
I.J. Intelligent Systems and Applications, 2014, 10, 41-46

Published Online September 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2014.10.06

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 10, 41-46

Impact of Design Patterns on Software

Maintainability

Fatimah Mohammed Alghamdi, M. Rizwan Jameel Qureshi
Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

Emails: f_t_m.g@hotmail.com, anriz@hotmal.com

Abstract— This paper mainly studies the effect of design

patterns on the Software maintainability. Design patterns

describe solutions for common design problems and they were
introduced to improve software quality and accelerate software

development. However, there are some difficulties to choose an

optimal pattern adapted to a certain application and problem. So

until now the results on the effect of design patterns on software

quality are controversial. In this context, we propose a tool for
design pattern guided that retrieves the appropriate pattern with

respect to software maintainability from a repository of patterns.

It measures the maintainability of design pattern by some

metrics and candidate the more maintainable pattern to the

designer or developer. It provides a support for decision making
during system design and refactoring. As the results, the

decision of applying a certain design pattern is usually a trade-

off since the effect of design pattern on software maintainability

is influenced by some factors such as the pattern size and the

prior expertise of the developer.

Index Terms— Design Patterns, Software Maintainability,

Metrics, Pattern Size, Tool

I. INTRODUCTION

A design pattern is a general reusable solution to a

commonly occurring problem in software design. It can

be defined as a description or template for how to solve a

problem that can be used in many different situations [1].

There are three main types of design patterns that are

architectural patterns, Gang of Four (GoF) design

patterns and idiom patterns. In this paper we focus in the

GoF design patterns that are cataloged in the widely

referenced book by the “Gang of Four” [2]. The authors

classified 23 patterns according to the purpose and

according to the scope. The purpose reflects what a

pattern does; patterns can have creational, structural, or

behavioral purpose. The scope classification specifies

whether the pattern applies primarily to classes or to

objects. In [2], the authors suggest that using design

patterns provide easier maintainability and reusability,

more understandable implementation and more flexible

design. In recent years, many researchers have attempted

to evaluate the effect of GoF design patterns on software

maintainability, they conducted several empirical

methods such case studies, surveys and experiments, but

safe conclusions cannot be drawn since the results lead to

different directions. A design pattern needs to be

investigated before it is used and the designers are

expected to have a good understanding and experience

with design patterns. In this situation, some problem still

face the experienced designer which is time consuming to

understanding, identificat ion and investigation of the

design pattern appropriate to his applications [3].

In this paper we have attempt to evaluate the effect of

GoF design patterns on software maintainability to draw

safe conclusion about this issue. We have proposed a tool

to investigate which of design provide easier

maintainability under considering the most common

factor which is the system size. This tool helps the

experienced and even the inexperienced designer for

choosing the more maintainable pattern because it is

supplied by a repository of patterns.

In the next section, we rev iew the most recently related

works. In Section III, the problem statement is stated, and

proposed solution is summarized at Sect ion IV. Then a

validation of th is solution is presented in Section V.

Conclusion is given in Section VI.

II. RELATED WORK

Design patterns have been subjected to limited

empirical evaluation, and that much of this has also only

been studying patterns indirectly [1]. Until now,

researchers attempted to investigate the outcome of

design patterns with respect to software quality through

empirical methods, i.e. case studies, surveys and

experiments, but safe conclusions cannot be drawn since

the results are controversial [4].

The original study to evaluate the impact of design

patterns on software maintenance was applies by Prechelt

et al. [5]. They conducted an experiment called PatMain

by comparing the maintainability of two implementations

of an applicat ion, one using a design pattern and the other

using a simpler alternative. They used four different

subject systems in same programming language. They

addressed five patterns: Decorator, Composite, Abstract

Factory, Observer and Visitor. The researchers measured

the time and correctness of the given maintenance tasks

for professional participants . They found that it was

useful to use a design pattern but in case where simple

solution is preferred, it is good to follow the software

engineer common sense about whether to use a pattern or

not, and in case of uncertainty, it is better to use a pattern

as a default approach. A thorough understanding of

specific design patterns is often helpful for program

maintenance.

