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Abstract——  In this paper, we present a combination of 

sequential trained radial basis function networks and fuzzy 

techniques to enhance the variable structure controllers 

dedicated to robotics systems. In this aim, four RBFs networks 
were used to estimate the model based part parameters (Inertia, 

Centrifugal and Coriolis, Gravity and Friction matrices) of a 

variable structure controller so to respond to model variation 

and disturbances, a sequential online training algorithm based 

on Growing-Pruning "GAP" strategy and Kalman filter was  
implemented. To eliminate the chattering effect, the corrective 

control of the VS control was computed by a fuzzy controller. 

Simulations are carried out to control three degrees of freedom 

SCARA robot manipulator where the obtained results show 

good disturbance rejection and chattering elimination. 
 

Index Terms—  Radial Basis Function Networks, Sequential 

Training, Growing and Pruning, Fuzzy Control, Variable 

Structure Control, Robot Manipulator. 
 

I.  INTRODUCTION 

Robust control structures are widely applied to control 

robot manipulators which are known to be h ighly coupled 

nonlinear systems [1].  

Robots are usually exposed to load variations, 

uncertainties and disturbances which make them very  

hard to control. Variable structure controllers are robust 

schemes that use a high gain switching term to drive the 

system states toward a specific surface and maintain  the 

system along it [2].  

These controllers are robust against structured and 

unstructured uncertainties, but they have two important 

drawbacks: 

The first one is h igh frequency oscillations in  the 

control signal (chattering) and the other is the model 

dependency where the knowledge of the exact system 

parameters is required to compute the equivalent control. 

Several researches works have been developed over the 

use of neural networks and fuzzy techniques to fix up 

such disadvantages. 

Authors of [3] used a fuzzy controller to compute the 

gain K in the discontinuous control part while [4] trained 

one RBF network to estimate the global robot model 

function. In [5], a sliding mode control with a neural 

network is used to predict the unknown interconnection 

terms of nonlinear interconnected systems. In [6], fuzzy  

sliding mode control is used to control nonlinear systems 

with structured and unstructured uncertainties with 

feedback linearization. 

Authors of [7] trained one layer MLP neural network 

to design a sliding mode of single and coupled inverted 

pendulum. A neural adaptive based sliding mode 

controller is designed to trajectory tracking for mobile 

robots in [8]. 

Radial basis function (RBF) neural networks with their 

approximation capabilit ies [9] are very emergent 

powerful tools for system identification, so they can 

estimate any complex nonlinear system parameters even 

in presence of disturbances [10] [11].  

In this paper, and to overcome the variab le structure 

control lacks, a  hybrid control law is proposed where four 

RBF networks are used to estimate the model parameters 

for the equivalent control taking advantage from the basic 

knowledge of the robot dynamic model.  To  eliminate the 

chattering, the corrective control part is designed with a 

fuzzy controller to update the gain so to avoid the use of a 

constant predefined value. 

To train the proposed networks, a sequential training  

algorithm based on Growing-Pruning (GAP) strategy and 

Kalman filter is implemented [9]. A similar approach in  

[12] was applied to control two degrees of freedom robot 

manipulator where we ignored the frictions. The present 

work represents an extension of [12] where a fuzzy  

controller is implemented and neuron significance is 

introduced in the GAP criteria. The proposed approach is 

implemented to control a more co mplex nonlinear p lant, 

three degrees of freedom RRP SCARA more constrained 

system than two degrees of freedom robot system used in 

[12] with consideration of frictions and disturbances . 

The remainder of this paper is organized as follows: 

Section 2 is dedicated to the variab le structure 

controller while in section 3; the main  steps of GAP-EKF 

are explained. The application of the fuzzy-RBF based 

variable structure control is presented in section 4. 

Simulations results are summarized in section 5. Section 

6 gives some concluding remarks. 

 

II.  VARIABLE STRUCTURE CONTROL SCHEME 

A.  The robot model 
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The dynamic equation of a manipulator of n degrees of 

freedom is given by (1) [2]: 

( ) ( , ) ( ) ( )M q q C q q q G q F q                            (1) 

where , ,q q q are position, velocity and acceleration 

vectors respectively,  is the actuators torques vector. 

M(q) is the symmetric and positive definite inertia 

matrix, ( , )C q q  is the Corio lis/Centrifugal matrix while 

G(q) is the gravity vector. ( )F q  is the frict ion terms 

vector.  

