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Abstract: Social media presence is a crucial portion of our life. It is considered one of the most important sources of 
information than traditional sources. Twitter has become one of the prevalent social sites for exchanging viewpoints and 
feelings. This work proposes a supervised machine learning system for discovering false news. One of the credibility 
detection problems is finding new features that are most predictive to better performance classifiers. Both features 
depending on new content, and features based on the user are used. The features' importance is examined, and their 
impact on the performance. The reasons for choosing the final feature set using the k-best method are explained. Seven 
supervised machine learning classifiers are used. They are Naïve Bayes (NB), Support vector machine (SVM), K-
nearest neighbors (KNN), Logistic Regression (LR), Random Forest (RF), Maximum entropy (ME), and conditional 
random forest (CRF). Training and testing models were conducted using the Pheme dataset.  The feature's analysis is 
introduced and compared to the features depending on the content, as the decisive factors in determining the validity.  
Random forest shows the highest performance while using user-based features only and using a mixture of both types of 
features; features depending on content and the features based on the user, accuracy (82.2 %) in using user-based 
features only. We achieved the highest results by using both types of features, utilizing random forest classifier 
accuracy(83.4%). In contrast, logistic regression was the best as to using features that are based on contents. 
Performance is measured by different measurements accuracy, precision, recall, and F1_score. We compared our 
feature set with other studies' features and the impact of our new features. We found that our conclusions exhibit high 
enhancement concerning discovering and verifying the false news regarding the discovery and verification of false news, 
comparing it to the current results of how it is developed. 
 
Index Terms: Twitter, Credibility Detection, Machine Learning, Content-Based Features, User-Based Features. 
 

1.  Introduction  

The Social Networks' platforms are used to exchange viewpoints and news that are now considered indispensable 
origins of information that mostly outweigh the regular sites. Anyone can make an account regardless of age, education, 
and many other factors.  Also, he/she can post what he\she wants, which gives a chance to create fake accounts and 
share fake information, which significantly impacts decision-making. Organizations, mainly the political, are 
exceedingly curious about studying and examining Social Networks' substances to estimate the open conclusion and the 
individual's fulfillment regarding specific topics in the commerce field. Those sites are rapidly developing, particularly 
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amidst youthful individuals, upon whom the data from unknown sources have a significant influence. Twitter News 
depends on distinctive sources mainly based on the public. Twitter becomes an environment suitable for the propagation 
of hearsays due to the absence of superintendence and control. This issue gets to be an issue because a more significant 
number of individuals rely on Social Networks for getting information, particularly during crises in Ref. [1]. 

A recent study Ref. [2] showed that rumors disseminated via Facebook within the final 2017 French presidential 
election left a significant impact on the electors. Different researches expressed that much of the content on Twitter is 
not true in Ref. [3-5]. Research by El Ballouli et al. Ref. [4] argued that roughly 40% of Facebook's daily posts are 
untrue. Moreover, Gupta et al.Ref. [5] shows a considerable propagation of false information amid Hurricane Laura. It 
manifested that 90% of the hearsays were reposted "Shared." They concluded that individuals are mutually exchanging 
and disseminating information during an emergency, regardless of its untrusted origin. At present, detecting the trueness 
and authenticity of the information details on Facebook is a critical issue, particularly concerning events. 

The problem here is that the information seeker can't distinguish reliable information from false information, so it 
is vital to building computerized credibility detection systems. But there are different challenges in the news credibility 
detection task; the problems are a few available datasets that include features about the tweet to be analyzed. Without 
using technology, it is hard to determine the true and reasonable posts or the information. It takes time and effort. Some 
studies use Twitter API Ref. [4, 6- 9, 10-12]. Another challenge is the Limited size of tweet length, using informal 
language. Using non-English words, noise data, and the most crucial challenge in the rumor detection task is the feature 
extraction phase and choosing the appropriate function or property determined for developing the classification devices' 
execution. Different functions are features depending on content features, features depending on users' user, and 
features focusing on the topic. In this work, we attempt to introduce a new function or property that enhances classifiers' 
performance. The reasons for choosing these features are explained. They affect the performance more than others. We 
used the dataset, which is the most used dataset in Rumor Detection. 

