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Abstract: This article presents a new multi-objective model that optimizes Kafka configuration to minimize end-to-end 

latency while quantifying independent parameter influence, interaction effects and sensitivity to local parameter changes. 

The proposed model addresses a challenging problem of selecting the configuration to prevent overloading while 

maintaining high availability and low latency of Kafka cluster. The study proposes an algorithm to implement this model 

using an adaptive optimization strategy that combines gradient-based and derivative-free search methods. This strategy 

enables a balance between convergence speed and global search capabilities, which is critical when dealing with the 

nonlinear parameter space characteristic of large-scale Kafka deployments. Experimental evaluation demonstrates 99% 

accuracy of the model verified against a trained XGBRegressor model and tested across multiple optimization strategies. 

The experimental results show that alternative configurations can be selected to meet secondary objectives-such as 

operational constraints - without significantly impacting latency. In this context, the designed multi-objective model 

serves as a valuable tool to guide the configuration selection process by quantifying and incorporating such secondary 

objectives into the optimization landscape. The proposed multi-objective function could be adopted in real time 

applications as a tool for Kafka performance tuning. 

 

Index Terms: Multi-objective Optimization, Minimum Search Algorithms, Sobol First Index, Morris µ, Directional 

Local Optimal Response. 

 

 

1.  Introduction 

The widespread use of Internet of Things (IoT) devices, sensors, and wearable sensing technologies has introduced 

new demands on real-time data processing infrastructures. Apache Kafka, a distributed event streaming platform, has 

become a key component in these infrastructures due to its high-throughput, fault-tolerant design [1]. However, Kafka's 

extensive configuration flexibility introduces significant uncertainty into system performance, particularly with regard to 

end-to-end latency, defined as the time taken between a producer sending data and a consumer receiving it. 

Despite its importance, selecting an optimal Kafka configuration remains a challenging problem. The challenge 

involves dynamically adjusting the configuration to prevent overloading, and minimize costs while maintaining high 

availability and low latency [2]. 

Existing studies often focus on improving a single performance metric such as latency or robustness, overlooking 

the influence of latent interactions among configuration parameters and the system's sensitivity to local value changes. 

Consequently, this can lead in suboptimal or fragile configurations that do not generalize well in real-world deployment 

scenarios.

https://orcid.org/0000-0002-6280-0228
https://orcid.org/0000-0003-2577-6916


Leveraging Sensitivity Analysis for Configurable Kafka Clusters: A Multi-objective Model to Minimize Latency 

26                                                                                                                                                                         Volume 17 (2025), Issue 4 

The goal of this research is to design a multi-objective model that optimizes Kafka configuration to minimize end-

to-end latency while quantifies independent parameter influence, interaction effects and sensitivity to local parameter 

changes. 

The novelty of our contribution is a formalized optimization model that integrates global and local sensitivity indices 

(Morris µ, Sobol, DLOR) to execute Kafka configuration tuning to prevent overloading while maintaining high 

availability and low latency of Kafka cluster. An adaptive optimization strategy that combines gradient-based and 

derivative-free algorithms to overcome local minima and nonlinearity challenges in high-dimensional parameter spaces. 

A validation through real-time Kafka streaming experiments, using a dataset generated from an IoT device (Hobo MX-

100), with cross-verification using a trained XGBRegressor model. 

This paper is structured as follows: following this Introduction and Literature Review, the Materials and Methods 

section provides the formal definition for the proposed multi-objective model. The Data Collection and Experimental 

Study section includes Kafka cluster configuration descriptions needed for this modelling. The Results and Discussion 

includes the detailed practical outcomes of these tests. Finally, the Conclusions section outlines the recommendations 

drawn from this research. 

2.  Related Works 

The researchers are studying models and methods to ensure the efficiency of Apache Kafka cluster configuration 

when integrated into the ingestion layer of system architectures. For example, in [3], a model for Kafka cluster 

configuration is proposed, consisting of three subsystems in series: a producer group, an Apache Kafka cluster, and a 

consumer group, each containing three parallel units operating under a 1-out-of-3 strategy. The developed model has been 

proven to improve the system's ability to handle streaming data failures. 

In [4], Apache Kafka was used as the backbone of the data ingestion layer to manage high-throughput data streams 

in real time for an Internet banking system. The Kafka cluster was configured with multiple producers and consumers, 

ensuring scalability by dynamically adjusting the data ingestion rate based on the number of active producers, making it 

suitable for high-velocity Internet banking data. 

In [5], a solution is proposed that model’s consumer provisioning as a two-dimensional bin packing problem and 

addresses the challenge of blocking synchronization, which affects high-percentile latency. 

In our view, the solutions in [3-5] focus on single-objective optimization (e.g., minimizing latency or improving 

robustness). This can result in configurations that optimize one metric while ignoring other critical and sensitive 

configuration parameters. 

Predictive maintenance (PDM) has emerged as a vital application within the IoT ecosystem, which includes Apache 

Kafka clusters for high-throughput, fault-tolerant data ingestion from multiple IoT sensors and producers. Machine 

Learning and Deep Learning pipelines are widely used in PDM architectures [6]. In [7], an end-to-end architecture is 

proposed for real-time predictive maintenance in IoT settings. The design integrates modern tools for data processing, 

machine learning lifecycle management, and performance monitoring. In [8], a Principal Component Analysis (PCA) is 

incorporated into a framework created to predict Kafka's workload over time. PCA was applied to eliminate variables 

related to Kafka's resource utilization by focusing on the most significant factors influencing cluster performance. 

The reviewed models in [6-7] do not address the problem of optimizing Kafka cluster latency through configuration 

parameter tuning. The PCA technique used in [8] identifies parameters that vary the most in the input space, but high 

PCA scores do not necessarily imply a causal impact on latency. Therefore, to achieve the goal of the current study, we 

conduct a sensitivity analysis to measure the influence of configuration parameters on the objective function. 