In the sequel, we will use the symbols M, C, G and F 

instead of M(q), ( , )C q q , G(q) and ( )F q ). 

B.  Variable structure controller 

A classical variable structure control is designed based 

on driving the robot states to slide over a surface s  

where all mot ion in neighborhood of the manifold is 

driven toward it [2][14]. 

Let's define the tracking error like: 

= .de q q                                                                  (2) 

where 
dq  is the desired position and q is jo int position. 

The sliding surface is defined by [14]: 

= .s e e                                                                   (3) 

where
1 2= [ , . ]ndiag    , 

i  is a positive constant. 

We have to choose   so that the energy of the system 

will decay when s is not null, so it has to satisfy the 

condition [2]: 

21
.

2

d
s s

dt
                                                            (4) 

The variable structure controller is given by: 

= .eq cc                                                                 (5)  

where the equivalent control part is given by: 

ˆ ˆˆ ˆ= ( ) ( , ) ( ) ( ).eq r rM q q C q q q G q F q                     (6) 

and the corrective one is defined by: 

= ( ).cc Ksign s                                                        (7) 

ˆ ˆˆ ˆ, , ,M C G F  are estimations of , ,M C G and F 

respectively [2]. K=diag
1 2[ , ]nK K K  is a diagonal 

positive definite matrix in which 
nK  is a positive 

constant and 
rq is given by: 

= ,   = .r d r dq q e q q e                                         (8) 

The closed loop relation is given by [2]: 

= ( ).Ms Cs f Ksign s                                           (9) 

where f  is the estimation error: 

ˆˆ= ( ) ( )

ˆ ˆ         ( ) ( ).

r rf M M q C C q

G G F F

   

   
                                 (10) 

To prove the stability of the proposed controller, a  

positive definite Lyapunov function candidate V and its 

time derivative are given by [2]: 

1
( ) = .

2

TV s s Ms                                                       (11) 

( ) = .V s f K                                                       (12) 

The closed loop system is stable if the gain K is chosen 

greater than the boundary of uncertainties  [2]:  

> .K f                                                                    (13) 

In a real environment, we have an imprecise idea about 

the value f and to ensure the stability o f the controlled 

robot we have to work with high gains which cause high 

frequency oscillations and discontinuities in the control 

signal. 

The designer has to estimate the exact model of the 

robot to minimize the boundary of f , and decrease the 

value of K to cancel the effect of chattering, which is not 

always evident due to disturbances, friction and 

uncertainties. This estimat ion could be done efficiently  

by using Radial Basis Function "RBF" with sequential 

training. 

In other hand, the value of the gain K is estimated by a 

fuzzy controller so to start with high values when the 

states of the system are far from the surface and decrease 

the gain value near the sliding surface. 

 

III.  RBF SEQUENTIAL TRAINING ALGORITHM 

A.  RBF Network description 

Radial basis function networks (RBF) are a variety of 

artificial neural networks[20];  they have one hidden layer 

and a linear output. The network output 

1 2
ˆ ˆ ˆ ˆ= [ , ,... ]Nyy y y y  is given by (14) [10]:  

ˆ = ( ) = ( ) .Ty f X X A                                             (14) 

1 2= [ , , , ]NA a a a  is the weight's vector connecting 

the hidden layer to the output layer with N is  the hidden 

layer neurons number, ( )T X  is the response of the 

hidden layer to the input vector
1 2= [ , , , ]NxX x x x , Nx 

and Ny are the inputs and outputs dimensions respectively 

and   is the Gaussian function given by [9]: 

2

2
( ) = exp( ).

X
X






                                          (15) 

  is the center's vector of the hidden neurons and   

is the width of the Gaussian function. 

B.  Sequential network training algorithm 

To obtain the desired behavior iy  responding to the 

input ix , where i is the sample index, the neural network 

is trained  using a sequential algorithm with a Growing 

and Pruning strategy (GAP) [9] to optimize the network 

architecture and an Extended Kalman Filter to adjust the 



 Sequential Adaptive RBF-Fuzzy Variable Structure Control Applied to Robotics Systems 21 

Copyright © 2014 MECS                                                           I.J. Intelligent Systems and Applications, 2014, 09, 19-29 

network parameters. The growing of the RBF neural 

network is controlled regarding the neuron's influence in  

the global output [13]. The influence of the thj  neuron is 

given by : 

 

)

=1

1.8
= .

