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Abstract— Non-isothermal flow through a curved 

square channel with strong curvature is investigated 

numerically by using the spectral method and covering 

a wide range of the Dean number, Dn, 

6000100 Dn  for the curvature 5.0 . A 

temperature difference is applied across the vertical 

sidewalls for the Grashof number 100Gr , where the 

outer wall is heated and the inner one cooled.  After a 

compressive survey over the parametric ranges, two 

branches of asymmetric steady solutions with two- and 

four-vortex solutions are obtained by the Newton-

Raphson iteration method. Then, in order to investigate 

the non-linear behavior of the unsteady solutions, time 

evolution calculations as well as power spectrum of the 

solutions are obtained, and it  is found that in the 

unsteady flow undergoes in the scenario “steady  

periodic   multi-periodic  chaotic”, if Dn  is 

increased. 

 

Index Terms— Curved Duct, Dean Number, 

Secondary Flow, Curvature, Time Evolution 

 

I. Introduction 

The study of flows and heat transfer through curved 

ducts and channels has been and continues to be an 

area of paramount interest of many researchers because 

of the diversity of their practical applications in flu ids 

engineering, such as in fluid transportation, turbo 

machinery, refrigerat ion, air conditioning systems, heat 

exchangers, ventilators, centrifugal pumps, internal 

combustion engines and blade-to-blade passage for 

cooling system in  modern gas turbines. Blood flow in 

the human and other an imals also represents an 

important application of this subject because of the 

curvature of many blood vessels, particularly the aorta. 

The flow through curved a duct shows physically 

interesting features under the action of centrifugal force 

caused by the curvature of the duct. The presence of 

curvature produces centrifugal forces which  acts at 

right angle to the main flow d irection and creates 

secondary flows. Dean (1927) was the first who 

formulated the problem in mathematical terms under 

the fully developed flow conditions and showed the 

existence of a pair of counter rotating vortices in  a 

curved pipe. In consideration of the importance, flows 

in curved ducts have been studied extensively in the 

literature for several decades, the readers are referred to 

Berger et al. (1983), Nandakumar and Masliyah (1986), 

Ito (1987) and Yanase et al. (2002) fo r some 

outstanding reviews on curved duct flows. 

The non-linear nature of the Navier-Stokes equation, 

the existence of mult iple solutions does not come as a 

surprise. The solution structure of fully  developed flow 

is commonly present in a bifurcation diagram which 

consists of a number of lines (branches) connecting 

different possible solutions. These branches can 

bifurcate and show multiple solutions in limit points 

(Mondal, 2006). An early complete b ifurcation study of 

two-dimensional (2-D) flow through a curved duct of 

square cross section was conducted by Winters (1987). 

Very recently, Mondal et al. (2007a) performed 

comprehensive numerical study on fully developed 

bifurcation structure and stability of two-dimensional 

(2D) flow through a curved duct with square cross 

section and found a close relationship between the 

unsteady solutions and the bifurcat ion diagram of 

steady solutions. The flow through a curved duct with 

differentially heated vertical sidewalls has another 

aspect because secondary flows promote fluid mixing 

and heat transfer in  the fluid (Yanase et al., 2005). 

They also studied the transitional behavior of the 

unsteady solutions by time evolution calculations.   

Many researchers have performed  experimental and 

numerical investigation on developing and fully 

developed curved duct flows. An early  complete 

bifurcation study of two-dimensional (2-D) flow 

through a curved duct with square cross section was 

performed by Winters (1987). Our u ltimate goal is  to 

investigate the non-isothermal flows through a curved 

channel with the presence of buoyancy effects by 

considering the strong curvature. Mondal et al. (2006) 

performed numerical pred iction of non-isothermal flow 

through a curved square duct over a wide range of the 

curvature and the Dean number. They showed that 

mailto:mizan_iu@yahoo.com


 Non-isothermal Flow through a Curved Channel with Strong Curvature  77 

Copyright © 2013 MECS                                                           I.J. Intelligent Systems and Applications, 2013, 09, 76-85 

stability characteristics drastically change due to an 

increase of curvature. However, there has not yet been 

done any  substantial work regard ing the flow 

characteristics through a curved square duct for large 

curvature ; this paper is, therefore, an attempt to fill up 

this gap with the investigation of the flow 

characteristics through a curved square channel for 

strong curvature because this type of flow is often 

encountered in engineering applications. From the 

scientific as well as engineering point of view, it is 

quite interesting to study curved channel flows with 

differentially heated vertical sidewalls  fo r the large 

Grashof number, because this type of flow is often 

encountered in engineering applicat ions . The present 

study is, therefore, an attempt to fill up this gap with 

the study of the non-linear behavior of the unsteady 

solutions by time-evolution calculation. 