PatMain experiment [5] replicated by Prechelt and

Liesenberg [6] but in much reduced form. They used two

42 Impact of Design Patterns on Software Maintainability

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 10, 41-46

systems out of the four used in the original experiment

and in different programming languages. The participants

were 13 students. Their results confirmed the result of the

original experiment but due to the small size of the

experiment they found only one statistically significant

result: the non-pattern based version of one of systems

was more maintainable and can be extended more quickly.

Juristo and Vegas [7] conducted another replication

study for PatMain experiment [5]. They conducted their

study on two software systems in two d ifferent languages .

They addressed three different patterns: Abstract Factory,

Composite and Decorator. The participants were 8 master

students. The dependent variable was only the time (in

minutes) to complete each maintenance task. Their results

were inconsistent with the original study. They found that

systems with design patterns were less maintainable.

Nanthaamornphong and Carver [8] also replicated the

PatMain experiment [5]. In their experiments they used

the same systems of the original experiment. They

focused on four patterns: Observer, Visitor, Decorator

and Composite. Eighteen students in a graduate-level

Software Engineering course participated in the study.

The results of this replication were d ifferent from those in

the original study. They found that the design patterns did

not improve either the maintainability or the

understandability of these systems.
Krein et al. [9] performed also a replication for the

same experiment done by Prechelt et al. [5]. In this

experiment they used two systems in two different

languages. They studied three different patterns:

Decorator, Composite and Abstract Factory. They found

that by performing some modifications on the two

versions, the pattern version and the non-pattern version,

the pattern based designs took longer time and have more

faults than non-pattern designs except for one

modification task.

Hegedus et al. [10] evaluated the impact of design

patterns on maintainability directly by conducting an

empirical analysis. They analyzed more than 300

revisions of the JHotDraw software system which relies

heavily on some design patterns. They calculated the

maintainability values with their probabilistic quality

model and mined the design pattern instances parsing the

comments in the source code. They calculated the

maintainability values with their probabilistic quality

model and mined the design pattern instances parsing the

comments in the source code. They found that there is a

strong relation between the rate of design patterns in the

source code and the maintainability. Therefore using

design patterns improve the code maintainability.

Zhang and Budgen [1] conducted a systematic

literature rev iew in the form of a mapping study to

examine the extent and form of the empirical knowledge

that is available for GoF design patterns. They augmented

their analysis by including some “experience” reports that

described application of patterns using less rigorous

observational forms. They found some support for the

usefulness of patterns in providing a framework for

maintenance but they could not identify firm guidelines

about the efficient use of particular patterns to improve

the software quality because the available studies were

inadequate.

Ali and Elish [11] performed a literature survey to

understand the impact of the GoF design patterns on

software quality attributes by comparing the existing

empirical evidence in the literature. They investigated the

impact of design patterns on four quality attributes :

maintainability, evaluation, performance and fault-

proneness. The results show that in general, the impact of

design patterns on maintainability, evolution and change

proneness is negative. For performance, the number of

studies that addressed performance and the number of

covered patterns make it difficult to draw a conclusion.

Finally for fault- proneness, the results are different from

one study to the other, thus it is difficult to make a

decision regarding their impact.

Hsueh et al. [12] proposed an analytical assessment to

evaluate the effectiveness of design patterns to help

programmers to inspect the correctness of the application

of these design patterns. They also proposed two different

measurement ways for the application of design patterns:

Occasion and effectiveness analysis to evaluate some

well-known open source systems. They defined their

context and their anticipated changes and then checked

whether they held up to the expectations. Their

conclusion provides that although design patterns can be

misused, they are effective to some degree in either early

stage or late stage of maintenance.

Nadia et al [3] presented approach assists the designers

choosing their appropriate design patterns. Their

approach was supported by an interactive tool and was

guided by set of comparison criteria and recommendation

rules. The tool allows the designer to draw a design

fragment, present the problem then re-phrases the

problem in order to obtain the intention of a certain

pattern. Then, it explores the candidate solutions by

filtering patterns that meet the intentions through the use

of recommendation rules.