This document tackles a model for converting "rumor information" to be automatically discovered via Facebook. 
Various artificial intelligence learning methods are used with miscellaneous categories of features. These features focus 
on content as (the post length, number of sharing, and likes). Suppose the posts include emotions and user\source based 
features as (if the user verified or not, has a description on his/ her page …) and a combination set of them. Our model 
is based on particularly 39 features (22 content features, 17 user features). The performance of seven different 
supervised classifiers: Random Forests (RF), Support Vector Machines (SVM), Logistic Regression (LR), Naïve Bayes 
(NB), and K-Nearest Neighbor (KNN), max entropy (ME), and conditional random forest (CRF) was contrasted. The 
suggested pattern or example accomplished an accuracy percent of 83.4% in foreseeing the validity of tweet messages 
using the Random Forest classifier while combining the content-based and source-based features. The proposed model 
achieves the following two contributions: 1) introducing new valuable features. 2) Contrasting various artificial 
intelligence learning methods and discuss the results of each algorithm with each feature sets. The rest of the paper is 
organized as follows; Section 2 provides some studies focusing on Evacuating Reasonability through applying various 
methods. Next, Section 3 presents the phases of the suggested pattern. Section 4 demonstrates the results and discusses 
them. Finally, Section 5 concludes the paper. 

2.  Related Work  

A significant part of the study indicating at deciding the validity of Facebook messages is based on classification. 
These methods classify posts as true and false utilizing supervised machine learning methods Ref. [13-19]. An essential 
fact that includes several clarified posts with the information concerning them is utilized to construct mechanical 
classification devices that can precisely decide a particular post's validity. The trueness of the notes is a vital element 
influencing the effectiveness of the expectation. The consistency of the discovered information is an additional vital 
element. Certain studies focus on the post's substance Ref. [16]. However, other research focuses on the original 
composer of the post Ref. [20]. In this regard, several studies mostly related to this issue are reviewed. 

Castillo et al. were considered the primary to make studies on Facebook validity checking Ref. [13, 14]. They use 
Tweets concerning the most shared themes and proposed a controlled automatic learning pattern to demonstrate to 
anticipate the validity. They employ different sorts of highlights, a part of which concerns the post's substance, but 
another part is related to the composer of the post or collected from the relevant topic. The phase of identifying included 
two phases: the initial phase collects posts that exhibit contents on news details (entitled as Stories or News) through 
person conclusions (Entitled as Messenger). Another phase centers on the posts entitled NEWS, classifying it as 
true/false. It uses multiple classifiers such as SVM, decision trees, decision rules, and Bayesian networks on the noted 
information. However, better execution was performed by J48, decision tree. Another work in this category is the one 
that appeared on Ref. [21]; the authors suggested a hearsay discovery pattern depends on a consecutive classification 
device, in which the post is classified a true or false, according to the trained information.  

Many of the existing studies consider hearsay's detection also to endure from another topic: they expect that 
hearsays are persistently wrong, aiming at foreseeing alludes those fake hearsays Ref. [22]. This is often illustrated 
through the plan of their tests, in which they prepare their discovering models on networks of permanent hearsays, 
aiming at identifying wrong hearsays. This suggestion is untrue and inapplicable since hearsays are probably true. The 
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word 'rumor' means unsubstantiated data, which may be considered a while and subsequently becomes true or wrong. 
They deduct hearsays, with no attention to whether it is true or not. The objective is to mark the very tiny and small 
posts as hearsays., i.e., very tiny and small posts that include unconfirmed data the quick dissemination, and hence 
limiting their dangerous effects to come about. 

Using a neural network (Lstm) and traditional classification algorithms as SVM and their prediction results to 
achieve two tasks. Task A is classified posts into (supporting, denying, querying, or commenting) and task B, which 
determines the veracity of rumors if it is true, wrong, or unverified. In task A f -measure was 0.6, and in task B 
unverified category has low precision and low f value, which drag down the average f value of the three categories Ref. 
[23]. 

Here tweet is collected by tweet crawler Ref. [24]. They focus on identifying fake news and fake accounts on 
Twitter by using their algorithms which after receiving a Tweet, that user wants to measure its credibility through three 
phases which take the tweet link, then NER (named entity recognition) get nouns, the topics, social tags, overall 
sentiment and compare with similar tweets from trust sources in their database to calculate tweet score. They are still 
developing and trying to improve the quality of the performance.  

In Ref. [25] used a model for recognizing fake news; the model was based on using word embedding methods 
which are glove, fast text, then used training deep learning models which are (RNN), (GRU), and (LSTM) methods 
with the flair library, they achieved accuracy up to 99.8%. 