In the present paper, a numerical study is presented 

for the fully developed two-dimensional flow of 

viscous incompressible fluid through a curved square 

channel with differentially heated vertical sidewalls. 

Flow characteristics are studied over a wide range of 

the Dean number and the strong curvature by finding 

the steady solutions, investigating their linear stability 

and analyzing nonlinear behavior of the unsteady 

solutions by time evolution calculations. 

 

II. Governing Equations 

Consider a hydro dynamically and thermally fu lly  

developed two-dimensional flow of v iscous 

incompressible fluid through a curved duct with square 

cross section. Let 2 d  be the width of the cross section. 

The coordinate system with the relevant notations is 

shown in Fig 1. Where C is the centre of the curvature 

and L is the radius of the curvature. Let x and y  axes 

are taken to be in the horizontal and vertical directions 

respectively, and z  is the coordinate along the center-

line of the duct, i.e., the axial d irection. It  is assumed 

that the outer wall of the duct is heated while the inner 

one is cooled. The temperature o f the outer wall is 

TT 0  and that of the inner wall is TT 0 , where 

T > 0.  

 

Fig. 1: Coordinate system of the curved square duct  
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axial d irection, and that it is driven by a constant 

pressure gradient 













z

P
GG  along the center-line 

of the duct. The main flow in the z direction as in Fig. 

1. 

The dimensional variables are then non-dimensional 
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where vu,  and w  are the non-dimensional velocity 

components in the yx, and z  directions, respectively; 

t  is the non-dimensional t ime, P  is the non-

dimensional pressure,   is the non-dimensional 

curvature defined as ,
L

d
  and temperature is non-

dimensional zed by T . Hence forth, all the variables 

are non-dimensional zed if not specified. 

Since the flow field  is uniform in the z  direct ion, 

the sectional stream function   is introduced as 
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A new coordinate variab le y is introduced in the y  

direction as yay  , where 
l

h
a   is the aspect ratio 

of the duct cross section. In this study, we consider the 

case for lh   i.e. 1a  (square duct). Then, the basic 

equations for ,w  and T  are expressed in terms of 
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The non-dimensional parameters Dn , the Dean 

number, Gr , the Grashof number, and Pr ,  the prandtl 

number, which appear  in equation (2) - (4) are defined 

as  
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Where  ,  ,  and g  are the viscosity, the 

coefficient of thermal expansion, the co-efficient of 

thermal d iffusivity and the gravitational acceleration 

respectively is the viscosity of the fluid. In the present 

study, only Dn  is varied while  , Gr  and Pr  are 

fixed as 5.0 , 100Gr  and 0.7Pr  (water). The 

rigid boundary conditions used here for w  and   are 
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and the temperature T  is assumed to be constant on 

the walls as  
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Therefore, the case of heating the inner sidewall and 

cooling the outer sidewall can be deduced directly from 

the results obtained in this study. Equations (2) – (4) 

would serve as the basic governing equations which 

will be solved numerically as discussed in the 

following section. 

 

III. Numerical Calculations 

The present study is based on numerical calculat ions 

to solve the equation (2)-(4), the spectral method is 

used. This is the method which is thought to be the best 

numerical method for solving the Navier-Stokes as 

well as energy equations (Gottlieb and Orszag, 1997). 

By this method the variables are expanded in a series 

of functions consisting of Chebyshev polynomials. The 

expansion functions )(xn  and  )(xn  are expressed 

as 
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where  )(coscos)( 1 xnxCn
  is the 

thn  order 

Chebyshev polynomial. ),,(),,,( tyxtyxw   and 

),,( tyxT  are expanded in terms of the expansion 
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where M  and N  are the truncation numbers in the x  

and y  directions respectively . 