Ampatzoglou et al. [4] conducted study to propose a

theoretical methodology by comparing three design

patterns with two alternative solutions, with respect to

several quality attributes, through the mathemat ical

formulat ion and well known metrics. They investigated

designs by studying the literature, open-source projects

and by using design patterns. They have created decision

support tool that aids the developer to choose the

appropriate design pattern. The input of the tool is the

pattern under consideration, the estimated system size

and the goals of the design team with respect to quality

attributes. The tool simulates all the steps of the proposed

methodology. The results show that the decision of

applying a design pattern is usually a trade-off because

patterns are not universally good or bad, but it should be

preferred for systems that are intended to be heavily

reused and/or maintained. Furthermore, two additional

factors have been highlighted: pattern size and

developers‟ prior experience with pattern.

Table 1 gives a brief description for the related works

regarding some limitations which are found in them.

 Impact of Design Patterns on Software Maintainability 43

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 10, 41-46

Table 1. Summarization for the related works

T itle of Paper Limitations

Design Patterns in Software Maintenance:

An Experiment Replication at Freie University at Berlin [6].  The experiment is not described in enough detail, having missed
important information, such as:
o why particular software artifacts selected
o why particular design patterns addressed
o why a new programming language is added

 Their results produce conflict to identify the real impact of
design patter.

 Not provide clear decision to select the efficient design pattern.

Design Patterns in Software Maintenance: An Experiment Replication at
UPM - Experiences with the RESER'11 Joint Replication Project [7].

Design Patterns in Software Maintenance:
An Experiment Replication at University of Alabama [8].

Design Patterns in Software Maintenance:
An Experiment Replication at Brigham Young University [9].

Myth or Reality? Analyzing the Effect of Design Patterns on
Software Maintainability [10].

 It analyzed only one system with a relatively few number of

patterns.

 Its result should be handled with caution.

What Do We Know about the Effectiveness of
Software Design Patterns? [1].

 The survey is need for more design-centric evidence.

 The undertaken studies identified a small number of design
patterns.

 Not provide clear decision to select the efficient design pattern.

A Comparative Literature Survey of
Design Patterns Impact on Software Quality [11].

 The undertaken studies have several variable factors that could
produce differences in their results.

 Not all the GoF design patterns were covered in the literature.

 Its result should be handled with caution.

An Approach for Evaluating the Electiveness of
Design Patterns in Software Evolution [12].

 Not provide clear way to select the appropriate design pattern.

A design pattern recommendation approach [3].  Mixture between detection and select pattern.

A methodology to assess the impact of
design patterns on software quality [4].

 The method cannot be applied to all design patterns.

III. PROBLEM STATEMENT

Which of the design patterns improve the software

maintainability, and under what factors?

IV. PROPOSED SOLUTION

Design patterns are not universally good or bad as the

previous authors suggested in their empirical studies [5,9],

but until now there is no study that identifies which of

design patterns improve the software maintainability and

which of them has weaken effect. The effect of design

patterns on the software maintainability is governed by

different factors such as pattern size, p rior expertise of

the developer with pattern and the most important quality

attributes that must achieved by pattern [4], and before all

of these is fitting the pattern to a certain des ign problem

[3]. In [4] the authors have created a decision support tool

that helps the developer to choose between three of GoF

design patterns and equivalent alternative design

solutions, it calculates metrics scores of each solution

based on the system size, then it presents where a design

solution is getting better than another with respect to

several quality attributes. This paper have proposed a new

version of this tool that aims to compare the

maintainability of GoF design patterns with each other

based on the maintainability predictors.

A. Design Patterns under Consideration

Design patterns can be maintained in three possible

ways [13] which are adding a class as a concrete

participant, modifying the existing interface participants

or introducing a new client, and the first one is the most

common type of maintenance according to that study [13].

So this way is selected to maintain the system and

accordingly the axes of change were chose. The major

axes of change in the design pattern [13] are: adding

refined abstractions, adding concrete implementers,

adding clients and adding methods and attributes to any

class of pattern. I have chosen to extend/maintain the

system in the first two axes, i.e. add new refined

abstractions and add new concrete implementers. These

axes are base for construct the equations of the metrics

that used for comparing. At this point it is suitable to

clarify that proposed tool provides for comparing design

pattern with its alternative patterns that describe

equivalent functionality and have specified axes of

change. So according to the selected axes, the patterns

under consideration are all GoF patterns that involve

class hierarchies and client classes , shown in table 2.

Theses pattern are gathered by inspecting the class

diagram for each one as presented in the standard form

according to GoF book [2]. A lso these patterns are

categorized such each one put with its alternative which

share same functionality according to the GoF purpose

classification [2].