Sensitivity analysis is a widely used technique to understand how variations in input parameters influence the output 

of a model or system. In [9], a four-stage sensitivity analysis framework was proposed that integrates meta-modeling with 

the Morris and Sobol methods to identify significant factors influencing annual energy consumption while reducing 

computational costs. In [10], the impact of important features was identified using sensitivity analysis methods — Morris, 

Sobol, Directional Local Optimal Response (DLOR), and Fourier Amplitude Sensitivity Test (FAST). The experimental 

part involved evaluating the accuracy of each method by comparing the performance of a CNN model that included 

features selected by each method. The conclusions stated that Sobol and Morris demonstrated superior performance. 

In [11], an approach was proposed to simplify the estimation of Sobol indices and complement them with the 

calculation of Shapley indices. Unlike the traditional approach, which first estimates first-order indices and then derives 

total indices, this study introduced a less computationally expensive method. In this approach, total indices are estimated 

first as the global effects of input combinations, and the remaining Sobol indices are then obtained through linear 

transformations. 

In [12], global sensitivity analysis using the Sobol method was applied to rank parameters in the life cycle assessment 

of manufacturing technologies, allowing practitioners to focus data collection efforts on the most critical parameters. The 

study highlights the importance of carefully selecting and applying probabilistic values while performing sensitivity 

analysis. 

In the current research, following the conclusions from [10] on the efficiency of the Morris and Sobol methods, we 

apply them to measure the impact on Kafka latency caused by two factors: 1) interactions between parameters (measured 

by the Morris method); and 2) independent, direct parameter influence. Since the same parameter may have different 
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impacts depending on Kafka’s sensitivity to changes in its value, we include the DLOR method in the model as well. 

Following the conclusions from [11], we calculate only the first Sobol index to keep the model computationally efficient. 

To avoid the influence of initial dataset uncertainty on the sensitivity analysis results, as noted in [12], we test the proposed 

multi-objective model against Kafka end-to-end latency predicted by a trained XGBRegressor model. The XGBRegressor 

model is selected for verification purposes, as its XGBoost algorithm is designed to approximate non-linear datasets; 

XGBoost does not assume smoothness or differentiability of the input-output relationship, making it robust for noisy or 

discrete problems [13]. 

3.  Materials and Methods 

Let L(X) represent the latency of Kafka cluster and 𝑋𝑖=1,𝑛̅̅̅̅̅ = {𝑥𝑖}, is a set of n independent parameters of a Kaka 

cluster. The total variance in L(X), decomposed by inputs is 

 

𝑉𝑎𝑟(L(X) ) = ∑ 𝑉𝑖 + ∑ 𝑉𝑖𝑗 + ⋯ + 𝑉1,2,…𝑛1≤𝑖<𝑗≤𝑁
𝑁
𝑖=1                                                   (1) 

 

𝑉𝑖 = 𝑉𝑎𝑟𝑋𝑖
𝐸𝑋~𝑖

(𝑓(𝑋)|𝑋𝑖))                                                                       (2) 

 

𝑉𝑖𝑗 = 𝑉𝑎𝑟𝑋𝑖𝑗
𝐸𝑋~𝑖𝑗

(𝑓(𝑋)|𝑋𝑖 , 𝑋𝑗)) − 𝑉𝑖 − 𝑉𝑗                                                           (3) 

 

where V1,2,…,N  is interaction involving all features in the set X. 

The first order Sobol Index estimates how much of the output variance in L(X) is due to input xi alone is [14]: 

 

𝑆𝑖 =
𝑉𝑖

𝑉𝑎𝑟(𝑌)
                                                                                   (4) 

 

The Morris method measure sensitivity of the output using two metrics: µi is the mean absolute elementary effect, 

showing the overall importance of parameter xi; σ is the standard deviation of effects, which indicates interactions between 

xi and other parameters [15]. The formula for Morris µi is 

 

𝜇𝑖 =
1

𝑅
∑ |𝑑𝑖

𝑟|𝑅
𝑟=1                                                                                (5) 

 

 

where 𝑑𝑖
𝑟 is the elementary effect of input parameter xi, in the r-th iteration 

 

di
r =

f(xr+∆ei)−f(xr)

∆
                                                                             (6) 

 

where 𝑥𝑟 is a random sampled vector in the r-th iterations.  ∆𝑒𝑖 is the unit vector to modify only xi.. ∆ is a step in search 

grid. 

Directional Local Optimal Response (DLOR) approximates the partial derivative of the model output with respect 

to the input at each point [16]: 

 

DLORi =
f(xi+ε)−f(xi)

∂Xi
|

X
                                                                       (7) 

 

where 𝜀 is a learning rate, fixed or from uniform distribution in case of missing prior knowledge. DLORi focuses on local 

sensitivity because the gradient is computed close to xi measuring how sensitive the output is to a small perturbation near 

xi. 

Our multi-objective model aims to find a configuration X that minimizes Kafka latency L(X) according to equation 

(8) but considering the combined effect from independent influence of parameter xi with the sensitivity of latency to the 

changes in value of xi (9) and the combined effect from influence of parameter xi though interactions with other parameters 

with the sensitivity of latency to the changes in value of xi (10) 

 

L(X) → min                                                                                  (8) 

 
∑ Si(X) ∙ DLORi(X)n

i=1                                                                          (9) 

 

  ∑ μi(X) ∙ DLORi(X)n
i=1                                                                        (10) 

 

By adding equations (9) and (10) as penalty terms to equation (8) we designed the multi-objective model: 
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𝐿(𝑋) − 𝛼′ ∙ 𝑚𝑎𝑥 ∑ 𝑆𝑖(𝑋) ∙ 𝐷𝐿𝑂𝑅𝑖(𝑋)𝑛
𝑖=1 − 𝛽′ ∙ 𝑚𝑎𝑥 ∑ 𝜇𝑖(𝑋) ∙ 𝐷𝐿𝑂𝑅𝑖(𝑋)𝑛

𝑖=1 → 𝑚𝑖𝑛                   (11) 

 

with parameters constraints: 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖], ∀𝑖∈ {1, … , 𝑛} , 𝛼′, 𝛽′  - adjusted weighs to balance the contribution of 

independent influence (9) and the influence through interactions with other parameters (10).  

