification is offered. Lüders-Narendra adaptive observer 

[9] is applied to stabilization of time-varying nonlinear 

continuous system. Boundedness of trajectories in an 

adaptive system is proved. 

Methods of adaptive control dynamic systems with 

variable parameters are proposed in [10]. It is supposed 

that parameters have the restricted velocity of a change. 

Boundedness of trajectories in an adaptive system is 

proved. This approach improves the quality of transients 

in an adaptive system. It on nonlinear time-varying sys-

tems can be generalized. 

A multidimensional linear time-varying dynamical sys-

tem is considered in [11]. Matrix state and control has the 

known function of time. It is supposed that the linear part 

of the system depends on an unknown parameter vector. 

The adaptive Kalman filter for a state estimation and sys-

tem parameters is offered. 

Considered methods and algorithms do not allow to 

ensure the unbiasedness of obtained estimations [12, 13]. 

Explain it to that the law of a change parameters is un-

known. Therefore, the majority of approaches on a quasi-

stationary hypothesis are based. 

The solution of the adaptive identification problem 

time-varying systems is based on application: i) various 

methods of parameters approximation [8]; ii) compensat-

ing controls [9, 14]. Choice of the reference model in [14] 

is realized on the basis of the prior information analysis. 

The law of parameters modification under the priori un-

certainty is unknown. Therefore, the object as a system 

with parametric uncertainty is considered. 

AO application for control of the stationary uncertain 

object is given in [3, 15]. The case when uncertainty is a 

discrepancy of model to plant (structural disturbances) is 

studied. Such disturbances are called non-modeling dy-

namics. Algorithms which ensure robustness to these 

disturbances are designed. 

Integrated algorithms of the identification parameters 

vector of time-varying linear system are designed in [16]. 

The law of change unknown parameter drift system is 

specified as a dynamic system with unknown constant 

parameter vector. It is specified in the process of adapta-

tion. Dynamic system with a time-varying matrix of a 

state is considered in [17]. The matrix is specified a priori. 
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The problem is reduced to identification of unknown con-

stant parameter vector. The adaptive algorithm of tuning 

is proposed. 

So, the problem of identification time-varying systems 

as before is actual. The problem of ensuring the asymp-

totic stability of the adaptive system in the output space is 

not solved. The problem of system identifiability at non-

performance of excitation constancy data condition was 

not studied.  

We for linear time-varying dynamical systems propose 

a method of construction AO with uncertainty in a loop 

tuning. Algorithms of tuning parameters AO are devel-

oped. The dynamic system for estimation the velocity of 

system parameters change is proposed. The system pa-

rameters are formed in the synthesis process of the esti-

mation system. The algorithm of signal adaptation for 

compensation of non-modeling dynamics is developed. 

Boundedness of trajectories adaptive system with AO is 

proved. Conditions of an exponential stability adaptive 

system are obtained. 

The paper has the following structure. Section 2 con-

tains the problem statement. The design of adaptive algo-

rithms is described in section 3. The Lyapunov functions 

method is applied to obtaining of adaptive algorithms. 

Obtained adaptive algorithms are unrealizable. Therefore, 

we propose dynamic system for change velocity estima-

tion of initial system parameters. It is showed that this 

system has linear form and depends on an unknown con-

stant vector of parameters. The design of an algorithm for 

estimation of the unknown constant vector of parameters 

is given in section 4. Choice of dynamic system parame-

ters for estimation of change parameters velocity of initial 

system is given in section 5. Properties of the developed 

adaptive identification system are researched in section 6. 

The definition method of the guaranteed parameter esti-

mation area AO is described in section 7. It is based on 

processing of experimental data set in "the vertical direc-

tion" (on range), and represents the intellectual procedure 

of decision-making. Simulation results of the obtained 

AO are presented in section 8. The final section contains 

the review of obtained results and their discussion. 

 

II.  PROBLEM STATEMENT 

Consider dynamic system 

 

( ) ( ) ,

,T

X A t X B t r

y C X

 


                      (1) 

 

where mX R  is a state vector, r R , y R  is input 

and output of system, m mA R   is matrix of state the 

form 

 

( ) ( )

TH
A t A t

 
  

  

, 

 

G m

AA R   is vector of parameters, belonging restrict-

ed, but a priori unknown area G A
; ( 1) ( 1)m mR     is sta-

ble diagonal matrix; G m

BB R  , GB  is restricted, a 

priori an unknown area; 1mH R  , 1ih   ( 1, 1)i m  , 

mC R ,  1 0 0
T

C  K . The pair ( , )H  is controlla-

ble. 

Assumptions. 

 

A1. The input ( )r t  is a piecewise continuous bounded. 

A2. || ( ) ||A t  , || ( ) ||B t  , 0  , 0  . 

A3. The transitive matrix of the system (1) is uniformly 

restricted on a time. 

 

Apply model to identification of pair  ( ), ( )A t B t  

 

ˆˆ ˆ ˆ( ) ( ) ( ) ,

ˆ ,

T

M

T

X A X CC X A t y B t r

y C X

   


           (2) 

 

where m m

MA R  is the Hurwitz matrix of the form 

 

0

T

M

k H
A

 
  

  

, 

 

0k  ; ˆ mA R , ˆ mB R  are vectors of adjusted parame-

ters; ˆ mX R is state vector; ŷ R  is model output. 

For system (1) we have the information 

 

 I ( ), ( ),o y t r t t J  . 

 

Problem: construct the model (2) and determine such 

laws of tuning of vectors ˆ( )A t  and ˆ( )B t  on the basis of 

the analysis Io  for the system (1) satisfying to assump-

tions of A1-A3 that 

 

ˆlim | ( ) ( ) | y
t

y t y t 


  , 0y  . 

 

III.  SYNTHESIS OF ADAPTIVE ALGORITHMS 

Write the equation for the prediction errors. Subtract (1) 

of (2) and obtain 

 

,

,

M

T

E A E Ay Br

e C E

   


                  (3) 

 

where ˆ( ) ( ) ( )A t A t A t   , ˆ( ) ( ) ( )B t B t B t    are vec-

tors of parametric misalignments. 