1.8

Nx

j j

j N
Nx

j

j

a
Inf




                                           (16) 

1).  Growing criterium 

While using and training the network, the algorithm 

decides to add a new neuron to the network if the criteria 

in (17) and (18) are satisfied [13]: 

> .i ir ix                                                            (17) 

 
1

=1

(1.8 )
> .

1.8

Nx

i ir

i mN
Nx

j

j

x
e

 








                                   (18) 

where: 

ˆ= ( ) ( ).i i i i ie y x y x                                              (19) 

and 

 
max min

= max , .i

i                                              (20) 

ir  are the centers of the closest hidden unit to current 

input ix . 

max,    , 
min  and   are thresholds to be selected 

appropriately. Equation (17) checks if the current input 

data 
ix  are far from all existing h idden neurons so they 

can not reproduce the desired outputs while (18) checks if 

the influence of the new added N+1 node is greater then a 

threshold 
m . 

The parameters of the new added neuron are described 

in (21): 

1

1

1

=

=

=

N i

N i

N i ir

a e

x

x



  















                                                (21) 

where   is the overlap factor. 

2).  Adjusting the network parameters with EKF 

If the growing criteria in (17) and (18) are not met, 

only the network parameters of the nearest node to the 

current inputs are updated using the extended Kalman  

filter (EKF) as follows [9]: 

1= .r r

i i i iw w K e                                                     (22) 

The vector 
r

iw  contains the weights, centers and width 

of the nearest neuron to the current input data ix :  

 

 = , , .r

r r rw a                                                        (23) 

and 
iK  is the Kalman gain matrix witch is computed 

for every new input/output data by: 

1

1 1= [ ] .T

i i i i I i iK P B R B P B 

                                   (24) 

ˆ=i wB y  is the grad ient matrix of the function ŷ . 

iR  is the variance of the measurement noise. 
iP  is the 

error covariance matrix which is updated by: 

1 0= [ ] .T

i z z i i i i z zP I K B B P q I                             (25) 

0q  is a scalar that determines the allowed random step 

in the direction of the gradient matrix. If the number of 

parameters to be adjusted is z , then 
iP  is a z z  

positive definite symmetric matrix. When a new hidden 

neuron is added, the dimensions of 
iP  will be: 

1

0

0
= .

0

i

i

g g

P
P

q I





 
 
 

                                                 (26) 

The new rows and columns are init ialized by 
0q (an 

init ial uncertainty estimat ion). g is the number of new 

parameters introduced by the new hidden neuron. 

3).  Pruning criterium 

For each presented data, the thj  neuron could be 

deleted if the criterium in (27) is verified: 

 
=1

(1.8 )
> .

1.8

Nx

j

j pN
Nx

j

j

a e



                                            (27) 

where pe  is a pruning threshold to be selected. 

 

IV.  RBF-FUZZY BASED VARIABLE STRUCTURE 

CONTROLLER 

A.  RBF Network  based equivalent control 

To fix the problems of model dependency of the 

variable structure controller in (5), four RBF networks are 

trained online to estimate the parameters of matrices 
, ,M C G  and F in (6).  

The main idea is to use RBF networks defined in  

section III to estimate the parameters of the equivalent 

control. The networks are online trained using the GAP-

EKF based algorithm. In this work we use a RBF network 

to estimate inertia matrix M, another one to estimate 

Coriolis matrix C, a third RBF neural network to estimate 

gravity vector G and the last one is used to compensate 

friction terms F . The outputs of the RBF networks are the 

estimated components of the model matrices as given in  

(28,  29, 30 31) 

ˆ ( ) = ( )

         = ( ) , = [ ]

M M

T T

M M M M

M q f X

X A X q
                          (28) 
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ˆ ( , ) = ( )

            = ( ) , [ , ]

C C

T T T

C C C C

C q q f X

X A X q q 
                    (29) 

ˆ ( ) = ( )

        = ( ) , = [ ].

G G

T T

G G G G

G q f X

X A X q
                            (30) 

ˆ ( ) = ( )

        = ( ) , [ ].

F F

T T

F F F F

F q f X

X A X q 
                             (31) 

 

where , ,M C Gf f f  and 
Ff  are four independent RBF 

neural networks with inputs , ,M C GX X X  and 
FX . 