In Ref. [26] they proposed to show that utilizing entropy-based include a determination on the dataset, employing a 
pile-gathering type of triple techniques to extend the discovery exactness, they created the suggested rating demonstrate 
features a way improved discovery percent decreases the fake percent of information occasions and hence identifies the 
false information precisely. 

The work in Ref. [27] focuses on building a new artificial intelligence learning pattern, depending on (NLP) 
characteristics for discovering false information by utilizing features centered on content and those features of social 
networking depending on the information. The suggested pattern demonstrates considerable conclusions, giving an 
average accuracy of 85.20%  has appeared  

Reference [28] proposed a false page identifier confirming the pages' personality to detect the false pages, mainly 
using standard terms and defining limited robots. They used three datasets Whatsapp, Instagram, and Facebook. The 
conclusions discovered increased percentages of accuracy, sharing, and decreased positive percentages of discovering 
false pages in the previous social networks.       

The authors used Twitter data to analyze Abusive Tweets in Ref. [29] based on tweets' contextual and lexical 
features. The validity of posts was suggested by allotting a number or percent to the content on Facebook for 
demonstrating its dependability. A comparative think about different rating strategies to bolster adaptability was 
executed, and a new outlet to the confinements display of now applied methods was discovered. 

This work Ref.[30] examined and analyzed customer's online opinions for credibility detection using different 
machine learning techniques to choose the suitable functions in functions choice set specific rules. Using normal terms 
was provided. Tests on hotel review databases exhibit the adequacy of the suggested method.   

Authors of Ref. [31] applied several mixed features focusing on both the content and the user with supervised 
machine learning classifiers and found that the combination of features with a random forest classifier achieved the 
highest accuracy. 

Reference[32] The authors applied the features centered on the content and social networking features, with 
machine learning classifiers: SVM, Random forest, naïve Bayes, MaxEnt, CRF, and found CRF achieved the highest 
precision and F1-score. 

3.  Methodology 

The proposed model of fake news detection is shown in Figure 1. The model consists of four modules 1.Data 
collection, 2.Preprocessing, 3.Feature Extraction, 4.Training, Assessing, and testing the model. The execution of each 
strategy is assessed by measuring accuracy, precision, recall, and F1-Score. Further details on the steps are provided in 
the subsections below:  
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Fig.1. The proposed Model 

3.1.  Data Collection 

There are a few available datasets which is one of the challenges in credibility detection topic. Experiments were 
conducted using the Pheme dataset is the most commonly used dataset in the credibility detection task. The dataset was 
collected using Twitter streaming API during five breaking news. Charlie Hebdo :458 rumors  , 1,621 non-rumors, 
Ferguson :284 rumors , 859 non-rumors, German wings crash : 238 rumors , 231 non-rumors ,Ottawa shooting :470 
rumors , 420 non-rumors, Sydney siege : 522 rumors,699 non-rumors. The total number of tweets is 5.802 was 
manually annotated to 3830 (66%) credible and 1792 (34%) non-credible tweets [21]. 

Regarding data splitting in this step, Regarding the division of information in this step, the dataset is divided into 
80% for training, 10% for validation, and 10% for testing the dataset, applying a classified technique. The divided part 
of training is inserted into ML/DL Models. For making the models, we have benefited from this information and 
applying the invisible test for assessment.     

3.2.  Data preprocessing 

Data preprocessing is a crucial phase, particularly for social media substance. Twitter data is the well-known 
unstructured datasets collected of information from individuals entered his/her sentiments, opinion, attitudes, products 
review, emotions, etc. These datasets need to be subjected to certain refinements by performing preprocessing strategies 
to the following stages. The essential cleaning operations within preprocessing strategies used in this work are removing 
unimportant characters, stop-word removal, tokenization, a lower casing, remove repeated letters, auto-correct spelling, 
and stemming. They will offer us assistance to decrease the size of actual data by evacuating insignificant data. After 
that, to attain better execution, the preprocessing includes the arrangement of procedures which are listed in the 
following steps: 

 
• Evacuating insignificant: the punctuation marks as commas, apostrophes, quotes, question marks, and more, 

which don't include much esteem to the show, are erased. 
• Stop Words Removal: a stop word ordinarily refers to the most common words in a language that does not 

include much meaning to a sentence. These words are expelled from each tweet with the datasets 
• Removing non-English words: sometimes, people in social media use non-English words which are deleted 

from the sentence. 
• Remove Repeated Letters and AutoCorrect spelling: repeated letters change the meaning of the word as sooo, 

haaaaapy should be edited to so, happy. 
• Lowercasing: simply it is one of the basic cleaning operations to convert a word to lower cases such as  
• Tokenization: It is the key perspective of working with substance data to confine a bit of substance into litter 

units called tokens. The tokens are tallying segments and sentences, which can be assist broken into words. 
• Stemming: stemming is ousting the expansion from and alter it to its root word to decrease the number of 

word types or classes within the information. For illustration, the words "Making," "Made," and "Maker" will 
be decreased to the word "make. 