Apply to ( )y t  and ( )r t  auxiliary filters 

 

v vP P Hv   , ,v y r ,          (4) 
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where 1m

yP R  , 1.m

rP R   

Let ( ) [ ( ) ( )]T T TD t A t B t    is the vector of misa-

lignments parameters system (1), 2mD R  , 2mP R  is 

the vector of the generalized input, [ ]T T T

y rP y P r P . 

Lemma 1. 

 

2

Te ke D P     ,                       (5) 

 

where 2 R  , 

 

 2 2 2 , ,D P t     ,  2 1 1\ ,D D a b    . 

 

Proof. Obtain for ( )e t  the equation 

 

1 1 2

T Te C E ke a y b r H E       ,           (6) 

 

where 2

T TE e E    , 

 

1 2

T TA a A      , 
1 2

T TB b B      , 

 

   
1

2 1 2 2mE sI A y B r 


   ,               (7) 

 

/s d dt , ( 1) ( 1)

1

m m

mI R   

   is unity matrix. 

Considering (4) and (7), 2

TH E  transform to the form 

 

2 2 2 2

T T T

y rH E A P B P     ,            (8) 

 

where 

 

0

2 2 2( ) ( ) ( ) ( ) ( )

t
T

T T T T

y r

t

t A t B t P P d                 . 

 

Substitute (8) in (7) and obtain (5).  

We see from the equation (5) that the error ( )e t  de-

pends as on the unknown vector ( )D t , and a velocity of 

its change (function  2 t ). ( ) IaD t   ( Ia  is an a 

priori information). Therefore, consider 2 ( )t  as uncer-

tainty of the system (5). 2 ( )t  does not reflect the ef-

fect of the change velocity parameters 1( )a t , 1( )b t . 

Integral algorithms of identification the vector ( )D t  

are designed in [16]. Here we are offered the new ap-

proach to estimation of the uncertainty  2 2 , ,D P t   in 

system (3). We show, as on the basis of estimations 

 2 t  to determine the parameter vector ( )D t  (  D t  

called drift parameters). 

Apply Lyapunov function 0,5 ( ) ( )T T

eV E t CC E t  for 

algorithms design for tuning of parameters the model (2). 

Derivative eV  on the time note as 

2

2

T

eV ke e D P e      .                (9) 

 

Obtain [18] from the condition 0eV   

 

( ) ( ) ( )D t e t P t   ,                      (10) 

 

ˆ ( ) ( ) ( ) ( )D t D t e t P t  ,                   (11) 

 

where 0T    , 2 2m mR   is a matrix ensuring con-

vergence of algorithm. 

The vector ( )D t  in (11) specifies the dynamic law of 

the change parameters system (1) and it is a priori un-

known. Therefore, the law (11) is not realized. We will 

estimate the vector D  in the identification process. Write 

algorithms (10), (11) in the form 

 

ˆ ˆ( ) ( ) ( ) ( )D t Z t e t P t  ,                   (12) 

 

ˆ( ) ( ) ( ) ( )D t Z t e t P t   ,                  (13) 

 

where 2ˆ mZ R  is an estimation of the velocity change 

parameter vector ( )D t , ( ) ( )Z t D t . 

Name algorithm (12) realized. Adaptive identification 

algorithms of time-varying systems in such form are con-

sidered for the first time. Most often, the vector ( )D t  is 

estimated on the basis of Kalman filter [12]. We estimate 

the drift of parameters as a state of some dynamic system. 

Present the vector ( )Z t as [18] 

 

( ) ( ) ( )Z t LD t Q t K   ,                  (14) 

 

where 2 2m mL R   is diagonal matrix with 0iil   

 1, 2i m , 2m nQ R   is matrix with known elements, 

nK R  is an unknown vector with constant elements. 

The matrix ( )Q t  we form a priori. It sets drift of the 

change of the vector ( ),D t  i.e. ijq Q  , where 

( ) { ( )}ijt t   is the set of given functions. 

So, the law of the change vector ( )D t  the system (1) is 

specified on set  . Change ( )D t  depends on an un-

known vector K . 

Write adaptive identification algorithms (12), (13) as 

 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )D t LD t Q t K t e t P t    ,          (15) 

 

( ) ( ) ( ) ( ) ( ) ( )D t L D t Q t K t e t P t      .       (16) 

 

We have reduced the identification problem to the def-

inition of the law the estimation vector K . 

The criterion ( )eV t  to synthesize identification algo-

rithm of the vector K  does not allow. In the next section, 

we proposed a method of estimation the vector K . 
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IV.  ALGORITHM OF ESTIMATION VECTOR K  

We propose a method of the estimation vector K . It is 

based on implementation of two stages. At first, we esti-

mate the unobservable variable ( ) ( , )t D t     . Next, 

use estimation ( )t  for the tuning of vector K̂ . The 

algorithm design for the tuning K̂  is based on introduc-

tion of an auxiliary error. The auxiliary error is the basis 

for variable estimation ( )t . 

Describe the method of estimation the unobservable 

variable ( ) ( , )t D t     . Form criterion of algorithm 

tuning synthesis of the vector K̂  in (15) on the basis 

( )t . 

Apply to the vector ( )P t  the auxiliary filter 

 

k kP kP P   .                          (17) 

 

Lemma 2. 

 

1,
ˆ ˆˆ T

k k ky kp D P    ,                     (18) 

 
T

k ke D P   ,                        (19) 

 

where 1,k kp P  is the first element of the vector kP , 

 

0

ˆˆ ( ) ( ) ( )

t

T

k k

t

t D t P d     .                 (20) 

 

Proof. Consider the first equation of system (2) 

 

1 1 2
ˆ ˆˆ ˆ Ty ke a y b r H X     . 

 

Transform it to the form 

 

1 1 2 2 2
ˆ ˆ ˆˆ ˆ ( ) ( )T T Ty ke a y b r W s A y B r      ,         (21) 

 

where 1

2 1( ) ( )mW s sI H

   is transfer function, 

2
ˆ ˆˆ[ ]T TX y X . 