The magnitude of weights’ adjustment is estimated with Spearman’s rank correlation coefficient that measures the 

monotonic relationship between two variables [17]: 

 

• Spearman’s rank correlation coefficient (𝜌𝑆,𝜇) between Sobol Si(X) and Morris µi(X) determines how much the 

local sensitivity captured by Morris aligns with the global sensitivity captured by Sobol: 

 

𝜌𝑆,𝜇 = 1 −
6 ∑ (𝑅(𝑆𝑖(𝑋))−𝑅(µ𝑖(𝑋))2𝑛

𝑖=1

𝑛(𝑛2−1)
                                                                  (12) 

 

where R(Si(X), R(µi(X) represent the ranks of pair Sobol Si(X) and Morris µi(X) indices. 

 

• Spearman’s rank correlation coefficient (𝜌𝜇,𝐷𝐿𝑂𝑅) between Morris µi(X) and DLORi(X) determines how well the 

linear component of sensitivity DLOR aligns well with the local effects identified by Morris: 

 

𝜌𝜇,𝐷𝐿𝑂𝑅 = 1 −
6 ∑ (𝑅(µ𝑖(𝑋)−𝑅(𝐷𝐿𝑂𝑅(𝑋)))2𝑛

𝑖=1

𝑛(𝑛2−1)
                                                           (13) 

 

where R(µi(X), R(DLORi(X) represents the ranks of pair Morris µi(X) and DLORi(X) and indices. 

When Spearman’s rank correlation between two sensitivity indices is high (ρ ≤ 0.7), the information captured by 

both indices overlaps. This leads to an over-penalization of the objective function equation (8), and therefore, the weights 

α, β must be reduced. A moderate correlation (0.3 ≤ ρ<0.7) indicates partial overlap, so slightly reducing the weights 

helps balance the contributions of terms (9) and (10) in equation (11). A low correlation (ρ<0.3) means that the indices 

capture independent aspects of sensitivity in the Kafka configuration’s impact on Kafka cluster latency, and thus, no 

weight adjust is needed. 

To solve the multi-objective design model (11), both gradient-based and derivative-free optimization algorithms are 

considered: 

The Limited-memory Broyden–Fletcher–Goldfarb–Shanno with Bounds (L-BFGS-B) handles optimization 

problems for large datasets (number of features more than 100) by approximating the inverse Hessian matrix (Hi): 

 

𝑥𝑖+1 = 𝑥𝑖 − 𝛼𝑖𝐻𝑖∇𝑓(𝑥𝑖)                                                                    (14) 

 

where ∇𝑓(𝑥𝑖) is a gradient at i-point; 𝛼𝑖 is a step size.  

L-BFGS-B enforces bounds on each point 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 by projecting gradients when xi reaches the boundary of the 

feasible region. It typically finds solutions near the center of the feasible regions, avoiding solutions at boundary extremes 

unless the gradient or Hessian explicitly guides it there [18]. 

Sequential Least Squares Programming (SLSQP) is an iterative optimization algorithm where each iteration solves 

a quadratic programming problem (QP) to generate a search direction d: 

 

𝑚𝑖𝑛
𝑑

1

2
𝑑𝑇𝐻𝑖𝑑 + 𝛻𝑓(𝑥𝑖)

𝑇𝑑                                                                    (15) 

subject to: 

∇h(x𝑖)
𝑇𝑑 + ℎ(𝑥𝑖) = 0                                                                      (16) 

 

∇g(x𝑖)
𝑇𝑑 + 𝑔(𝑥𝑖) ≥ 0                                                                      (17) 

 

where 𝐻𝑖  denotes the approximate Hessain matrix of the Lagrangian function 𝐿(𝑥𝑖 , 𝜆𝑖 , 𝜇𝑖) with respect to x. , 𝜆𝑖 , 𝜇𝑖 are the 

Lagrange multipliers. After solving problem QP, the line search method is used to determine a suitable step length, it 

behaves more conservative compared to SLSQP as it uses local quadratic models with constraints (even if none are set). 

The complexity of QP solvers grows with the number of variables and constraints, making the method practical for 

moderate problem sizes [19]. 

Trust-Region Method (Trust-constr) is a gradient-based optimization algorithm that, at each iteration, solves a local 

quadratic approximation of the objective function: 

 

𝑚𝑖(𝑑) = 𝑓(𝑥𝑖) + ∇𝑓(𝑥𝑖)𝑇𝑑 +
1

2
𝑑𝑇𝐻𝑖𝑑                                                         (18) 

 

where 𝑓(𝑥𝑖) is a current function value, 𝛻𝑓(𝑥𝑖) is a gradient at xi, 𝐻𝑖  denotes the approximation to the Hessain matrix of 

f at xi, d is the proposed step direction from xi. The step d is accepted only if it is improved the ratio between actual and 

modeled reductions:
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𝑓(𝑥𝑖)−𝑓(𝑥𝑖+𝑑)

𝑚𝑖(0)−𝑚𝑖(𝑑)
                                                                                (19) 

 

Trust-region method is practical for moderate problem sizes [20]. 

