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Abstract—A new and simple optimization algorithm 

known as Varna-based Optimization (VBO) is introduced 

in this paper for solving optimization problems. It is 

inspired by the human-society structure and human 

behavior. Varna (a Sanskrit word, which means Class) is 

decided by people’s Karma (a Sanskrit word, which 

means Action), not by their birth. The performance of the 

proposed method is examined by experimenting it on six 

unconstrained, and five constrained benchmark functions 

having different characteristics. Its results are compared 

with other well-known optimization methods (PSO, 

TLBO, and Jaya) for multi-dimensional numeric 

problems. Our experimental results show that the VBO 

outperforms other optimization algorithms and have 

proved the better effectiveness of the proposed algorithm. 

 

Index Terms—VBO, optimization, constrained 

benchmark, unconstrained benchmark. 

 

I.  INTRODUCTION 

The term “optimization” means finding optimal 

solutions from all feasible solutions based on their 

objective(s). Any optimization problem has a set of a 

specific number of goals (one or more objective 

functions), a search domain (one or more feasible 

solutions) and a search method (optimization algorithms). 

Most of the traditional optimization techniques fail to 

solve large problems. Therefore, still, there is the 

requirement of efficient and effective optimization 

methods to solve such large problems. There are 

numerous heuristics based optimization algorithms, and 

these algorithms can be classified based on their 

principles such as population-based, iterative based, 

stochastic-based, etc. An algorithm gives the set of 

solutions (population) and tries to improve these solutions 

is known as population-based technique. An algorithm 

which uses multiple iterations to provide better solutions 

is called an iterative-based method, and by using 

randomness, the algorithm gives better solutions is 

known as a stochastic-based method. There is another 

classification of heuristic approach which is based on 

nature, and it is called nature-inspired. Population-based 

nature-inspired algorithms are categorized into two main 

groups: 1) Evolutionary Algorithms (EA) and 2) Swarm 

Intelligence (SI) based algorithms. Some of the popular 

Evolutionary algorithms are Genetic Algorithm (GA)[1], 

Differential Evolution (DE)[2], Artificial Immune 

Algorithm (AIA)[3], Evaluation Strategy (ES)[4], 

Bacteria Foraging Optimization (BFO)[5], Evolution 

Programming (EP)[6], Grenade Explosion Method 

(GEM)[7], and so on. Some of the popular Swarm 

Intelligence (SI) based algorithms are Particle Swarm 

Optimization (PSO)[8], Artificial Bee Colony (ABC)[9], 

Shuffled Frog Leaping (SFL)[10], Firefly Algorithm 

(FA)[11], Ant Colony Optimization (ACO)[12], and so 

on. All these algorithms use their own controlling 

parameters. 

GA is most popular optimization technique which 

comes under EA. Working of GA is based on Darwin’s 

principle of survival of the fittest [6]. GA uses controlling 

operators such as mutation, crossover, and selection. DE 

is a population based algorithm which is most widely 

used to solve the constrained optimization problems 

whose objective functions such as non-continuous, non-

linear, and non-differentiable, have many local optima, 

etc. Theory of AIA is inspired from the immune system 

of the human being. Working of ES is based on the 

concepts of evolution and adaptation. BFO is motivated 

by the social foraging behavior of bacteria. EP is also a 

global optimization method, and it is similar to GA. GEM 

is inspired by the observation of a grenade explosion. 

Dr. Eberhart and Dr. Kennedy developed PSO in 1995, 

and PSO is also a population-based optimization method. 

The idea of PSO is motivated by the social behavior of 

bird flocking. It uses the concept of personal and social 
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experience. ABC is motivated by the foraging behavior of 

a honey bee. In ABC, the colony is classified into three 

groups such as employed bees, onlookers, and scouts. 

The idea of SFL is based on watching, copying, and 

forming the behavior of a group of frogs that are 

searching for the location that has the maximum amount 

of available food. The theory of FA is based on the 

flashing behavior of fireflies. ACO is inspired by the 

foraging behavior of the ants that are searching for the 

food.  