Their weights vectors are , ,M C GA A A  and 
FA  

respectively 

Equation (6) becomes: 

= ( ) ( , )

                              ( ) ( ) .

T T T T T

eq M M r C C r

T T T T

G G F F

q A q q q A q

q A q A

   

 
            (32) 

The resulted RBF based equivalent control is shown in 

Fig.1. 

 

Fig 1. RBF based equivalent controller 

 

B. Fuzzy corrective control 

Usually, a fuzzy  system has one or more inputs and a 

single output with a rule base and an inference engine as 

showed in Fig.2. The rules in the rule base are in the 

following form [15]: 

IF xi is Ai THEN yi is Bi 

where Ai and Bi are fuzzy sets 

The output of the fuzzy controller is given by (33) 

[16]: 

*

1
1

*

1
1

( )

( )

( )

m

i

m

i

M
nm

A ii
Tm

M
n

A ii
m

x

y x

x

 

 









 
 


                         (33) 

where 1[ ,..., ,.... ]m M T    is the y membership 

functions centers vector. 
1( ) [ ( ),..., ( ),.... ( )]m M Tx x x x     is the vetcor of 

heights of the output y membership functions and 

( )m x is given by[21]: 

*

1

*

1
1

( )
( )

( )

m

i

m

i

n

A im i

M
n

A ii
m

x
x

x















                                     (34) 

where M is the amount of rules 

The corrective control in (7) is obtained by a fuzzy  

controller. The tuning rule for the gain K is to decrease its 

value near the sliding surface in order to damp the 

chattering amplitude and to increase it far from the 

surface. In this regard, a fuzzy controller rule base is 

proposed for tuning K as illustrated in table (1), in which  

inputs are the surface s and it’s time derivative 

respectively. (ZE: Zero; B: Big; M: Medium; N: Negative; 

P: Positive). For multiple-output system, they can be 

considered as a combination of several single-output 

systems. 

 

Fuzzification 
Fuzzy inference 

engine Defuzzification 

Rule base 

A x B y 

 

Fig. 2. Fuzzy controller 

 

Table.1. Fuzzy rule base for tuning the gain “K” 

s 

s  
NB NS ZE PS PB 

N KB KB KM KS KB 

Z KB KM KS KM KB 

P KB KS KM KB KB 

 

To design the corrective control, membership functions 

for the fuzzy controller input (surface s, its derivation) 

and the output (gain K) are presented in Fig.3, Fig.4 and 

Fig. 5.  

The whole fuzzy -GAP-RBF neural networks based 

variable structure controller is shown in Fig.6. 

 

V.  SIMULATION RESULTS 

Simulations were carried out over a three dof RRP 

SCARA robot manipulator whose dynamic model is 

given by (35) [4]: 

( ) ( , ) ( ) ( ) = .M q q C q q q G q F q                         (35) 

with: 
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Fig. 3. Membership function of s (input 1) 

 

 
Fig. 4. Membership function of  (input 2) 

 

 
Fig.5. Membership function of K (output) 

 

 
Fig. 6. Neural adaptive-Fuzzy variable structure controller 

11 2

12 2

13

21 2

22 23

31 32 33

= 2.1240 1.44 ( )

= 0.4907 0.72 ( )

= 0

( ) = = 0.4907 0.72 ( )

= 0.4907, = 0

= = = 0

M cos q

M cos q

M

M q M cos q

M M

M M M




 




 
 





                (36) 
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11 2 2

12 2 2

22 2 2

13 21 23

31 32 33

= 1.44. . ( )

= 0.72. . ( )

= 0.72. . ( )
( , ) =

= = = 0

= = = 0

C q sin q

C q sin q

C q sin q
C q q

C C C

C C C






 






                         (37) 

1

2

3

= 0

= 0
( ) =

= 4.9

G

G
G q

G









                                          (38) 

1 1 1

2 2 2

3 3 3

= 12 0.02 ( )

3 (3 )

= 12 0.02 ( )

( ) = 3 (3 )

= 12 0.02 ( )

3 (3 )

F q sign q

sin t

F q sign q

F q sin t

F q sign q

sin t

 


  


  





                  (39) 

 

The external disturbances are: 

5 (2 )

= 5 (2 )

5 (2 )

d

sin t

sin t

sin t

 
 


 
  

                                                       (40) 

We used the variable structure controller in (5) to  

control the SCARA robot where the Inertia, Centrifugal 

and Corio lis and friction model matrices are estimated 

using the proposed sequential algorith m. In  our case (38), 

the gravity vector ( )G q  remains constant and does not 

need to be estimated. 