The Derivative-Free Method (Powell) does not require gradients; it uses a set of search directions and performs 

minimizations along those directions, iteratively refining the solution. The first iteration begins with generating directions 

as the basis vector D0={e1,e2,…,en}, where e1=[1,0,…,0], en=[0,0,…,1], di=ei. For each direction di, the function 𝑓(𝛼) =

𝑎𝛼2 + 𝑏𝛼 + 𝑐 is evaluated at three values of α1, α2, α3 and the minimum of the parabola is computed 𝛼∗ = −
𝑏

2𝑎
  (Fig. 1-

a ). The updated point is calculated 𝑥𝑛 = 𝑥 + 𝛼∗𝑑𝑖 . The new direction is defined as dn+1=xn-x (Fig. 1-b). Directions’ list 

is updated by discarding the oldest direction and inserting dn+1 at the end of the list. There calculations are repeated using 

updated xn and modified direction set. The solutions produced by Powell avoids the computational complexity of Hessian 

approximations or solving QP subproblems [21]. 

 

 

Fig.1. The parabola through the three sampled points along the y-direction with the analytical minimum at 𝛼∗ = 2 (a); the resulting new direction d₃ (b) 

The Nelder-Mead algorithm is a derivative-free method for minimizing a real-valued function f(x) assumes that 

iteration k begins by ordering and labeling vertices 𝑥1
(𝑘)

, … , 𝑥𝑛+1
(𝑘)

, such that 

 

𝑓1
(𝑘)

≤ 𝑓2
(𝑘)

≤ ⋯ ≤ 𝑓𝑛+1
(𝑘)

                                                                        (20) 

 

Compute the centroid 𝑥𝑐 = ∑ 𝑥𝑖/𝑛𝑛
𝑖=1   of the n best points; reflects worst point: 𝑥𝑟 = 𝑥𝑐 + 𝜌(𝑥𝑐 − 𝑥𝑛+1)  and 

evaluates fr=f(xr). If 𝑓1 ≤ 𝑓𝑟 < 𝑓𝑛, accepts xr and terminates the iteration. If 𝑓1 > 𝑓𝑟, calculates the expansion point 𝑥𝑒 =
𝑥𝑐 + 𝜆(𝑥𝑟 − 𝑥𝑐)  and evaluates fe=f(xe). If 𝑓𝑒 < 𝑓𝑟 , accepts xe and terminates the iteration; otherwise accepts xr and 

terminates the iteration. If 𝑓𝑛 ≤ 𝑓𝑟 < 𝑓𝑛+1, performs an outside contraction by calculating  𝑥𝑘 = 𝑥𝑐 + 𝜒(𝑥𝑟 − 𝑥𝑐) and 

evaluates fk=f(xk). If 𝑓𝑘 ≤ 𝑓𝑟, accepts xk and terminates the iteration; otherwise perform a shrink. If 𝑓𝑟 > 𝑓𝑛+1, performs 

an inside construction 𝑥𝑘𝑘 = 𝑥𝑐 − 𝜒(𝑥𝑐 − 𝑥𝑛+1) and evaluates fkk=f(xkk). If 𝑓𝑘𝑘 ≤ 𝑓𝑛+1, accepts xkk and terminates the 

iteration; otherwise perform a shrink. The shrink all points to the best 𝑣𝑖 = 𝑥1 + 𝜎(𝑥𝑖 − 𝑥1), i=2,…,n+1. The unordered 

vertices of the simplex at the next iteration consist of x1,v2,…,vn+1. The effects of reflection (ρ=1), expansion (α=2), 

contraction (γ=0.5) and shrink (σ=0.5) in two dimensions are shown on Figure 2 and visually evident that the simplex 

shape undergoes a change. Unlike Powell, which searches along fixed directions, Nelder-Mead is less sensitive to noise 

in the dataset. This makes it particularly suitable for problems where objective function evaluations are noisy [22]. 

 

 

Fig.2. Nelder–Mead simplices after a reflection (a) and an expansion step (b). An outside contraction (c), an inside contraction (d), and a shrink (σ). The 

original simplex is shown with a dashed line 
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The effectiveness of the optimization algorithms listed above depends on the nature of the relationship between the 

input features X and the target feature L(X) in the dataset. Therefore, we propose an adaptive optimization strategy that 

combines gradient-based and derivative-free optimization method, aiming to select the optimal method based on two 

criteria: 

 

• The difference between the latency calculated for the optimal configuration using equation (11) and the latency 

predicted by the XGBRegressor model for the same configuration is less than 1%. 

• The minimum time complexity of the optimization method, assessed by the number of iterations required to 

complete the search. 

 

To describe constraints 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖] for model (11) each Kafka cluster parameter to be defined per notation: 

 

<N, S, I(S)>                                                                               (21) 

 

where N is a name of the parameter. S is a set of state 𝑆𝑖=1,𝑁̅̅ ̅̅ ̅ = {𝑠𝑖} expressed as linguistic terms. I(S) is an interval of 

values for each state 𝑠𝑖 ∈ 𝑆. 

Algorithm 1 describes in pseudocode the steps to implement the designed model (11). The input parameters’ list 

includes the constraints 𝑥𝑖 ∈ [𝑎𝑖 , 𝑏𝑖], ∀𝑖∈ {1, … , 𝑛}, denoted as “bounds” and associated with Kafka cluster test scenarios, 

denoted as “problem_definitions”; a list of optimization algorithm, denoted as “methods”, a trained machine learning 

model to rank the result of optimization algorithms. The selected for Algorithm1 machine learning model for the 

regression problem must be validated with metrics: 

The proportion of variance in the independent features X is explained by the trained model: 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                                                                            (22) 

 

Where SSres – sum of squared residuals (errors), SStot – total sum of squares (variance of a target variable L). 

The model predictive accuracy: 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝐿𝑖 − 𝐿̂𝑖)2𝑛

𝑖=1                                                                    (23) 

 

where Li – value of a target variable L in the collected dataset, 𝐿̂𝑖 – a predicted value of a target variable L in the collected 

dataset. 

The algorithm output is a list of ranked optimization results denoted as “rankedresults”. Default values for weights 

α and β from equation (11) are set to 1. 