The collocation points ),( ji yx  are taken to be 
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where 1,,1  Mi  and 1,,1  Nj  . Steady 

solutions are obtained by the Newton-Rapshon 

iteration method assuming that all the variables are 

time independent. The convergence is assured by 

taking sufficiently small p ( p <
1010

) defined as 
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The present numerical calculat ion, for sufficiently  

accuracy of the solutions, we take 20M  and 

20N  for a square duct. Finally, in  order to calcu late 

the unsteady solutions, the Crank-Nicolson and 

Adams-Bashforth methods together with the function 

expansion (11) and the collocation methods are applied 

to equations (2)-(4). 

 

IV. Time-evolution Calculation 

In order to solve the non-linear t ime evolution 

equations, we use the Crank-Nicolson and Adams-

Bashforth method. For the Crank-Nico lson method 

more exp licit ly, we consider the following one-

dimensional heat-flow equation  
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where )(tq the temperature is at time t  regarded as a 

function of x  and   is the heat conductivity. The first 

time derivative in Esq. (14) is replaced by a finite 

difference ratio  and a time step t , the derivative with 

respect to time may be written as   
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The approximate solution of Eq. (14), thus evaluated, 

is a function of t  as well as x  and t , and the true 

solution is the limit of the approximate one as 0t . 

The method, determined by Eq. (15), is called the 

Crank-Nico lson method. The Adams-Bashforth 

Method, on the other hand, is used for numerically 

solving init ial value problems fo r ord inary d ifferential 

equations. This method is an exp licit linear multistep 

method that depends on multistep previous solution 

points to generate a new approximate solution point.  

 

V. Results and Discussion 

In this study, we have investigated time evolution of 

the resistance coefficients   for the non-isothermal 

flows through a curved square channel with strong 

curvature 5.0 . We have studied the steady and 

unsteady solutions of the flows at various Dean 

numbers, Dn , 6000100  Dn  for a fixed Grashof 

number 100Gr . In  addition to the time evaluation of

 , the secondary flow patterns, axial flow d istributions 

and temperature profiles at various Dean numbers  are 

discussed in detail. 

 

5.1 Steady Solution 

With the present numerical calculat ion, we obtain 

two branches of steady solutions for 100Gr  over the 

Dean number 30000  Dn  by using the path 

continuation technique as discussed in Keller (1987). 

The two steady solution branches are named the first 

steady solution branch (first branch, bold solid line) 

and the second steady solution branch (second branch, 

thin solid line), respectively.  Fig. 2 shows solution 

structure of the steady solutions for the flow through a 

curved square channel with strong curvature. It is 

found that there exists no bifurcating relationship 

between the two branches of steady solutions as shown 

in Fig. 2. In the following, the two  steady solution 

branches as well as the flow patterns and temperature 

profiles on the respective branches are discussed.   

 

Fig. 2: Steady solution branches for curvature 5.0  for 100Gr  
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5.2 Unsteady Solutions: 

Time evolution of the unsteady solutions for

4345Dn  

We performed time evolution of the resistance 

coefficient  for 4345Dn  at 100Gr , and it is 

found that the flow is steady-state for all the values of 

Dn  in this range. Fig. 3(a) shows time evolution of   

for 4345Dn . Typical contours of secondary flow, 

axial flow distribution and temperature profiles for at 

4345Dn  are shown in the Fig. 3(b). As seen in Fig. 

3(b), the secondary flow is two-vortex solutions for the 

steady-state solution. If the Dean number is increased a 

litt le fo r example 4350Dn , the steady flow turns into 

periodic solution. It  is found that the transition from 

steady-state solution to periodic oscillation occurs for 

5.0  between 4345Dn  and 4350Dn . 

 

(a) 

 

 

(b) 

Fig. 3: (a) T ime evolution of   for 4345Dn  and 100Gr  at  

t ime 4020  t  for the large curvature 5.0  ; (b) Contours of 

secondary flow, axial flow distribution and temperature profile for 

4345Dn  at time 25t  

 

Time evolution of the unsteady solutions for 
44754350  Dn  

We studied the time evolut ion of the resistance 

coefficient   for 44404350  Dn . It is found that 

the flow is periodic for all the values of Dn  in the 

above range. Fig. 4(a) and Fig. 5(a) show that the flow 

is periodic oscillations for 4350Dn  and 4440Dn . 