B. Metrics as measurement of maintainability

There are ten object oriented metrics used as

maintainability p redictors [14,15] to investigate the effect

of design pattern, all these metrics defined in table 3.

Each metric has constructed equation based on the

selected axes of change; hence the comparison is done by

44 Impact of Design Patterns on Software Maintainability

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 10, 41-46

calculating the equations and comparing the result values.

The pattern with the higher count of lower metric values

is considered more maintainable [16,17].

Table 2. Design pattern under consideration

Creational Structural Behavioral

Abstract Factory
Builder
Prototype

Bridge
Composite
Decorator
Flyweight

Proxy

Interpreter
Chain of Responsibility
Observer
State

Strategy
Visitor

Table 3. Maintainability predictors

Metric Description

DIT
Depth of the inheritance tree (=inheritance level
number of the class, 0 for the root class). Range of

value [0,+1)

NOC
Number of children (=number of direct sub-classes

that the class has). Range of value [0,+1)

MPC
Message-passing couple (=number of send statements
defined in the class). Range of value [0,+1)

RFC
Response for a class (=total number of local methods
and the number of methods called by local methods in

the class). Range of value [0,+1)

LCOM

Lack of cohesion of methods (=number of disjoint

sets of local methods, i.e. number of sets of local
methods that do not interact with each other, in the
class). Range of value [0,+1)

DAC
Data abstraction coupling (=number of abstract data

types defined in the class). Range of value [0,+1)

WMPC
Weighted method per class (=sum of McCabe‟s
cyclomatic complexity of all local methods in the
class). Range of value [0,+1)

NOM
Number of methods (=number of local methods in the

class). Range of value [0,+1)

SIZE1
Lines of code (=number of semicolons in the class).
Range of value [0,+1)

SIZE2
Number of properties (=total number of attributes and
the number of local methods in the class). Range of
value [0,+1)

C. Tooling

The proposed tool aims to help the designer/developer

to choose the appropriate design pattern that produces

more maintainable system. The input of the tool is the

pattern under investigation and the estimated pattern size

which is number of refined abstractions classes (n) and

number of concrete implementers classes (m). The

functional architecture of proposed tool is shown in

figure 1, the user selects the pattern he wants to examine

then selects the metrics he is interested in and finally

defines the (n) and (m) for the pattern.

The tool retrieves all patterns that describe equivalent

functionality from a repository of patterns , and then

calculates the mathemat ic equations of selected metrics

for each equivalent pattern. The tool displays the results

in two phases: first phase indicates the average metric

scores for each pattern in the given range of (n) and (m),

and the second phase determines which pattern produces

„„best‟‟ results i.e. has the higher count of lower metric

values then consider as more maintainable.

Fig. 1. Architecture of the proposed tool

V. VALIDATION OF THE PROPOSED TOOL

Survey was conducted for the validation purpose. A

questionnaire consisting of 17 close ended questions

divided into 3 goals was used for data gathering on basis

of a 5-point likert scale, which is given in table 4.

Questions were arranged according to their relevancy to

defined goals. We preferred to use an electronic survey

because it is it's not take too much time and gives the

respondent much of t ime to think and answer questions

be credible, then we shared the link of that survey with

some people who are specialized in the software

engineering. Once the responders are collected they are

statistically analyzed for cumulative evaluation to find

support to our hypothesis or vice versa, as shown below.

Following are the three basic goals that div ided

questions in the electronic survey:

Goal 1: The necessity of the proposed tool

This goal provides the answers of the questions that

will be exp lored the extent of the necessity of the

proposed tool. The more maintainable design pattern

makes the system easier in the maintenance, but there is

some difficu lt to find the perfect pattern especially if the

developer has not sufficient experience in the design

patterns.

Table 4. Likert scale

1 Strongly Disagree

2 Disagree

3 Neutral- Neither Agreed Nor Disagree

4 Agreed

5 Strongly Agreed

Designer/

developer

Design
pattern

System

size

Repository of

design patterns

Interested

metrics

Display the average metric scores

for each pattern

Display the more

maintainable pattern

Calculate metric scores based in the

system size for the selected pattern

and each equivalent ones

 Impact of Design Patterns on Software Maintainability 45

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 10, 41-46

Goal 2: The efficiency of the proposed tool

This goal has been presented into seven questions; the

answers will help us to measure the efficiency of the

proposed solution. The maintainability metrics are used

to investigate the effect of design pattern on the software

maintainability; this effect is influenced by the system

size. The repository adds a positive effect for storing and

retrieving the design patterns .