Divide the left and right parts (21) on s k , s d dt . 

Apply (17) and obtain 

 

1,
ˆ ˆˆ T

k k ky kp D P    ,                    (22) 

 

1,
ˆ ˆ

k ky kp y  ,                         (23) 

 

Where 

 

1 1 2
ˆ ˆˆ ˆ , / ( )

T
T T

ky I a y b r X s k   
 

, 1
T

TI H    ,   (24) 

 

0

ˆˆ ( ) ( ) ( )

t

T

k k

t

t D t P d     .                  (25) 

 

Subtracting from (20), we obtain (19). 

The proof of lemma 2 (see (23)) and (18) gives the fol-

lowing estimates 

 

1,
ˆ ˆ ,k ky kp y   

 

ˆ ˆˆ T

k k ky D P   .                          (26) 

 

ˆ ( )ky t  is known for any 
0t t . Therefore, obtain uncer-

tainty estimation from (26) 

 

        0
ˆˆ ˆT

k k kt D t P t y t t t     .             (27) 

 

Apply the following approach for obtaining  k t . 

Designate    k ku t t  and (18) write in the form 

 

1,1
ˆ T

k k ky kp D P u   ,                      (28) 

 

where ku R  is the compensating control. As at the 

identification stage    k ku t t  almost 
0t t  , we use 

in (28) the designation ( )y t  instead of ˆ( )y t . 

Subtract ( )y t  from (28) and obtain the equation for 

auxiliary error ( )e t  

 

( ) ( ) ( ) ( ) ( )T

k k ke t D t P t u t t    ,              (29) 

 

where e y y  . 

Define ( )ku t  from the condition 

 

arg min
k

k u
u

u V , 

 

and obtain 

 

k ku e ,                               (30) 

 

where  2( ) 0,5uV t e t , 0k  . 

Then the estimation for  k t  is fair: 

 

   ˆ( ) k kt t u t   .                    (31) 

 

( )t  is described with the differential equation 

 

 
T

kL D Q K eP P      .              (32) 

 

Consider Lyapunov function  2( ) 0,5V t t  . Deter-

mine adaptation algorithm of the vector K̂  in (15). Ap
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ply (32) and write ( )V t  as 

 
T T T

k k kV P L D P Q K eP P          .           (33) 

 

Then 

 

ˆ T

k kK K Q P    ,                  (34) 

 

where n n

k R   , 0T

k k    . 

So, the adaptive identification system is described with 

equations (3), (4), (16), (27), (30) - (32), (34). 

Remark 1. Approaches based on use of the expanded 

error [19], do not allow to form criterion for the estima-

tion function ( )k t . Therefore, we have applied indirect 

methods to the estimation of uncertainty. We define esti-

mation ( )t  uncertainty ( )k t  on the basis of the cur-

rent values of the model parameters ˆ ( )D t  and apply the 

algorithm (34). 

 

V.  ABOUT CHOICE OF MATRIX ( )Q t  IN ALGORITHM (16) 

The equation (14) describes dynamics of change vector 

( )D t  and has the general form. Its properties depend on 

the choice of matrixes ,Q L  and the vector K . As a rule, 

the structure of the adaptation law (matrix , ,Q L K ) is set 

a priori. Matrix elements ( )Q t  can be set posteriori on 

the basis of the preliminary analysis the set Io . 

Let the frequent spectrum of signals ( ), ( )y t r t  is 

known, i.e. is the set { , }y r    . As the linear dynam-

ic system (1) is consider, frequency set for the vector 

( )D t  define as 

 

\D y r   . 

 

Specify ( )D   on the basis D  and generate the ma-

trix ( )Q t . 

 

VI.  PROPERTIES OF ADAPTIVE IDENTIFICATION SYSTEM 

We will consider properties of the proposed AO. The 

system is complex and has several levels. We will apply 

Lyapunov vector functions method to the proof of the 

adaptive system stability. 

Consider the condition of extreme nondegenerate (the 

constancy of excitation) vector ( )P t  [20]. 

Lemma 3. The estimation for an informational matrix 

( ) ( )TP t P t  is fair 

 

( ) ( ) ( ) ( )T Ln
n nn D t P t P t n t   0t  ,          (35) 

 

where 2( ) mP t R  is the generalized input of system (5); 

2n m  is the rank of matrix ( ) ( )TP t P t ; ( )nD t  is the 

largest nonzero principal minor of the matrix ( ) ( )TP t P t ; 

( )P

n t  is maximum eigenvalue of the matrix ( ) ( )TP t P t ; 

( ) ( )TP t P t  is a norm of the matrix ( ) ( )TP t P t . 

Theorem 1. Let are fulfilled assumptions А1-А3 and 

conditions: 1) all trajectories of system (1), (2) uniformly 

are bounded on t ; 2) positive definite function 

( , , , , )V e A t    satisfies condition 

 

inf ( , , , , )V e D K t     if T Te D K      ; 

 

3) the matrix ( )Q t  in (34) and vectors ( )P t , ( )kP t  are 

extreme no degenerate and satisfy (35); 4) the matrix 
2 2m mL R   in (14) is the diagonal with 0iil  ; 5) 

2( ) ( ) ( )e t t e t  , 0  . Then all trajectories of sys-

tem (3), (4), (14), (16), (27), (30) - (32), (34) are restrict-

ed. 

Lemma 4. 

 
1T T

k k kQ D Q P     .                  (36) 

 

Proof. Consider function 

 
1( ) 0,5 ( ) ( )TV t D t D t    .               (37) 

 

( )V t  has the form 

 
1 1T T TV D L D D Q K e D P            .   (38) 

 

Obtain from the condition ( ) 0V t   adaptation algo-

rithm for the vector ( )K t  

 
1T

kK Q D    ,                      (39) 

 

where n n

k R   , 0T

k k    . Compare (39) and (19) 

and obtain assertion of lemma 4. 

Lemma 5. 