 
We didn't use pos-tagging because we found that pos-tagging doesn't significantly affect the model generation 

process's accuracy. 

3.3.  Feature Extraction  

Different features (non-lexical, semantic, and stylistic) are tested and examined for their effect on classification 
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accuracy. Some of the features are calculated as followers to friends rate, the number of statuses to account age rate, the 
number of friends and followers to account age rate, and more, demonstrating the source's ubiquity. Other information 
is extracted from the author's past tweet posts, such as the average number of URLs and retweet fraction. The feature set 
in Table 3 is chosen using the k-best method, which achieved good results, where k is the number of features, and there 
is an inbuilt class (feature importance and matrix correlation). 

We used 39 features; 16 features are new features (12 new content-based features and 4 new user-based features) 
were combined with other prominent features. Table 3 shows the overall used feature set. New features are represented 
in table 3 with *, which are not considered in other works Ref. [31, 32] and enhance the classifiers' performance. 

Some features didn't enhance the performance that was tested while choosing the appropriate features as (number 
of replies and the source of the tweet if it is from mobile or web and pos tagging,) in content-based features, and user-
based features (user location if the user is near to event or not and also if the user followed by credible users didn't 
enhance the results because credible users tend to follow few people. 

A.  Content-based features 

Content-based features are the features that focus on the substance of the tweet. The description of the new 
content-based features is explained in Table 1. 

Table 1. The content-based features description 

Content-based features Description 
1-Number of positive words. It means the number of words that represent the positive feeling. 
2-Number of negative words. It means the number of words that represent the negative feeling. 
3-Has positive emotions. It means if the tweet has a positive emotion or not. 
4-Has negative emotions. It means if the tweet has a negative emotion or not. 

5-The overall tweet sentiment. The tweet's overall sentiment, if it is positive, negative, or neutral, to find if it matches the topic's 
sentiment or not. 

6-The overall sentiment of replies The overall sentiment of replies on the tweet if it matches the sentiment of the tweet or not. 
7-The number of questioned comments. It means the number of questioned comments in the replies of the tweet. 
8-Time span It means the interval time between account creation and the time of posting the tweet. 

9-Trusted URLs. The URLs that appear in non- rumors tweets are classified as trusted URLs to be a factor of the 
new tweets' credibility process. 

10- Have a word 'pray'? It means if the Tweet has the word 'pray' or not. 
11-Have a period? It means if the Tweet includes a period. 
12-Ratio of punctuation marks to words It is calculated as the number of punctuation marks/number of words per tweet. 

 
In "the number of positive and negative words, the number of positive and negative emotions" features, we found 

that some works ignored the type of words and just counted the number of words in the Tweet. In contrast, The type of 
words is an important feature to consider. We notice that the dataset includes five breaking real news that has more 
negative tweets, sad and angry emotions than in rumors tweets, so the number of positive words and negative words as 
features is considered. The same in the emotions if the tweet has a sad or happy emotion is not just the number of 
emotions regardless of the type .and calculated "The overall sentiment of the tweet "to find if it matches the topic's 
sentiment. The tweet replies are essential to consider; it gives feedback about the tweet. We calculated "The sentiment 
of the replies" and checked if it matches the sentiment of the tweet or not. Check "the number of questioned replies" on 
the tweet, reflecting increases in the probability of rumor content. The interval time between account creation and the 
time of posting the tweet. About' time span' this feature is important because a lot of people create fake accounts, 
especially for posting some rumored news during emergencies.' trusted URLs a lot of tweets in the dataset have URLs, 
here we extract URLs used in non-rumors tweets in each event to make them trusted URLs when they appear in test 
data. It enhances the credibility detection performance. 'word 'pray' Because of the nature of the events included in the 
dataset. There are dead and injured people in each event, found that the word 'pray' is repeated in non-rumor Tweets, so 
it also used as a good content-based feature.' Have a period?' If the tweet includes period or not to enhance the 
credibility and 'Ratio of punctuation marks! To the number of words in the tweet as a sign of non-credibility.  