Goal 3: How to improve the proposed tool

This goal provides the answers of the questions that

will be taken into account during the enhancement the

proposed tool.

Table 5. Cumulative statistical analysis of all three goals

Q. No
Str.

Disagree
Disagree Neutral Agree

Str.

Agree

1 0 1 6 7 8

2

3 7 10 2

3

2 11 9

4

1 2 15 4

5

2 7 11 2

6

3 6 12 1

7

6 12 4

8 3 3 13 3 0

9

1 5 13 3

10

1 12 7 2

11

1 6 11 4

12

1 15 6

13

2 4 9 7

14

12 8 2

15

1 3 15 3

16 1 1 8 9 3

17

1 3 13 5

Total 4 21 103 181 65

Avg. 1.07% 5.61% 27.54% 48.40% 17.38%

Fig. 2. Graphical representation of cumulative results for three goals

We evaluated all three defined goals as shown in table

5. The results are: 48.40% of the samples are agreed to

the proposed solution and 17.38% are strongly agreed to

it, whereas 5.61% are disagreeing and 1.07% are strongly

disagreed. 27.54% of the sample are neither agreed nor

disagree. These results are presented in figure 2.

VI. CONCLUSION

The authors proposed a solution to evaluate the effect

of design patterns on software maintainability. This

solution is simulated by a tool that measures the

maintainability o f each pattern by some relevant metrics

with regard the system size. In fact, we realize the

changes are frequent throughout the software

development process and we expected the utilizat ion

design pattern will facilitate those changes during

maintenance as it is reusable component. The results of

survey proved that tool provides a good evaluation for the

design pattern with respect to software maintainability. It

helps the designer/developer to choose the appropriate

design pattern that produces more maintainable system as

it is observed by the respondents of questionnaire.

As the results, the decision of applying a certain design

pattern is usually a trade-off since the effect of design

pattern on software maintainability is influenced by some

factors such as pattern size, prior expert ise of the

developer with pattern and the most important quality

attributes.

Thus, future work includes a deeper research with the

factors that control the effect of design patterns on

software maintainability. Furthermore we plan to

automate the methodology of tool to take the size

informat ion from an already implemented pattern, with

respect to specific design quality attributes adding to

available maintainability metrics in o rder to enhance the

decisions of applying a certain design pattern.

REFERENCES

[1] C. Zhang and D. Budgen, "What Do We Know about the
Effectiveness of Software Design Patterns?," IEEE

Transactions on Software Engineering, vol. 38, no. 5,

Sep./Oct. 2012, pp. 1213- 1231.

[2] E. Gamma, R. Helms, R. Johnson, J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, Reading, MA, 1995.

[3] B. Nadia, A. Kouas and H. Ben-Abdallah, "A design

pattern recommendation approach", CORD Conference

Proceedings, pp. 590- 593, 2011.

[4] A. Ampatzoglou, G. Frantzeskou and I. Stamelos, "A
methodology to assess the impact of design patterns on

software quality," Information and Software Technology,

Elsevier, vol. 54, no. 4, April 2012, pp. 331–346.

[5] L. Prechelt, B. Unger, W.F. Tichy, P. Brossler and L.G.

Votta , "A controlled experiment in maintenance:
comparing design patterns to simpler solutions," IEEE

Transactions on Software Engineering, vol. 27, no. 12,

Dec. 2001, pp. 1134-1144.