Authors of [13] used the GA to solve the medical field 

problem. Also, their objective is to search the features (or 

genes) that can predict the type of patient. Rao et al.[14] 

introduced a Teaching-learning-based optimization 

(TLBO) in 2011. It is a population-based algorithm that is 

inspired by the behavior of a teacher and learners. It uses 

a population of solutions to proceed to the global optima. 

But, in one iteration, TLBO does twice number of 

function evaluations than PSO. Rao [15] introduced Jaya 

algorithm in 2015 which is also a population based 

optimization method where the philosophy is to move 

towards the best solution and away from the worst 

solution. 

 Previously, most of the heuristic approaches consider 

the same formulation for all the particles in the 

population. To work a system well, all components of the 

system need not do the same task, a variation in their task 

may improve the performance. We utilized this concept 

in our proposed algorithm. We get inspired by the 

working of human society and their behavior, where 

people are assigned specific tasks for development of the 

society. In this paper, Varna-based Optimization (VBO) 

algorithm is proposed to find the optimal global solution 

for the constrained and unconstrained optimization 

problems. VBO algorithm is based on human society-

structure and behavior. VBO algorithm and its working 

are explained in detail in next section.  

The main contributions of this paper are summarized 

as: 

 

 We develop a new and simple optimization 

algorithm named Varna-based Optimization (VBO) 

and use it for solving the optimization problems.  

 We compare PSO, TLBO, and Jaya algorithms 

with our proposed algorithm (VBO) where the 

performance of VBO is found to be better. 

 

The rest of the paper is structured as follows. In this 

paper, we present the overview of VBO in section II. In 

section III, we demonstrate the working of VBO. Section 

IV shows the experimental results and discussions.  

Finally, the paper is concluded in section V. 

 

II.  VARNA BASED OPTIMIZATION 

In proposed algorithm, particles in the population are 

classified into two Varna (a Sanskrit word, which means 

Class), namely class A and class B. This classification is 

based on the superiority of particles. Particles having 

better fitness value belongs to class A (like elite group), 

and rest particles belong to class B. The particles in a 

particular class follow rules of that class and work 

accordingly. Also, it is not necessary that particles 

present in a particular class in present generation will 

always remain in it. In the next generation, it may go to 

other class as well. So, Varna is decided by particle’s 

Karma (Fitness value), not by their birth.  

For example, we consider the human society of 12 

people (two of them belong to the elite group and 

remaining ten people belong to a normal group) as shown 

in Fig.1. So, class A has two people, and class B has ten 

people. According to human social structure and its 

behavior, it is not necessary that people always present in 

their particular group. People’s Varna is decided by their 

Karma, not by their birth. If an individual from normal 

group performs well, then it is promoted to elite group 

and the low performer individual from elite group goes to 

normal group as shown in Fig. 2 and Fig. 3. This 

transitioning keeps on happening based on the 

performance of the individuals. 

 

 

Fig.1. Initial classification of human society such as class A and class B 

 

Fig.2. Replacement of human from class A to class B based on 
their Karma (Action) 

 

Fig.3. Classification of class A and class B after some generations 

Here, the task for class A is exploitation and for class B 

is exploration. The particles in class A have the property 

to move towards the best solution and away from the 

worst solution. On the other hand, particles in class B 
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interact whole population peer to peer, and their 

movement is decided by fitness value of respective peer 

particles. For deciding the sizes of classes, we take a 

fixed fraction (α) of the population in class A and rest in 

class B. We recommend the value of α to be from 0.05 to 

0.20, in this paper we set α = 0.10 for the experiment. 

And we set peer constants as c1 = 1.50 and c2 = 1.25. The 

values for c1 and c2 are kept higher than one to cover the 

search regions around the better counterpart. The value of 

c1 is still kept higher than c2 as there is more chance of 

promising solution around particle having the best 

solution. 