B.  User_ based features 

User-based features focus on the characteristics of the author (the source) of the tweet, the description of the new 
user-based features is shown in Table 2.            
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Table 2. The description of the new user-based features 

Content-based features User-based features 
1- Tweet overall sentiment*  
2-Number of negative words* 
3-Number of positive words* 
4-Tweet has positive emotions* 
5-Tweet has negative emotions* 
6-Time span* 
7- Has word 'pray'* 
8-Number of questioned comments* 
9-Trusted URLs* 
10-Ratio of punctuation marks to the 
number of words* 
11-Replies sentiment* 
12-Include period* 
13-number of words. 
14-The tweet has a URL?  
15-The tweet has hashtags?  
16- Hashtags count. 
17-has question marks. 
18-question mark count. 
19-has exclamation marks. 
20-exclamation mark count. 
21-is retweeted? 
22-retweet count 

1- Number of followers to account age rate* 
2- Number of friends to account age rate* 
3-Rate of statuses to account age* 
4-favorites count* 
5-followers\friends ratio. 
6-listed count. 
7-Has a description?  
8-Length of description.  
9-Length of the screen name. 
10-User has URL? 
11- Is verified account?  
12-Has a default profile picture? 
13-Average number of hashtags 
14- Average number of URLs  
15-Average number of mentions. 
16-Average tweet length. 
17-Retweet fraction. 

 
Here we calculated the account age and checked the number of followers, friends, and statuses to the account age 

to check if it a fake account or not. And the favorites count to measure the activity of the account, and which may be a 
sign to consider it is a fake account or not. 

Table 3. The selected Feature set 

User-based features Description 
1-Ratio number of the followers to the account age. calculated as the number of followers/account age 
2-Ratio number of the friends to the account age. calculated as the number of friends/account age 
3-Ratio number of the statuses to the account age. calculated as the number of statuses/account age 
4-favorites count. The number of tweets this user has liked in the account's lifetime. 

3.4.  Applying Learning Models  

We applied seven traditional machine learning classifiers and compared the performance of the models. The 
models are support vector machine (SVM), random forest (RF), logistic regression (LR), Naïve Bayes (NB), Maximum 
Entropy (ME), Conditional Random Forest (CRF), and k nearest neighbors (KNN) to find the best one. The algorithms 
tested with different feature sets, the user-based features, the content-based features, and the combination of them in 
separated experiments as shown in table 4, table 5, and table 6. 

4.  Results and Discussion  

Our experiments show that choosing the features is a significant factor in credibility detection, and not all features 
are essential. Some of the features do not affect the performance of the classifiers. After extracting new content and user 
features. We found an improvement in results than other studies. In figure 2, we compare the accuracy rates between 
machine learning classifiers in the three experiments and found that user-based features are more capable than content-
based features. It is proved to be true after found that the most important features are user-based features as followers 
count, listed count, verified account and using default profile image, then in the content- features category  Retweet 
count, the overall tweet sentiment, trusted URLs have more effect on the performance of classifiers than others. In the 
user features category, the Ratio number of the followers to account age, ratio number of the statuses to account age, 
retweet fraction, and tweet-length have more effect than others. 

After using seven different supervised machine learning algorithms with content-based features, user-based 
features, and a combination of them, we evaluate the results to find the best performance. In Table 4, the algorithms 
performance while using our content-based features only versus the content features of Ref. [31], Table 5 the 
performance while using our user-based features only versus user features of Ref. [31] and Table 6 shows the 
performance of algorithms while using our combination set of content and user features versus the set of Ref. [31]. 
Random Forests accomplishes higher accuracy rates while using both user-based features and while using combined 
feature sets, while Logistic Regression is the best classifier while using content-based features. The performance while 
using the combination of content and user features was better than using content features only, or user features only. 
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And better than the performance than Ref. [31] feature set. Figure 2 shows the accuracy rates between machine learning 
classifiers with different feature sets, content-based features only, user-based features only, and a combination of them. 

The performance of the algorithms is measured by different measurements, which are: 
 
• Accuracy: a degree of completely accurately distinguished tests out of all the tests [33] .accuracy calculated 

as appeared in Equation (1). 
 