[6] L. Prechelt and M. Liesenberg, "Design Patterns in

Software Maintenance: An Experiment Replication at Freie
University at Berlin," Second International Workshop on

Replication in Empirical Software Engineering Research

(RESER), Sept. 2011 pp.1-6, 21. DOI 10.1109/

RESER.2011.12

1.07 5.61

27.54

48.40

17.38

0

10

20

30

40

50

60

12345

F
r
e

q
u

e
n

cy

Likert Scale

46 Impact of Design Patterns on Software Maintainability

Copyright © 2014 MECS I.J. Intelligent Systems and Applications, 2014, 10, 41-46

[7] N. Juristo, S. Vegas, "Design Patterns in Software

Maintenance: An Experiment Replication at UPM -

Experiences with the RESER'11 Joint Replication Project,"

Second International Workshop on Replication in

Empirical Software Engineering Research (RESER), Sept.
2011, pp.7-14, 21. DOI 10.1109/RESER.2011.8

[8] A. Nanthaamornphong and J. C. Carver, "Design Patterns

in Software Maintenance: An Experiment Replication at

University of Alabama," Second International Workshop

on Replication in Empirical Software Engineering
Research (RESER), Sept. 2011, pp.15-24, 21-21. DOI

10.1109/RESER.2011.11

[9] J.L. Krein, L. J. Pratt, A.B. Swenson, A.C. MacLean, C. D.

Knutson, and D.L. Eggett , "Design Patterns in Software

Maintenance: An Experiment Replication at Brigham
Young University ," Second International Workshop on

Replication in Empirical Software Engineering Research

(RESER), Sept. 2011, pp.25-34, 21-21. DOI 10.1109/

RESER.2011.10

[10] P. Hegedűs, B. Dénes, F. Rudolf and G. Tibor, "Myth or
Reality? Analyzing the Effect of Design Patterns on

Software Maintainability."Computer Applications for

Software Engineering, Disaster Recovery, and Business

Continuity , 2012, pp. 138-145

[11] M. Ali and M.O. Elish, "A Comparative Literature Survey
of Design Patterns Impact on Software Quality,"

Information Science and Applications (ICISA), 2013

International Conference on , vol., no., pp.1,7, 24-26 June

2013. doi: 10.1109/ICISA.2013.6579460.

[12] N.L. Hsueh, L.C. Wen, D.H. Ting, W. Chu, C.H. Chang,
and C.S. Koong, "An Approach for Evaluating the

Effectiveness of Design Patterns in Software Evolution,"

In: IEEE 35th Annual Computer Software and

Applications Conference Workshops (COMPSACW), July

2011, pp. 315–320. DOI 10.1109/COMPSACW.2011.59.
[13] T.H. Ng, S.C. Cheung, W.K. Chan, Y.T. Yu, Do

maintainers utilize deployed design patterns effectively?,

IEEE Proceedings of the 29th International Conference on

Software Engineering, IEEE Computer Society, 20–26

May 2007, Washington, USA, pp.168-177.
[14] A. Van Koten, A.R. Gray, An application of bayesian

network for predicting object-oriented software

maintainability, Information and Software Technology, Jan.

2006, pp. 59–67.

[15] U. Zdun, P. Alexiou, C. Hentrich, S. Dustdar, Architecting
as decision making with patterns and primitives,

Proceedings of the 3rd International Workshop on Sharing

and Reusing Architectural Knowledge (ICSE‟08), IEEE,

Leipzig, Germany, 10–18 May 2008, pp. 11–18.

[16] B. Henderson-Sellers, L. Constantine, I. Graham, Coupling,
cohesion: towards a valid metrics suite for object-oriented

analysis and design, Object-Oriented Systems, Mar. 2002,

pp. 143–158.

[17] M. Lorenz, J. Kidd, Object-Oriented Software Metrics,

Prentice Hall, New Jersey, USA, 2004.

Authors’ Profiles
Fatimah Alghamdi is a graduate student of Information

Technology, Faculty of Computing & Information Technology,

King Abdul-Aziz University, major in Information Technology.

Dr. M. Rizwan Jameel Qureshi received his Ph.D. degree

from National College of Business Administration &

Economics, Pakistan 2009. This author is best researcher
awardees from Department of Information Technology, King

Abdulaziz University Saudi Arabia in 2013

and Department of Computer Science,

COMSATS Institute of Information

Technology Pakistan in 2008.

How to cite this paper: Fatimah Mohammed Alghamdi, M.

Rizwan Jameel Qureshi,"Impact of Design Patterns on Software

Maintainability", International Journal of Intelligent Systems

and Applications(IJISA), vol.6, no.10, pp.41-46, 2014. DOI:
10.5815/ijisa.2014.10.06