 

Algorithm1. Pseudocode for an adaptive optimization strategy for Kafka cluster configuration 

 
Input: problem_definitions = [{“bounds1”:[[],..[]]},…,{ “bounds5”:[[],..[]]}]; methods, model. 

Output: rankedresults. 

Initialization: α = 1; β = 1; resultslist = []; rankedresults=[]. 

1 FOR each problem in problem_definitions: 

2       FOR each method in methods: 

3            moris_sampling = sample(problem) 

4            morris.mu= analyze(problem, moris_values, model.predict(moris_sampling), conf_level=0.95) 

5            sobol.sampling = saltelli.sample(problem) 

6            sobol= sobol.analyze(problem, model.predict(sobol_sampling)) 

7            dlor_sampling = latin.sample(problem) 

8            dlor = dlor_sensitivity (problem, model.predict(dlor_sampling)) 

9            morris.mu.scaled=(1-min(morris.mu))/(max(morris.mu))- min(morris.mu)) 

10          dlor.scaled=(1-min(dlor))/(max(dlor))- min(dlor)) 

11          ρS,µ = calculate_spearman(sobol, morris.mu.scaled) 

12          ρµ,DLOR= calculate_spearman(morris.mu.scaled, dlor.scaled) 

13          IF (0.7 ≤ ρS,µ ) THEN 𝛼′ = 𝛼(1 − 𝜌𝑆,𝜇) ENDIF 

14          IF (0.3 ≤ ρS,µ < 0.7) THEN 𝛼′ = 𝛼(1 − 0.5 ∙ 𝜌𝑆,𝜇) ENDIF 

15          IF (ρS,µ < 0.3) THEN 𝛼′ = 𝛼 ENDIF 

16          IF (0.7 ≤ ρµ,DLOR) THEN 𝛽′ = 𝛽(1 − 𝜌𝜇,𝐷𝐿𝑂𝑅) ENDIF 

17          IF (0.3 ≤ ρµ,DLOR < 0.7) THEN 𝛽′ = 𝛽(1 − 0.5 ∙ 𝜌𝜇,𝐷𝐿𝑂𝑅) ENDIF 

18          IF (ρµ,DLOR < 0.3) THEN 𝛽′ = 𝛽 ENDIF 

19          results = minimize(objective_value, x0, args=(scaled_mu, scaled_dlor, sobol_cal['S1'], 𝛼′, 𝛽′, method),  

20           bounds=problem['bounds'], method=method, options=options) 

21          resultslist.append([method, cal_latency, cal_configuration, num_iterations]) 

22       ENDFOR
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23 EndFOR 

24 FOR each result in resultslist: 

25      pred_latency= model,predict(result. cal_configuration) 

26      errorscore= abs((result. cal_configuration - pred_latency)/ pred_latency) 

27      ranklist.append[(result, errorscore, result. num_iterations)] 

28 EndFOR 

29      rankedresults = sort(ranklist by (errorscore, num_iterations)) 

 

In Algorithm 1, lines 3–8 perform sampling, modeling, and sensitivity analysis for each scenario defined by the given 

constraints. In lines 9–10, the calculated values of the DLOR and Morris indices are scaled to make them comparable; 

Sobol indices are already in the range [0..1], so additional scaling is not required. In lines 11-12 Spearman correlation 

coefficient is calculated according to (12-13). In lines 13-18: α, β weights of equation (11) are adjusted to prevent over- 

or under-penalization of a target variable L(X). In lines 19-20, a general-purpose optimization function, “minimize” from 

the scipy.optimize library is called. The parameters passed to it includes: the custom-developed by us function 

“objective_value” that implements equation (11); x0, the initial configuration randomly selected from the “bounds” using 

uniform distribution; scaled DLOR, Morris and Sobol indices; the adjusted weights; and a search method from the 

predefined methods list. In line 21, the Kafka cluster configuration found by the completed optimization search (denoted 

as cal_configuration), the corresponding latency (cal_latency), and the number of iterations required are added to 

results_list. In lines 24–28, for each configuration in results_list, the predicted latency is obtained using the given machine 

learning model. The percentage latency difference is then calculated, denoted as “errorscore” and, along with the number 

of iterations, stored in a list for subsequent ranking. In line 29, ranking is applied based on the keys “errorscore” and 

“num_iterations”. The Kafka cluster configuration selected for output is the one with rank one. 

4.  Experiments 

4.1.  Data Collection and Experiments Preparation 

To collect a dataset for multi-objective optimization problem (11) we designed scenarios to test different Kafka 

cluster characteristics: 

 

• A scenario to measure a Kafka cluster latency with high throughput emphasis with durability. 

• A scenario to measure a Kafka cluster latency with low latency and average throughput. 

• A scenario to measure a Kafka cluster latency with a balanced throughput and latency with fault tolerance. 

• A scenario to measure a Kafka cluster latency with a stress test. 

• A scenario to measure a Kafka cluster latency with a high fetch size for Bulk Processing. 

 

The dataset with Kafka cluster performance in the defined scenarios 1-5 is collected as a result of the system tests 

with streaming event data through the steps 1.1-1.4 (Fig. 3). 

 

 

Fig.3. Step to collect a dataset with kafka cluster performance 

To complete subprocess 1.1 we selected a telemetry data from IoT device of type "Hobo MX-100” which is a 

temperature data logger, a single message size is 387 bytes is sent every second. 

To completed subprocess 1.2-1.3 the states and bounds of Apache Kafka configuration parameters X={x1,…,x11} 

were described according to a notation (21) and specified in Table 1. The specific value of each parameter for the scenarios 

1-5 is defined in Table 2. 

The dataset, consisting of 1000 observations (Table 3), was received after running 200 times each scenario with 

corresponding configuration. 

The experimental study will be conducted on a system with processor 11th Gen Intel(R) Core(TM) i7-1185G7. Kafka 

parameters configurations. The implementation of the algorithms 'L-BFGS-B','SLSQP'; 'Trust-constr', 'Powell', 'Nelder-

Mead' are from the Python scipy.optimize library. 