In order to investigate the periodic behavior more 

clearly, power spectrum of the t ime evaluation for  

4350Dn  and 4440Dn  are shown in Fig. 4(b) and 

5(b) respectively, where the line spectra of the 

fundamental frequency and its harmonics are seen, 

which suggests that the flow is periodic for both the 

cases. Typical contours of secondary flow; axial flow 

distribution and temperature profiles are shown in Fig. 

4(c) for 4350Dn  and in Fig. 5(c) for 4440Dn  for 

one period of oscillation at time 88.7680.76  t  and 

. As seen in Fig. 4(c) and 5(c), 

the secondary flow is a two  -vortex solutions for both 

4350Dn  and Dn = 4440. Next we investigate time 

evolution of   for 4475Dn as shown in Fig. 6(a). It  

is found that the flow oscillates multi-periodically.  

Then to justify whether the flow is periodic or multi-

periodic, we plot the power spectrum of the time 

change of   at 4475Dn  in Fig. 6(b), where it  is seen 

that only the line spectrum of the fundamental 

frequency and its harmonic are available but no other 

line spectrum with smaller frequencies are seen, which 

suggests that the flow is periodic but not multi-periodic. 

Then typical contours of secondary flow patterns; axial 

flow d istribution and temperature profiles are shown in 

Fig. 6(c) for 4475Dn , one period of oscillation at  

time 67.2160.21  t . As seen in Fig. 6(c), the 

secondary flow is two -vortex solution for 4475Dn . 

Thus it is seen that the periodic oscillations from 

4350Dn  to 4475Dn  oscillates between two-

vortex solution. If the Dean number is increased further, 

for example 5050Dn , the flow turns into multi-

periodic. Thus the transition from periodic to multi-

periodic oscillation occurs between 4475Dn  and

4500Dn   

 

(a) 

 

 

(b) 

430.37355.37  t
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(c) 

Fig. 4: (a) T ime evolution of   for 4350Dn  at time 7876  t

for 5.0 ; (b) Power spectra of the time evolution of   for 

4350Dn  for 5.0 ; (c) Contours of secondary flow, axial flow 

distribution and temperature profiles for 4350Dn  at time 

88.7680.76  t  
 

 

(a) 

 

 

(b) 

 

(c) 

Fig. 5: (a) T ime evolution of   for 4440Dn  at time 3837  t  
for 5.0 ; (b) Power spectra of the time evolution of   for  

4440Dn  for 5.0 ; (c) Contours of secondary flow, axial flow 

distribution and temperature profiles for 4440Dn  at time 

430.37355.37  t  
 

 

(a) 

 

 

(b) 
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(c) 

Fig. 6: (a) Time evolution of   for 4475Dn  at time

2225.21  t  for 5.0 ; (b) Power spectra of the time evolution 

of   for 4475Dn  for 5.0 ; (c) Contours of secondary flow, 

axial flow distribution and temperature profiles for 4475Dn  at 

time 67.2160.21  t  
 

Time evolution of the unsteady solutions for 

50504500 Dn  

 Next we investigate time evolution of    for

50504500  Dn . It  is found that the flow oscillates 

multi-periodically for 50504500  Dn . Fig. 7(a) and 

8(a) show the instance of mult i-periodic oscillation for

4500Dn  and 5050Dn  respectively. In order to 

investigate the mult i-periodic behavior more clearly, 

power spectrum of the time evaluation of    for 

5050Dn  is shown in  Fig. 8(b), in  which not only  

the line spectrum of the fundamental frequency and its 

harmonics but also other line spectrum and its 

harmonics are seen, which clearly suggests that the 

flow is multi-periodic. To observe that the change of 

the flow characteristics contours of typical secondary 

flow patterns, axial d istribution and temperature 

profiles are shown in Fig. 7(b) for 4500Dn  and in 

Fig. 8(c) for 5050Dn  shown that one period of 

oscillation at time 565.9490.9  t  and 

48.2042.20  t  respectively. As seen in Fig. 7(b) 

and 8(c), the secondary flow two-vortex solutions are 

found for both 4500Dn  and 5050Dn . If the Dean 

number is increased further, for example 5075Dn , 

the flow turns into chaotic. It is found that the 

transition from mult i-periodic to chaotic oscillation 

occurs between 5050Dn  and 5075Dn . 