 

2 ( ) ( )t c t   , 

 

where 0  , 0 1c  . 

Proof. ( )t  write as 

 

( ) ( )t с t   , 

 

where 0 ( ) 1c t  , 

 

0

( ) ( ) ( )

t

T

t

t D t P d       .                (40) 

 

Present ( )P t as function from ( )kP t . Obtain from (17) 
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at 
0( ) 0kP t   

 

 
0

2( ) exp ( ) ( )

t

k m

t

P t kI t P d     . 

 

If the integration step t  is small enough and assump-

tion А1 is fulfilled, then 

 
1( ) ( )kP t P t , 

 

where   1 expk k t     . 

Determine ( )P t  from last equation and substitute it in 

(40). Consider equality (31) and obtain assertion of the 

lemma 5. 

Proof of Theorem 1. Consider Lyapunov function 

 

( , , , , ) ( , ) ( , )

( , ) ( , ),

e

K

V e D K t V e t V t

V D t V K t





   

 

  


 

 

Where 

 
1 1( , ) 0,5 ( )( ) ( )T T

K k kV K t K t K t      , 

 
2( , ) 0,5 ( )eV e t e t , 2( , ) 0,5 ( )V e t t  , 

 

( , )V D t   have the form (37). The time derivatives of the 

function components ( )V t  described by the equations (9), 

(33), (38) and 

 

 1 1T T

K n k k kV K I Q P      .           (41) 

 

Sum (9) and (38), (33) and (41): 

 
2 1

2

1

T

e e

T

V V V ke e D L D

D Q K

   

 







       

 
,    (42) 

 

1 1

T T

K K k k

T T

k k k

V V V P L D eP P

K Q P

    

  

     

  
.          (43) 

 

Determine D  from (36) and substitute it in (42). Ap-

ply the lemma 4 to last summand in (43). Then 

 
1T T T

K k k kV P LL P eP P D Q K          ,      (44) 

 

where 1 1( )T T

k kL QQ Q Q

     . 

The matrix ( )Q t  and vectors ( )kP t , ( )P t  satisfy con-

ditions 3) theorem 1, and matrix L  satisfies to a condi-

tion 4) theorem 1. Matrixes  , k  and k  are symmet-

rical positive defined. Therefore, following inequalities 

are fair 

 

T

k kP LL P  , T

kP P   ,                    (45) 

 

where  

 

min
min ( ) min ( )k

t t
P t P t   ,  

 

min min
min ( )k

t
L L P t   , 

 

min|| ||  is lower boundary of norm matrixes L and L . 

Obtain from a condition of passivity of the adaptive 

system 

 

0e  , 2e e  , 0  .              (46) 

 

Apply (45), (46) and (44) write as 

 
2 2 1T

kV e D Q K            .       (47) 

 

Sum (42), (47) 

 
2 1 2 2

2

TV ke e D L D e               .   (48) 

 

Apply lemma 5 to 2 . Then obtain for 2e  the es-

timation 

 
2

2e с e  ,                       (49) 

 

where с c  , min ( )
t

c c t . 

Let 
min max( ) ( )L L L   , where min ( ) 0L  , 

max ( ) 0L   are minimum and maximum eigenvalues of 

matrix L . Then 

 
1

min2 ( )TD L D L V    .               (50) 

 

Apply (49), (50) and for V  obtain the estimation 

 

 min2 ( )eV kV L V V 


     ,              (51) 

 

where 0k k с      . 

V  is negatively definite on variables , ,e D  . There-

fore, the estimation is fair 

 

0( ) ( ) ( ),V t V t t                       (52) 

 

 
0

min( ) 2 ( ) ( ) ( ) ( )

t

e

t

t kV L V V d           . 

 

Functions ( ), ( ), ( )eV t V t V t   satisfy to the condition 2) 

theorem 1, and function ( )V t  is positive definite 0t t  . 

Hence, we obtain from (52) boundedness of all trajecto-

ries in еhe identification system.  
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Definition 1 [20]. The non-positive quadratic form 

( , )W Y X  has M -property or ( , )W Y X M , if it is repre-

sentable as 

 
2

( , ) ( , )y xy xyW Y X c Y c W Y X   , 

 

for any mY R , nX R  in limited area 

 

 2 2
, , 0 ,m n

D Y R X R Y X          

 

where Y  is Euclidean norm of a vector Y , 0yc  , 

0xyc  , ( , )xyW Y X  is some function. 

Definition 2 [20]. The non-positive quadratic form 

( , )W Y X  has M -property or ( , )W Y X M , if it is 

representable as 

 
2 2

( , ) y xW Y X c Y c X   , 

 

for any mY R , nX R  in restricted area D , where 

0xc  . 

M -property is an indication of constructive com-

pleteness the quadratic form ( , )W Y X . It allows analysis 

of properties ( , )W Y X  to reduce to the estimation of in-

dexes corresponding M -matrix. 

Estimate asymptotic stability of the designed adaptive 

system. Consider Lyapunov vector function 

 

 ( ) ( ) ( ) ( ) ( )
T

e KV t V t V t V t V t  , 

 

where 1( ) 0,5 ( ) ( )T

K kV t K t K t   . 

Set positive functions ( )is t  for ( )iV t  0t t  . ( )is t  is 

majorant for ( )iV t , where    0 0i is t V t , , , ,i e e k . 

Lemma 6. Vector equations system of comparison for 

( )V t  

 

VS A S ,                              (53) 

 

0 0

2 0

0

4
0 0

3

e e

K

V e K

K

k k

k k

A k k k

k



 

  

 

 
 


 

  
 
 
  

,               (54) 

 

where  
T

e KS s s s s  , ( ) 0vs t  , ( , , , )v e K  , 

0ek  , 0k  , 0k  , 0Kk  , 2e ek k k  , 0  , 

   3 2 4 2K e e e K K e e e Kk k k k k k k k k k k k k             , is 

exponential stable with the estimation 

 
   0

0( ) VA t t
S t e S t


 , 

 

if for the principal minor ( )i VA  of matrix 
VA  are fair 

inequalities    1 0
i

i VA   , 1,4i  . 