4.2.  Experiments Results and Discussions 

The XGBRegressor model was trained on 67% of the collected dataset D and validated on the remaining 33%. The 

resulting R2 score of 0.83 indicates that the model captures the majority of the variance in both the input parameters X 

and the target feature Latency. A mean squared error (MSE) of 0.09 demonstrates the model’s high predictive accuracy 

(Fig. 4). 
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Table 1. Kafka cluster configuration parameters description 

Name of parameter Parameter description Set of states Set of values 

acks 
level of acknowledgment required 

from the leader-server for producers 
none, leader, all 0,1,”all” 

batch.size 
the maximum producer batch size in 

bytes 
small, moderate, large 

[1KB..8KB],(8KB..16KB],( 16KB..

32KB] 

linger.ms 
Time the producer will collect event 

data to form a batch 
none, default, high 0,[1..50),[50..100] 

compression type the message compression type enable, disable “none”,“gzip” 

buffer.memory 
the total amount of memory the 
producer can use for buffering 

small, default, large 
[1MB..8MB],(8MB..50MB],(50MB

..96MB] 

max.inflight.requests.per.co
nnect 

the maximum number of 

unacknowledged requests that can 
be sent to the server on one 

connection. 

single, moderate, high 1,(2..5],(5..15] 

socket.receive.buffer.bytes 
the size of the network socket 

buffer for receiving data 
small, default, large 

[100KB..500KB],(500KB..1MB),[1

MB..2MB] 

log.flush.interval.ms 

the maximum time, that a message 

can remain in the log buffer before 

it is flushed to disk 

frequent, less 
frequent, not frequent 

[0..100),[100..500),[500..1000] 

max.poll.records 
the maximum number of records 
that a Kafka consumer can handle 

in one call to the poll() method 

small, moderate, large [100..300],(300..500],(500..2000] 

fetch.min.bytes 

minimum number of bytes that must 
be copied to the disk of the leader-

server before becoming available 

for Kafka consumers to fetch 

frequent, less 

frequent, not frequent 

[1KB..100KB],(100KB..500KB],(5

00KB..1MB] 

retries.config 
the number of times the producer 

will retry sending 

low latency, balance, 

strong reliability 
[0..2],[3..5],(5..10] 

Table 2. Kafka cluster configuration parameters state for the scenarios 1-5 

Name of parameter Scenario 1 Scenario 2 Scenario 3 Scenario4 Scenario 5 

acks all leader all none all 

batch.size large small moderate large large 

linger.ms high none default none high 

compression type enable disable enable disable enable 

buffer.memory large default default small large 

max.inflight.requests.per.connect moderate single moderate high moderate 

socket.receive.buffer.bytes large small small small large 

log.flush.interval.ms less frequent frequent less frequent frequent not frequent 

max.poll.records large small small large large 

fetch.min.bytes less frequent frequent less frequent frequent not frequent 

retries.config strong reliability low latency balance strong reliability balance 

Table 3. Kafka cluster performance dataset for an adaptive optimization strategy for Kafka cluster configuration 

Target class names Observations Features Machine learning task 
Missing 

values, Y/N? 
Duplicated values in 

column, Y/N? 

Latency, L 1000 11 Regression N Y 

 

 

Fig.4. The results of the validation of XGBRegressor model 
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The results of the sensitivity analysis, based on the computed sensitivity scores, are presented in Tables 4–8. A “+” 

sign indicates a notable influence, defined where the sensitivity value exceeds 0.1. An analytical analysis of the sensitivity 

indices is summarized as: 

 

• Each input parameter has a different degree of influence driven by independent impact, impact though 

interactions or impact as a result its value is change around some point.  

• The combined effect of parameter xi through interactions with other parameters dominates over both its 

independent influence and its sensitivity to local value changes. 

Table 4. Sensitivity scores of parameters in configuration for scenario 1. Spearman’s correlation ρS,µ = 0.84; ρµ,DLOR = 0.5 

Parameter Morris µ 

Sobol 

first 

index 

DLOR 

Influence 

through 

interactions 

Influence 

independently 

Local 

sensitivity 

linger.ms 0.08 0.00 0.00 - - - 

batch.size 0.16 0.01 0.00 + - - 

buffer.memory 0.01 0.00 0.00 - - - 

max.inflight.requests.per.connect 0.08 0.00 0.09 + - + 

retries.config 1.00 0.97 1.00 + + + 

max.poll.records 0.06 0.00 0.00 - - - 

fetch.min.byte 0.00 0.00 0.00 - - - 

socket.receive.buffer.bytes 0.04 0.00 0.00 - -  

log.flush.interval.ms 0.13 0.01 0.00 + - - 

Table 5. Sensitivity scores of parameters in configuration for scenario 2. Spearman’s correlation ρS,µ = 0.33; ρµ,DLOR = 0.14 

Parameter Morris µ 

Sobol 

first 

index 

DLOR 

Influence 

through 

interactions 

Influence 

independently 

Local 

sensitivity 

linger.ms 0.57 0.00 0.09 + - - 

batch.size 1.00 0.34 0.00 + + - 

buffer.memory 0.00 0.61 0.00 - + - 

max.inflight.requests.per.connect 0.57 0.00 0.71 + - + 

retries.config 0.68 0.02 1.00 + - + 

max.poll.records 0.57 0.00 0.00 + - - 

fetch.min.byte 0.66 0.02 0.00 + - - 

socket.receive.buffer.bytes 0.57 0.00 0.00 + - - 

log.flush.interval.ms 0.64 0.01 0.01 + - - 

Table 6. Sensitivity scores of parameters in configuration for scenario 3. Spearman’s correlation ρS,µ = 0.35; ρµ,DLOR = 0.22. 