Accuracy
*100

TP TN
TP TN FP FN

+
=

+ + +
                                                               (1) 

 
• Precision and Recall: a degree of the ability of the model to precisely distinguish the existence of a positive 

class instance is decided by recall [34, 35].precision is shown in Equation (2), and Recall is calculated as 
appeared in Equation (3).      

 

precision TP
TP FP

=
+

                                                                            (2) 

 

Recall TP
TP FN

=
+

                                                                               (3) 

 

• F1-Score: The consonant cruel of Precision and Recall [36]. F1_score is appeared in Equation (4). 
 

2* *Re1_
Re

precision callF Score
precision call

=
+

                                                                 (4) 

Table 4. The performance using our content-based features versus Ref [31] content features 

classifier 
Proposed work Ref [31] 

Accuracy Precision Recall F1_score Accuracy Precision Recall F1_score 
Random forest 67.7 71 82.3 79.6 61.6 69 76.2 72.4 

KNN 69.1 70.2 85.2 80.3 62.1 68.4 79.2 73.4 
SVM 70.8 71.1 96.8 83 66.5 67.9 93.6 78.7 

Logistic regression 73.2 70.8 96.3 82.4 67.1 67.9 93.1 78.5 
Naïve Bayes 71.2 70.2 99.7 83.4 66 66.1 99 79.2 

Table 5. The performance using user-based features versus Ref [31] user features 

classifier 
Proposed work Ref [31] 

Accuracy Precision Recall F1_score Accuracy Precision Recall F1_score 
Random forest 82.2 82 .6 92.4 85.2 77.8 79.5 88.7 83.8 

KNN 73.8 79.5 86.7 77.63 70.9 75.7 82.6 78.9 
SVM 71.4 69.7 99.6 80.5 66 66.9 96.4 78.9 

Logistic regression 69.1 69.4 97.3 80.6 66.1 67.2 95.1 78.7 
Naïve Bayes 71.6 69.5 99.8 81.9 66.4 66.6 99 79.6 

Table 6. The performance while using our overall feature set versus Ref [31] feature set 

classifier 
Proposed work Ref [31] 

Accuracy Precision Recall F1_score Accuracy Precision Recall F1_score 
Random forest 83.4 83.1 95.6 88.6 78.4 79.6 91.6 85.2 

KNN 71.3 75.3 84.5 82.3 66.2 72.5 78.9 75.5 
SVM 73.5 71.2 93.4 81.3 67 68.7 91.9 78.6 

Logistic regression 72.9 70.3 93 80 66.9 68.8 91.2 78.4 
Naïve Bayes 72.8 71 96 82 66.7 67.7 94.8 79 
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Fig.2. A comparison between accuracy rates of selected classifiers with different feature sets 

Table 7. Shows the results of our work comparing with the results of using Ref. [32] features. Found that we get 
better results while using our feature set with random forest classifier than using Ref. [32] features with the same 
classifier and another discussed classifiers. 

Table 7. The results of using our feature set versus using features of Ref [32] 

classifier 
Proposed work Ref [31] 

Precision Recall F1_score Precision Recall F1_score 
SVM .712 .934 .813 0.337 0.483 0.397 

Random forest .831 .956 .886 0.275 0.099 0.145 
Naïve Bayes .71 .96 .82 0.310 0.723 0.434 

Max ENT .62 .69 .60 0.338 0.442 0.383 
CRF .80 .67 .70 0.667 0.556 0.607 

5.  Conclusion and Future Work 

A supervised machine learning framework for untrue news confirmation based on utilizing new content and user-
based features is proposed. The preprocessing stage incorporates detailed sentence analysis beginning from evacuating 
insignificant characters till tokenization and stemming. Pheme dataset was utilized for training and testing models by 
part the information 80% training, 10% validation, and 10% testing. The feature extraction stage includes extracting not 
just new features but also features that have an impact on the execution of the classifiers. We examined the importance 
of features and which have more impact than others and which haven't impact. We chose our feature set using the k-best 
method, which has an inbuilt class (feature importance and matrix correlation). We analyze using substance-based 
features only, source-based highlights only, and while using a combination of content-based and user-based features. 
And we found that user-based features have an impact on the performance more than content-based features. After 
comparing each feature set, we found that using a combination of content-based features and user-based with applying 
the Random Forests classifier achieved the best results. We outperformed the Ref. [31, 32] approach in terms of 
accuracy, precision, recall, and F1- score. For future work, in this paper, the content features are utilized within the 
binary classification. We expected to use a combination of substance, temporal, and context features to be used in multi-
class classification in the future. 
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