Proof. We have for the derivative ( )eV t  the equation 

(9). Write the equations for derivative other elements of 

the vector ( )V t  

 
1 1T T TV D L D D Q K e D P            ,    (55) 

 
T T

k kV P L D P Q K e          ,         (56) 

 
T

K kV K QP  ,                      (57) 

 

where T

kP P   . 

We obtain from (9), (55) - (57) obtain that eV M , 

V M  and KV M . We will ensure execution M - 

properties for functions V  and KV , and then we will 

satisfy the condition ( )V t M . 

Consider at first (56). Apply the lemma 4 and obtain 

 

kD FP  , 

 

where # 1( )T T

k kF QQ Q Q    , #( )TQQ  is pseudo in-

verse matrix. Then 

 
2T T

k k kP L D P LFP   .                       (58) 

 

As 

 
2

2 2

2 4

e
e e


    

 
      

 
,                 (59) 

 

that applies (58), (59) and (56) present in the form 

 

2 2 2

4

T T

k k kV P LFP P Q K e


        ,          (60) 

 

i.e. V M . 

Let 
df

1 max ( )
t

t  , 
df

min T

P k k
t

P LFP  , 
df

1Pk    . 

Apply the inequality [21] 

 
2 2

2 , 0, 0, 0
2 2

az b
az bz a b z

a


              (61) 

 

to first two summands in a right part (60) and obtain 

 

2 1

2 2 2

T T T

k k

e

k K Q P P Q K
V V

k






  
    . 

 

As 
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2T T T

k k K KK Q P P Q K k V   , 

 

that 

e e K KV k V k V k V        ,               (62) 

 

where      max max max

k T

K K Pk L QQ     , k T

P k kL P P , 

 

K

K

k
k

k






 , 1

2
ek


 . 

 

So, V

M . Go now to (57). To obtain KV M , we 

will suppose that is true 

 
2( )T T T T

k k kK QP K Q P P Q K       

 

1   at 0t t . 

Apply the approach, stated in § 6.3.1 [20]. Transform 

KV  to the form 

 

3

4

T T T T T

K k k kV K Q P P Q K K Q P     .    (63) 

 

So, KV M . Obtain from (63) the estimation for KV  

ensuring KV M : 

 

4

3
K K KV k V V    ,               (64) 

 

Where 

 

     min min min

3

4

k T

K K Pk L QQ    . 

 

Now identify the estimation for eV  (9) ensuring prop-

erty eV M . Apply lemma 5 and from (46) obtain 

 
2

2e с e  , 

 

where 0с c   . Then the condition eV M  has 

the form 

 

e e e eV k V k V    ,                           (65) 

 

where ek k c  , 
 max max ( )P

e

e

L
k

k


  
 , T

PL PP  is 

the matrix, satisfying conditions lemma 3. 

Consider (55). Ensure V

M . As 

 
2

21 1

2 4

T T T

Pe D P e D P e D L D   
 

      
 

, 

 

that 

 
1

2 1 1
.

4

T

T T

P

V D L D

e D Q K D L D

  

   





  

   
        (66) 

 

Use inequalities 

 

 1 1

min

T T

PD L D L D D        , 

 

 1

max max

1 1
( )

4 4

T T

P PD L D D D L         

 

and transform (66) to the form 

 
1 2 1T TV k D D e D Q K            , 

 

where 

 

    min max max

1
4 ( )

4
P Pk L L      . 

 

Apply the inequality (61) and obtain 

 

2 e k KV k V V k V       ,                (67) 

 

where 

 

   max max

min ( )

T

k

K

Q Q
k

k




 







, 

2

k
k 
  . 

 

Use results § 6.2 [20] and obtain assertion of lemma 6.  

The comparison system (53) is fair for ( )V t . It has the 

solution 
   0

0( ) VA t t
S t e S t


 . 

Theorem 2. Let assumptions А1-А3 and conditions 1), 

3)-5) theorem 1 are fulfilled. Let: (i) exists positive defi-

nite Lyapunov vector function 

 

 ( ) ( ) ( ) ( ) ( )
T

e KV t V t V t V t V t   

 

components which assume an infinitesimal higher limit; 

(ii) inequality (62), (64), (65), (67) and vector system of 

comparison (53), (54) are fair for elements of the vector 

( )V t . Then the system (3), (4), (14), (16), (27), (30) - (32) 

is exponential stable with the estimation 

 
0( )

0( ) ( )VA t t
S t e S t


 , 

 

if 

 

0ek  , 0k  , 0k  , 0Kk  , 2e ek k k  , 0  , 

 

3 ( 2 ) 4( 2 )K e e e K K e e e Kk k k k k k k k k k k k k             , 
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where corresponding factors are given in the proof of 

lemma 6. 

The proof of the theorem 2 directly follows from 

Lemma 6. 

Remark 2. The lemma 6 gives the estimation of the 

parametric misalignment ( )D t  the vector ( )D t . 

Remark 3. The matrix M  in definition 2 for consid-

ered adaptive system has the form (54). 

 

VII.  DOMAIN OF GUARANTEED ESTIMATION 

Section 6 contains the properties description of the 

adaptive identification system. We showed that the sys-

tem is asymptotically stable. We propose an approach 

which confirms a boundedness of adaptive system trajec-

tories in parametrical space. 

We will describe a method of obtaining the guaranteed 

parametric estimation domain G A  for system (1). It is 

based on the processing of set Io  in "the vertical direc-

tion" (on the range). The idea of the approach is de-

scribed in [20]. We give its development on the given 

class of systems. 

Remark 4. We use the area designation AG  to under-

line its difference from areas of parametric restrictions of 

the system (1) for ( ), ( )A t B t . 