Parameter Morris µ 

Sobol 

first 

index 

DLOR 

Influence 

through 

interactions 

Influence 

independently 

Local 

sensitivity 

linger.ms 0.13 0.03 0.01 + - - 

batch.size 0.43 0.03 0.00 + - - 

buffer.memory 0.00 0.11 0.00 - + - 

max.inflight.requests.per.connect 0.37 0.03 0.12 + - + 

retries.config 1.00 0.71 1.00 + + + 

max.poll.records 0.20 0.00 0.00 + - - 

fetch.min.byte 0.37 0.03 0.00 + - - 

socket.receive.buffer.bytes 0.25 0.00 0.00 + - - 

log.flush.interval.ms 0.48 0.06 0.00 + - - 
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Table 7. Sensitivity scores of parameters in configuration for scenario 4. Spearman’s correlation ρS,µ = 0.23; ρµ,DLOR = 0.7 

Parameter Morris µ 

Sobol 

first 

index 

DLOR 

Influence 

through 

interactions 

Influence 

independently 

Local 

sensitivity 

linger.ms 0.13 0.00 0.00 + - - 

batch.size 0.28 0.02 0.00 + - - 

buffer.memory 0.00 0.03 0.00 - - - 

max.inflight.requests.per.connect 0.40 0.03 0.16 + - + 

retries.config 1.00 0.89 1.00 + + + 

max.poll.records 0.09 0.03 0.00 - - - 

fetch.min.byte 0.15 0.00 0.00 + - - 

socket.receive.buffer.bytes 0.13 0.00 0.00 + - - 

log.flush.interval.ms 0.14 0.00 0.00 + - - 

Table 8. Sensitivity scores of parameters in configuration for scenario 5. Spearman’s correlation ρS,µ = 0.98; ρµ,DLOR = 0.3 

Parameter Morris µ 

Sobol 

first 

index 

DLOR 

Influence 

through 

interactions 

Influence 

independently 

Local 

sensitivity 

linger.ms 0.35 0.06 0.02 + - - 

batch.size 0.74 0.25 0.00 + + - 

buffer.memory 0.05 0.00 0.00 - - - 

max.inflight.requests.per.connect 0.06 0.00 0.10 - - + 

retries.config 0.66 0.18 1.00 + + + 

max.poll.records 0.08 0.01 0.00 - - - 

fetch.min.byte 0.18 0.02 0.00 + - - 

socket.receive.buffer.bytes 0.00 0.00 0.00 - - - 

log.flush.interval.ms 1.00 0.45 0.01 + + - 

 

The calculated Spearman’s correlation coefficients (Table 9) indicate a strong alignment between the Sobol and 

Morris indices in Scenarios 1 and 5. However, the correlation is moderate in Scenario 2 and low in Scenarios 3 and 4. 

The correlation coefficients between the Morris and DLOR methods reveal moderate to low correlation, suggesting that 

these two methods capture distinct aspects of sensitivity and are largely unrelated. Consequently, adjustments to the 

weights α’ and β’ are necessary to prevent over- or under-penalization of the objective function L(X) in equation (11). 

Table 9. Spearman Correlation Coefficients: ρ(S,μ) and ρ(μ,DLOR) and adjusted weights α’ and β’ 

Parameter ρS,µ ρµ,DLOR 𝛼′ 𝛽′ 

1 0.84 0.5 0.16 0.75 

2 0.33 0.14 0.835 0.14 

3 0.35 0.2 0.825 0.2 

4 0.23 0.73 0.23 0.27 

5 0.98 0.33 0.02 0.835 

 

With PCA analysis are received a top three ranked features (Fig. 5): logflushintervalms with a contribution score of 

0.42; socketreceivebufferbytes with 0.4; fetchminbyte with 0.39 impact. These features contribute the most to the variance 

in the input configuration space X, as identified by PCA. However, when comparing with sensitivity analysis results 

(Tables 4-8), the interpretation shifts: logflushintervalms shows notable influence though interactions with other 

parameters across all five scenarios, but its independent influence is noticeable only in scenario 5. This suggest that tuning 

only parameter logflushintervalms in scenarios 1-4 is unlikely to yield latency improvements. Parameters 

socketreceivebufferbytes, fetchminbyte have a notable influence though interactions with other parameters in scenarios 

2-4, but changes in their values don’t directly impact latency in any scenario. 

The search results of the designed multiple-objective model (11), obtained using optimization algorithms L-BFGS-

B, SLSQP, Trust-constr, Powell, and Nelder-Mead, are presented in the “Objective latency, L(X)” column of Table 10. 

The number of iterations required to complete the search is shown in the “Search Iterations” column. 

The XGBRegressor was run using the configurations identified through the optimization search, with the results 

displayed in the “Predicted latency, Lp(X)” column. The differences between the values in “Objective latency, L(X)” and 

“Predicted latency, Lp(X)” are calculated and expressed as percentages in the “Latency difference, %” column. The 

analysis of these results is as follows: 
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Fig.5. Kafka cluster configuration parameters, ranked with PCA 

The L-BFGS-B and SLSQP methods consistently converged rapidly (within 10 iterations) across all scenarios. 

However, the configurations found by these algorithms did not yield optimal latency; the resulting latencies exceeded the 

predicted values in all scenarios. 

The Trust-constr method required a moderate number of iterations (20–100) and demonstrated less than 1% 

difference between the objective latency L(X) and the predicted latency Lp(X) across all scenarios. 