To test the robustness of the proposed controller; we 

considered the disturbances in (40) and altered the 

parameters of the inertia matrix by adding a quantity 

2 = 0.001m kg  to the second link mass 
2m . 

The desired trajectory to be tracked is a sinusoidal 

signal as shown in (41): 

=1 ( )dq sin t                                                        (41) 

Fig.7, Fig.8, Fig.9 show the desired and real positions 

of the three joints and Fig.10, Fig.11, Fig.12 show the 

tracking erro r of the robot joints while velocity errors are 

presented in Fig.13, Fig.14, Fig.15. We see that both 

position and velocity errors are acceptable and converge 

toward zero in a short time (after 1s). That means that the 

proposed RBF neural networks (with the sequential 

learning algorithm) needed just few data samples to learn 

the robot behavior. 

 
Fig. 7. Desired and real position of Joint 1 

 

 
Fig. 8. Desired and real position of Joint 2 
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Fig. 9. Desired and real position of Joint 3 

 

 
Fig.10. Position error of Joint 1 

 

 
Fig.11. Position error of Joint 2 

 

 
Fig. 12. Position error of Joint 3 
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Fig. 13. Velocity error of Joint 1 

 

 
Fig. 14. Velocity error of Joint 2 

 

 
Fig. 15. Velocity error of Joint 3 

 

Torques acting on the robots joints and sliding surface 

are presented in Fig.16, Fig.17, Fig.18 and Fig.19 

respectively. We see clearly from the control signal 

figures that chattering is completely eliminated due to the 

good estimation of the model parameters and so we do 

not need to work with high gain  values to compensate the 

model variations, uncertainties and external disturbances. 

Values of the gain K are presented in Fig. 20 and we 

see that K is big far from the surface and when the system 

states are close to the sliding surface the values of k are 

decreased to be null.  

 



 Sequential Adaptive RBF-Fuzzy Variable Structure Control Applied to Robotics Systems 27 

Copyright © 2014 MECS                                                           I.J. Intelligent Systems and Applications, 2014, 09, 19-29 

 
Fig. 16. Control torque for joint 1 

 

 
Fig. 17. Control torque for joint 2 

 

 
Fig. 18. Control torque for joint 3 

 

 
Fig. 19. Sliding surface 
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Fig. 20. fuzzy controller output (Gain K) 

 

The training of RBF neural networks is achieved 

online during the control process. Table.2 summarizes 

mean square errors of training for the three RBF neural 

networks for each second of the simulat ion time (5s) in  

presence of external disturbances and model uncertainties. 

 
Table 2. Estimation errors of the RBF neural networks  

Seco-ndes 
without disturbances and uncertainties without disturbances and uncertainties 

M C F M C F 

1 5.41e-6 4.53e-8 1.16e-16 2.62e-5 9.21e-8 3.88e-15 

2 6.27e-8 4.45e-8 2.22e-17 3.54e-7 6.55e-8 3.29e-16 

3 2.49e-8 7.92e-8 8.88e-17 4.02e-7 8.22e-8 1.24e-16 

4 1.56e-8 3.33e-8 3.05e-17 8.23e-7 5.36e-8 5.86e-16 

5 2.85e-8 9.74e-8 8.72e-17 5.14e-7 1.94e-7 2.11e-16 

 

The training errors are less then 1e-6, 1e-8, 1e-16 for 

estimating inert ia, Coriolis and frict ion matrices 

respectively.  These small training erro rs are due to the 

strength of the sequential t rain ing algorithm. Indeed, the 

fact that the train ing is achieved online, allows the RBF 

to react against any disturbance or model variation. 

 

VI.  CONCLUSION 

We presented in this paper a variable structure 

controller for robot manipulator where the equivalent 

control was achieved using four radial basis function 

neural networks to estimate the robot matrices 

(Inertia,Centrifugal and Coriolis, Gravity and Friction). 

To enhance the estimation abilit ies of the networks, we 

implemented a sequential training algorithm to identify 

the model parameters online. The correct ive control was 

replaced by a fuzzy controller to compute the K gain  

values along the control process. 

The obtained results are very acceptable even in 

presence of uncertainties and the chattering problem of 

variable structure controllers is avoided. 
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