Let on Y U J  is specified the relation B : 

Y U J  B , J J . Present the definition range and 

the range of values B  as 

 

      df
dom( ) ( ) Y ( ) U Y,UJ y t u t       B B  

 (68) 

 

      df
rng( ) Y,U Y, Ut J     B B .    (69) 

 

Next, we consider not all range of values relation B, 

and its contraction  Yy Y J  B B : 

 

    dom( ) ( ) Y Y,y yJ y t J     
 

B B B , 

 

    C rng( ) Y, ( ) Y,y y yJ J J R      
 

B B B  

 

Assumption. The set С y is restrictedly 

 

inf Cy
t J

  , supCy
t J

  , #Cy   , 

 

where #Cy  is cardinality of the set C y .  

We associate the relation C y  with the set 

 I ( ),y y R y t t J J   
)

, I Iy o . Therefore, we 

will write  C Iy y . 

Remark 5. The set C y
 can be both continuous, and 

discrete. 

Describe procedure of obtaining the estimation of the 

area (I )A yG  on set C y
. Let the problem of the parametric 

estimation on the interval  p 0( ) ,J t t t  is solved and are 

obtained the sets 

 

 pE ( ) ( )e R e t t J t    ,                (70) 

 

 p
ˆ ˆA ( ) ( )mA R A t t J t    . 

 

Consider an interval  * * p, ( )J t t J t   where * 0t t  

is the time since which the error ( )e t  belongs to a neigh-

borhood  0, eO  , 0e  . 

Fix any element  C Ik

y y yc   where k  corresponds to 

a number of an element of set C (I )y y . We suppose that 

K Zk   is the integer set and #K   . Find intersec-

tion of the set I y  with k

yc . It is cross-section [47] of the 

set yB  level ( ) k

yy t c  

 

   * p ( ) C ( ) ( , )k k k

y y y y yJ t J J t c y t c y t        B  

 

 k k k

y y yJ J c .                              (71) 

 

The set k

yJ  is combination of segments ,

k

y jJ , on which 

( ) k

yy t c , i.e. 

 

, *

k k

y y j
j

J J J U . 

 

Form set of the estimations  A Ak k k

y y yJ  

 

    ˆ ˆA ( ) & ( )k m k k

y y yA R A t t J у t c             (72) 

 

on the segment k

yJ , obtained from (71). Apply to ele-

ments of the set Ak

y  function : m k

yf R J R  . Its de-

fines Euclidean norm of elements Ak

y . Obtain set 

 

   
   

ˆ ˆP A ( ) &

( ) & C

k m k

y y

k k

y y y

A R A t t J

у t c c

   

 

.         (73) 

 

Designate 

 

 inf P A
k
y

k

k y
t J




 ,  sup P A
k
y

k

k y

t J




 .          (74) 
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Obtain local estimation of the area 
AG  for set Ak

y
 

    &k k

y yt J e E J    on the basis of (71) - (74). Des-

ignate this estimation as    C ,Ak

A y A y yG G С . 

Let the set  A yG С  is an initial estimation of area AG  

for the system (1). Designate it as  0ˆ C ,Ak

A A y yG G . 

Here upper index is the iteration number. It specifies that 

the estimation is determined on the basis of processing 

the set C y  for Ak

y . 

So, present the initial estimate    0ˆ I ,Ak

A y A y yG G С  

for AG  as 

 

   0 0 0ˆˆ ˆ ˆ ˆ ˆI ( ) Am k

A y yG A R A t A       ,   (75) 

 

where ˆ
     

ˆ
   . 

Assume 1k k  , where ( 1) Kk   is any element 

from K. It does not coincide with the previous value. 

Generate for the element  1 Ik

y y yс  С  of set (71) - (73) 

and estimations (74). Obtain for set 1Ak

y

  local area 

 

  



1

1

1 1

ˆI ,A

ˆ ˆ( ) A .

k m

A A y y

k

k k y

G G A R

A t A 





 

  

   
 

 

Apply algorithm to determine of the estimation area 

AG  on the set 1k k

y yJ J U  

 

     1 1ˆ ˆI I I ,Ai i k

A y A y A y yG G G  .              (76) 

 

The algorithm is fair for almost Kk   and Ki . 

Interpret  1I ,Ak

A y yG  in (76) by analogy to adaptive 

algorithms as the current data. We specify to this data of 

the estimation of the area AG . The equation (76) is fair 

for * p ( )t J J t   . 

Designate neighborhoods of points ˆ i  and 
ˆ i  as 

 ˆ
,iO   ,  ˆ ,iO   , where 0   is some number. 

Introduce set 

 

  
  

1

1

ˆˆ ˆ, , &

ˆ , .

i i i

A k

i

k

R R O

O





    

  





    



 

 

Write the algorithm (76) in the form 

 

     
   

1 1 1

1

1 1

ˆˆ ˆI I ,A if , ,
ˆ

ˆˆ ˆI if , ,

i k i i

A y A y y A
i

A
i i i

A y A

G G

G

G

 

 

  



 

 


 
  


 

(77) 

 

where  1 1ˆ ˆ Ii i

A A yG G  . 

Other approaches to the formation of the area the guar-

anteed estimation can be applied. The estimation (77) is 

the projection of area AG  to space R . Design of algo-

rithm the construction set G A  in space ( , )A J  is compli-

cated problem. 

Remark 6. If the area is formed for 0t t   apply an 

algorithm based on the intersection of sets. 

Theorem 3. Let conditions of the theorem 1 are satis-

fied. Then the algorithm (77) gives the restricted estima-

tion of area AG  

 

   ˆ ˆ ˆ ˆ ˆI ,A ( ) Am

A A y y yG G A R A t A         

 

and diameter ˆ
AG  is GD    , where ˆmin i

i
  , 

ˆ
max i

i
  . 

The proof of the theorem 3 follows from the stability 

of the adaptive system. 

 

VIII.  EXAMPLE 

Consider dynamic system (1) second order with time-

varying vector ( )A t . System parameters 

 

 ( ) 4.125 0.375sin(0.1 ); 1 0.2sin(0.025 )
T

A t t t      ,  

 

 1.5;1.2
T

B   1.2   . 