Table 10. Objective latency and time complexity for completed search for kafka cluster configuration 

Scenario Method 
Objective 

latency, L(X) 

Predicted 

latency, Lp(X) 

Search 

Iterations 

Latency 

difference, % 
Search method rank 

0 L-BFGS-B 367.406 355.684 10 -3.30% n/a 

0 SLSQP 367.406 355.684 10 -3.30% n/a 

0 Trust-constr 355.406 355.684 30 0.08% 1 

0 Powell 355.406 355.684 301 0.08% 2 

0 Nelder-Mead 355.406 355.684 408 0.08% 3 

1 SLSQP 5.145 5.037 10 -2.14% n/a 

1 Trust-constr 5.010 5.037 20 0.54% 1 

1 L-BFGS-B 5.145 5.037 210 -2.14% n/a 

1 Powell 5.010 5.037 264 0.54% 2 

1 Nelder-Mead  5.037 10999 100.00% 3 

2 L-BFGS-B 5.120 2.940 10 -74.17% n/a 

2 SLSQP 5.120 2.940 10 -74.17% n/a 

2 Trust-constr 2.930 2.940 30 0.34% 1 

2 Nelder-Mead 2.930 2.940 395 0.34% 2 

2 Powell 2.930 2.940 598 0.34% 3 

3 L-BFGS-B 300.418 243.423 10 -23.41% n/a 

3 SLSQP 300.418 243.423 10 -23.41% n/a 

3 Trust-constr 241.418 243.423 100 0.82% 1 

3 Powell 241.418 243.423 283 0.82% 2 

3 Nelder-Mead 241.418 243.423 375 0.82% 3 

4 L-BFGS-B 190.000 181.415 10 -4.73% n/a 

4 SLSQP 190.000 181.415 10 -4.73% n/a 

4 Trust-constr 181.192 181.415 30 0.12% 1 

4 Powell 181.192 181.415 294 0.12% 2 

4 Nelder-Mead 181.192 181.415 395 0.12% 3 
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The Powell and Nelder-Mead methods achieved similar final objective latencies to Trust-constr, with very small 

deviations (ranging from 0.08% to 0.82%). However, these methods required significantly more iterations (up to 598 for 

Powell and 397 for Nelder-Mead), indicating a trade-off between accuracy and computational efficiency. Additionally, 

Nelder-Mead failed to converge in Scenario 2. 

In Table 10, the “Latency difference, %” for Trust-constr, Powell, and Nelder-Mead is below 1%, this matches the 

error rate of the machine learning model, as calculated using the MSE metric (Fig. 4). 

Based on the sensitivity analysis (Tables 4-8), the optimization landscape is nonlinear and shaped by complex 

parameter dependencies. Since L-BFGS-B and SLSQP methods assume that the objective function has locally smooth 

curvature, they tend to converge prematurely to suboptimal regions, illustrated in Figure 6 by the red line, that stuck after 

10 iterations at a local minimum. 

Trust-constr method outperformed L-BFGS-B and SLSQP in this study because its ability to dynamically adjust the 

gradient step size when the predicted improvement deviates from the actual improvement. This adaptive behavior of 

Trust-constr helped to avoid premature convergence as illustrated in Figure 6 by the green line. 

Powell and Nelder-Mead do not rely on gradient information. Instead, they explore parameter interactions through 

multi-point evaluations. They produced accurate results but required more iterations to complete the search. 

 

 

Fig.6. Gradient based optimization search by method SLSQP and gradient based with trust region search by method Trust-constr in the first scenario 

 

Fig.7. Percentage changes in kafka configuration parameters when optimal search is completed with algorithm trust-constr 

 

Fig.8. Percentage changes in kafka configuration parameters when optimal search is completed with algorithm nelder-mead 
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Figures 7-9 illustrate the percentage differences between the initial configurations and those produced by the 

optimization algorithms. These differences highlight how much each algorithm's solution diverged from the baseline 

settings. Trust-constr, Nelder-Mead, and Powell methods identified distinct configurations yet achieved comparable 

latency results. 

 

 

Fig.9. Percentage changes in kafka configuration parameters when optimal search is completed with algorithm powell 

5.  Conclusions 

In the current research, we propose a multi-objective model that optimizes Kafka configuration to minimize end-to-

end latency while quantifies independent parameter influence, interaction effects and sensitivity to local parameter 

changes. The algorithm is designed to implement this model using an adaptive optimization strategy that combines 

gradient-based and derivative-free search methods. This strategy allows for a balance between convergence speed and 

global search capabilities, which is critical when dealing with the nonlinear parameter space characteristic of large-scale 

Kafka deployments. 

Sensitivity analysis with Morris µ, Sobol, and DLOR indices, conducted in this study, revealed that the combined 

effect of Kafka cluster configuration parameters through their interactions with other parameters, dominates over both its 

independent influence and its sensitivity to local value changes. So, Principal Component Analysis identifies parameters 

that vary most within the configuration space but does not imply causality impact is unlikely to help minimize Kafka 

cluster latency, if used for evaluating the impact of configuration parameter on Kafka cluster latency. 

The proposed multi-objective model was evaluated using five optimization search algorithms: L-BFGS-B, SLSQP, 

Trust-constr, Powell and Nelder-Mead. Validation of the received results was done against the predictions of a trained 

XGBRegressor model (R² = 0.83, MSE = 0.09) and revealed less than 1% latency difference for Trust-constr, Powell, and 

Nelder-Mead algorithms. This confirms the accuracy and practical reliability of the model. Gradient-based methods L-

BFGS-B and SLSQP were prone to trapping in local minima due to not smoothed curvature in the objective function. 

Experimental results showed that the Trust-constr, Nelder-Mead, and Powell methods identified distinct 

configurations yet achieved comparable latency results. Such behavior implies a level of redundancy or flexibility in 

configuration tuning, where alternative configurations may be selected to meet secondary objectives-such as operational 

constraints - without significantly impacting latency. In this context, the designed multi-objective model serves as a 

valuable tool to guide the configuration selection process by quantifying and incorporating such secondary objectives into 

the optimization landscape. 

Overall, the proposed multi-objective function, validated by machine learning prediction and tested across multiple 

optimization strategies, offers a robust and practical tool for Kafka performance tuning. 

Future work will explore how to integrate the designed multi-objective function into a dynamic optimization 

framework, suitable for real-time deployment and scaling scenarios. 
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