 

(a) 

 

 

(b) 

Fig. 7: (a) Time evolution of   for 4500Dn  at time 
109  t  for 5.0 ; (b) Contours of secondary flow, axial flow 

distribution and temperature profiles for 4500Dn  at time 

565.9490.9  t  
 

 

(a) 
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(b) 

 

 

(c) 

Fig. 8: (a) T ime evolution of   for 5050Dn at time 

72.2008.20  t  for 5.0 ; (b) Power spectra of the time 

evolution of   for 5050Dn  for 5.0 ; (c) Contours of 

secondary flow, axial flow distribution and temperature profiles for 

5050Dn   at  t ime 48.2042.20  t  

 

Time evolution of the unsteady solutions for 

58355075 Dn  

We perform time evolution of   for

58355075  Dn . It is found that all the flow 

oscillates irregularly that is the flow is  chaotic in this 

range. Fig. 9(a) and Fig. 10(a) show the instances of 

chaotic oscillations for 5075Dn  and 5835Dn  

respectively. In order to investigate the chaotic 

behavior more clearly, power spectra of the time 

evaluation of   for  5075Dn  and 5835Dn  are 

shown in Fig. 9(b) and 10b) respectively. To observe 

that the change of the flow characteristics, contours of 

typical secondary flow patterns, axial distribution and 

temperature profiles are shown in Figure 9(c) and Fig. 

10(c) for 5075Dn  and 5835Dn  respectively, 

where it is seen that the chaotic oscillat ion for 

5075Dn  and 5835Dn  oscillates between 

asymmetric two-vortex solutions. Contours of 

secondary flow patterns, axial d istribution and 

temperature profiles are shown in Fig. 9(c) for 

5075Dn  and one period of oscillation at time 

40.4500.45  t , and for 5835Dn  one period of 

oscillation at time 40.2000.20  t  in Fig. 10(c). If 

the Dean number is increased further, for example

5840Dn , the flow turns into periodic. The transition 

from chaotic to periodic oscillation occurs between  

5835Dn  and 5840Dn . 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 9: (a) T ime evolution of   for 5075Dn  at time 4744  t

for 5.0 ; (b) Power spectra of the time evolution of   for 

5075Dn  for 5.0 ; (c) Contours of secondary flow, axial flow 

distribution and temperature profiles for 5075Dn  at time 

40.4500.45  t  
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(a) 

 

 

(b) 

 

 

(c) 

Fig. 10: (a) T ime evolution of   for 5835Dn  at time

2110.16  t  for 5.0 ; (b) Power spectra of the time evolution 

of   for 5835Dn  for 5.0 ; (c) Contours of secondary flow, 

axial flow distribution and temperature profiles for 5835Dn  at 

time 40.2000.20  t  

 

VI. Conclusions 

In this present study, a detailed numerical study on 

the fully developed two-dimensional flow of v iscous 

incompressible fluid through a curved channel with 

strong curvature has been performed by using the 

spectral method and covering a wide range of the Dean 

number Dn , 6000100  Dn  and the Grashof number

100Gr  for the curvature .5.0
 
After a 

comprehensive survey over range of the parameters 

two branches of asymmetric steady solutions are 

obtained for Dn  ly ing in  the range. Contours of typical 

secondary flow patterns, axial flow distribution and 

temperature profiles are also obtained at several values 

of the Dean number for the steady-state, periodic, 

multi-periodic and chaotic solutions. 

For the unsteady solution we obtain two-, three- and 

four-vortex solutions. Then, in order to investigate the 

non-linear behavior of the unsteady solutions, time 

evaluations calculations as well as their spectral 

analysis are performed. It  is found that the flow 

becomes steady-state for 4345Dn , periodic for 

4350         , multi-periodic solutions for  

            , and chaotic solutions for 

5075          Thus the unsteady flow undergoes 

in the scenario “steady   periodic  multi-periodic

 chaotic”, if Dn  is increased up to 5835, i.e . 

5835Dn . If the Dean number is increased further, 

that is, 5840Dn  the unsteady flow undergoes 

through various flow instabilities, if Dn is increased 

gradually. Thus, in o rder to investigate the transition 

from periodic to multi-periodic oscillation or the multi-

periodic oscillat ion to chaotic state in more detail, the 

spectral analysis is found to be very useful. So, the 

transition of the unsteady solutions is clearly 

determined by the power spectrum of the solution. 
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