 

The input is ( ) 2.5 0.25sin(0.1 )r t t  . Entry condi-

tions for ( )X t  are  (0) 2.5;1
T

X  .The parameter k  in 

(2) is 1.3. The integration step is 0.1. Drift parameters in 

(14) are determined as 

 

[ 1.97; 0.2; 0.9; 0.18]TK    , diag(0.5 1)L  . 

 

We have performed spectral analysis of the system 

output (1) for determining of parameters matrix Q  in (15) 

(Fig. 1) and have received 

 

1 sin(0.05 ) 0 0

0 0 1 sin(0.025 )

t
Q

t





 
  
 

.
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0,00 0,01 0,02 0,03 0,04 0,05 0,06
0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

|R|

f  

Fig.1. Frequent spectrum of the system output (1) with 2m   ( | |R - 

amplitude). 

e, %

t  

Fig.2. The relative error ( )e t . 

Matrixes , k   and the parameter k  in (14), (34), (30) 

have the form: 0.5k  , 

 

diag(0.01; 0.1; 0.0069; 0.024)  , 

 

diag(0.01;15; 0.01;17; 0.022; 0.1)k s  . 

 

0 50 100 150 200 250

-5,0

-4,5

-4,0

-3,5

-3,0

-1,3

-1,2

-1,1

-1,0

-0,9

-0,8

2â

2a

1̂a

1a

ˆ,i ia a

t  

0 50 100 150 200 250 300 350
1,45

1,50

1,55

1,70

1,75
1b̂

1b

1

 t

1b̂

1b

 

Fig.3. Results of the estimation vector ( )A t  of system. 

Results of modeling the adaptive observer are shown in 

Fig. 2 - 5. Fig. 2 represents the relative forecast error of 

output (1), Fig. 3 shows results of parameters estimation 

of the system (1). Tuning of parameters drift the vector 

ˆ( )A t  is shown in Fig. 4. The Fig. 5 shows the estimation 

of uncertainty ( )t . It is obtained on the basis of the 

equation (27) and algorithm (30). 

 

0 25 50 75 100 125 150 175

-2,4
-2,2
-2,0
-1,8
-1,6
-1,4
-1,2
-1,0
-0,8

0,000

0,125

0,250

0,375

0,500

0,625

3k̂ 3k

2k̂

2k

1k̂

1k

ˆ,i ik k

t  

Fig.4. Tuning of parameters drift the vector ˆ( )A t . 

0 25 50 75 100 125 150
-7,0

-6,5

-6,0

-5,5

-5,0

-4,5

-4,0

-3,5

-3,0

-2,5

ˆ,k ku 

ˆ
k

ku

t  

Fig.5. Estimation of the uncertainty ( )t .
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ˆ
k

e



ˆ
k






 

Fig.6. Estimation of uncertainty   and change ( )e , ( )A e . 

Change of the estimation ( )t  as function ( )e t  is 

shown in Fig. 6. We present in Fig. 6 also estimates for 

  and A . We note that around the point 0e   are 

fluctuations functions ( )A e  and ( )e . They are result 

of the vector change ( )A t  of the system (1). 

 

-4,6 -4,4 -4,2 -4,0 -3,8 -3,6
-5,0

-4,5

-4,0

-3,5

-3,0

1̂as

1â

1̂as

1a

1â

 

Fig.7. The framework reflecting the quality of tuning parameter 
1â  of 

the model (2). 

-1,250 -1,125 -1,000 -0,875 -0,750
-1,3

-1,2

-1,1

-1,0

-0,9

-0,8

-0,7

2âs

2â

2a

2â

2âs

 

Fig.8. The framework reflecting the quality of tuning parameter 2â  of 

the model (2). 

We introduce additional criteria of work performance 

adaptive algorithms. They reflect the effectiveness of 

tuning parameters 1â , 2â  the vector ˆ( )A t  of model (2) 

and supplement results in Fig. 6. Criteria have the form of 

framework (Fig. 7, 8). Models 
1âs ,

2âs  correspond to 

frameworks and reflect quality of adaptive algorithms. 

They have the form 

 

1 1 1

2

ˆ ˆ1 1 ,
ˆ: 0.6 1.14 , 0.95a a as a a r   ,            (78) 

 

2 2 2

2

ˆ ˆ2 2 ,
ˆ: 0.002 , 0.99a a as a a r    ,            (79) 

 

where 
1 1

2

ˆ ,a ar , 
2 2

2

ˆ ,a ar  are coefficients of determination mod-

els (78), (79). 

We see that tuning accuracy of the parameter 2â  is 

high. The estimation 1â  has the lower accuracy of ap-

proximation of the parameter 1a  the system (1). Figures 

reflect results for 0t  . If to eliminate the initial area of 

tuning parameters, then the quality of tuning raises. Such 

analysis is applicable for estimations of the vector B  the 

system (1). 

 

0 10 20 30 40 50
3,5

4,0

4,5

5,0

5,5
ˆ

AG||

||

t

ˆ
AG

 

Fig.9. Estimation of the parametric restrictions area AG . 

Show on Fig. 9 estimation of the area AG  obtained by 

means of algorithm (77). 

So, results of modeling confirm efficiency of the pro-

posed method of the design the adaptive observer. 

 

IX.  CONCLUSION 

The method of design the adaptive observer for the lin-

ear dynamic system with time-varying parameters is pro-

posed. The information on an input and output of a sys-

tem is accessible. The method of design adaptive algo-

rithms identification on the basis of Lyapunov second 

method is proposed. Obtained algorithms are not realized 

as depend on parametric uncertainty. The realized adap-

tive algorithms of identification parameters the system is 

developed. They are based on the procedure of the esti-

mation PU and algorithm of signal adaptation. Such ap-

proach has allowed us to obtain estimations as for PU, 

and its misalignments. Boundedness of trajectories of 

adaptive system is proved. Conditions of the exponential 

stability adaptive system are obtained. The method of 

construction the area parametric restriction is proposed 

under uncertainty. Simulation results have confirmed the 

performance of the proposed method of synthesis the 
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adaptive observer. 

REFERENCES 

[1] R.L. Carrol, D.P. Lindorff, "An adaptive observer for 

single-input single-output linear systems," IEEE Trans. 

Automat. Control, 1973, vol. AC-18. no. 5, pp. 428–435. 

[2] R.L. Carrol, R.V. Monopoli, "Model reference adaptive 

control estimation and identification using only and out-

put signals," Processings of IFAC 6th Word congress, 

Boston: Cembridge. 1975, part 1, pp. 58.3/1-58.3/10. 

[3] G. Kreisselmeier, "A robust indirect adaptive control ap-

proach," Int. J. Control, 1986, vol. 43, no. 1, pp. 161–175. 

[4] P. Kudva, K.S. Narendra, "Synthesis of a adaptive ob-

server using Lyapunov direct method," Jnt. J. Control, 

1973, vol. 18, no. 4, Pp. 1201–1216. 

[5] K.S. Narendra, P. Kudva, "Stable adaptive schemes for 

system: identification and control," IEEE Trans. on Syst., 

Man and Cybern, 1974, vol. SMC-4, no. 6, pp. 542–560. 

[6] S. Nuyan, R.L. Carrol, "Minimal order arbitrarily fast 

adaptive observer and identifies," IEEE Trans. Automat. 

Control, 1979, vol. AC-24, no. 2, pp. 496–499. 

[7] M.J Feiler; K.S. Narendra, "Simultaneous identification 

and control of time–varying systems," in Proceedings of 

the 45th IEEE Conference on Decision and Control, San 

Diego CA, U.S.A., 2006. 

[8] Na Jing, Y. Juan, R. Xuemei, and G. Yu, "Robust adap-

tive estimation of nonlinear system with time-varying pa-

rameters," International journal of adaptive control and 

signal processing, 2014, vol. 29, no. 8, pp. 1055–1072. 

[9] G. Bastin, and M.R. Gevers, "Stable adaptive observers 

for nonlinear time-varying systems," IEEE Transactions 

on Automatic Control, 1988, vol. AC-33, no. 7, pp. 650-

658. 

[10] Y. Zhang, B. Fidan, and P.A. Ioannou, "Backstepping 

control of linear time-varying systems with known and 

unknown parameters," IEEE Trans. Automat. Contr., 

2003, vol. AC-48, no. 11, pp. 1908–1925. 

[11] Q. Zhang, and A. Clavel, "Adaptive observer with expo-

nential forgetting factor for linear time varying systems," 

In Proceedings of the 40th IEEE Conference on Decision 

and Control (CDC ’01), December 2001, vol. 4, pp. 

3886–3891. 

[12] V.Ja. Katkovnik, V.Е. Heysin, "Adaptive control static 

essentially time-varying object," Automation and Remote 

Control, 1988, v. 49, no. 4, pp. 465–474. 

[13] I.I. Perelman, "Methods of consistency estimation param-

eters of linear dynamic objects and problematical charac-

ter of their implementation on a finite sample," Automa-

tion and Remote Control, 1981, vol. 42, no. 3, pp. 309–

313. 

[14] D. Bestle, M. Zeitz, "Canonical form observer design for 

nonlinear time-variable systems." Int. J. Control, 1983, 

vol. 38, no. 2, pp. 419–431. 

[15] J. Mason, E. Bai, L.-C. Fu, M. Bodson, and S. S. Sastry, 

"Analysis of adaptive identifiers in the presence of un-

modeled dynamic: averaging and tuned parameters," 

IEEE Trans. Automat. Control, 1988, vol. AC-33, no. 10, 

pp. 969–979. 

[16] N.N. Karabutov, "Identification of uncertain systems. I: 

Adaptive proportional-integral algorithms with uncertain-

ty, "Automation and remote control, 1997, vol. 58, no. 11, 

pp. 1795-1805. 

[17] A. Rodríguez, G. Quiroz, R. Femat, H.O. Méndez-Acosta, 

and J. de León, "An adaptive observer for operation moni-

toring of anaerobic digestion wastewater treatment," 

Chemical Engineering Journal, 2015, vol. 269, pp. 186–

193. 

[18] N.N. Karabutov, "Identification of time-varying dynamic 

systems in space "input-exit", in Fundamental physical 

and mathematical problems and modeling of engineering-

technological systems, 2004, is. 7, Publishing house "Ja-

nus-K", pp. 209–218. 

[19] K.S. Narendra, L.S. Valavani, "Stable adaptive controller 

design – direct control," IEEE Trans. Automat. Control, 

1978, vol. AC-23, no. 4, pp. 570–583. 

[20] N.N. Karabutov, Adaptive identification of systems. Mos-

cow: URSS, 2007. 

[21] E.A. Barbashin, Lyapunov function. Moscow: Nauka, 

1970. 

 

 

 

Authors’ Profiles 

 
Nikolay Karabutov is the professor of de-

partment Problems Control of Moscow 

technological University (MIREA). Doctor 

of technical sciences, professor. 

The research areas are the automatic con-

trol theory, identification, adaptive control, 

simulation and decision-making. 

 

 

 

 

How to cite this paper: Nikolay Karabutov, "Adaptive Observ-

ers with Uncertainty in Loop Tuning for Linear Time-Varying 

Dynamical Systems", International Journal of Intelligent Sys-

tems and Applications(IJISA), Vol.9, No.4, pp.1-13, 2017. DOI: 

10.5815/ijisa.2017.04.01 

https://www.researchgate.net/publication/266055981_Identification_of_uncertain_systems_I_Adaptive_proportional-integral_algorithms_with_uncertainty?ev=prf_pub
https://www.researchgate.net/publication/266055981_Identification_of_uncertain_systems_I_Adaptive_proportional-integral_algorithms_with_uncertainty?ev=prf_pub
https://www.researchgate.net/publication/266055981_Identification_of_uncertain_systems_I_Adaptive_proportional-integral_algorithms_with_uncertainty?ev=prf_pub
https://www.researchgate.net/publication/266055981_Identification_of_uncertain_systems_I_Adaptive_proportional-integral_algorithms_with_uncertainty?ev=prf_pub