Particles in class A move towards the best solution and 

simultaneously move away from the worst solution. The 

random value [0,1]Ar   is considered for class A. The 

new positions ( )iX   of particles is given by (1).  

 

= *( )i i A best worstX X r X X                     (1) 

 

For each particles iX  in class B, we randomly choose 

a particle from the whole population as peerX . The 

random value [0,1]Br  is considered for class B. If 

fitness of iX  is better than that of peerX  we move that 

particle towards best solution and away from the peer 

solution, as in (2). 

 

1= * *( )i i B best peerX X c r X X                 (2) 

 

If fitness value of iX  is worse than that of peerX , we 

move that particle towards peerX , as  in (3). 

 

2= * *( )i i B peer iX X c r X X                 (3) 

 

If both particles have same fitness value, then new 

position is updated as in range zero to twice of current 

position as given in (4). 

 

= 2* *i B iX r X                                (4) 

 

III.  DEMONSTRATION OF WORKING OF VBO 

In this section, we give the step-by-step procedure of 

the working of VBO. We use Michalewicz function [16] 

as given in (5) for the demonstration of our proposed 

method. Michalewicz function is multi-modal as well as 

separable but not regular. Fig. 4(a) shows the three 

dimensional Michalewicz function, and its contour plot 

with local minima and global minima are shown in Fig. 

4(b). 

 
2

2

=1

( ) = sin( )(sin( ))
D

mi

i i

i

ix
f x x


                 (5) 

 

The Michalewicz function has D! local minima, where 

D is the size of the dimension. For larger value of the 

constant m, the search is more difficult. Here, the value of 

m is taken as 10. 

 

 
(a) Michalewicz function 

 
(b) Contour plot 

Fig.4. Three Dimensional Michalewicz function and its contour plot 
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Fig.5. Flow chart of VBO algorithm  

Demonstration of working of VBO is as follows: 

 

Step 1: We define the optimization problem and initialize 

the parameters which are used in this optimization 

problem. Following parameters are taken for this 

particular benchmark function i.e. Michalewicz function.   

 

 Population size (N) = 12  

 Number of generations (G) = 20  

 Number of design variables (d) = 2  

 Range of design variables ([Lower range, Upper 

range]) = [0,  ]  

 Fraction of population of class A ( ) = 0.10  
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 Random value   

- [0,1]Ar   for class A  

- [0,1]Br   for class B  

 Peer constants for class B: 
1 = 1.50c  and 

2 = 1.25c   

 

Step 2: Randomly initialize each particle (X) and 

calculate fitness value ( ( ))f X  for each of them. 
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Step 3: Classify particles into class A and class B. 

Particles having better fitness value goes into class A and 

others go into class B. So, sort particles according to their 

fitness value from best to worst. Select top 0.10* N    

(here, 0.10*12 = 2   ) particles for class A and rest for 

class B. 
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Step 4: Identify best and worst solutions: 

 

 = 2.0093 2.2912bestX  

 

 = 0.9428 0.0067worstX  

 

Modify positions of particles in class A, as  in (1).    

 

2.5921 0.8255'= *( ) =
2.1189 2.4367

X X r X X Xworsti i A Abest

 
     

 
 

 

Step 5: Modify positions of particles in class B as 

explained in section 2. Let us consider, a particle in 

class B,  = 0.1818 1.3721iX  with fitness value 

equal to -0.3387. Let its peer be randomly chosen from 

the whole population (it can from either class A or class 

B), other than it, as  = 1.0974 0.4755peerX  with 

fitness value equal to -0.0000. As iX  has better fitness 

than peerX , so its new position is given by (2). 

Similarly, for another particle in class 

 = 2.7013 1.9696iX  with fitness value equal to -

0.0009. Let its peer be  = 1.9882 2.1627peerX  with 

fitness value equal to -0.3957. Here, iX  has worse 

fitness than peerX , so its new position given by (3). 
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Step 6: Clamp position values of all particles in both 

classes within the domain of design variables. And 

calculate fitness value of each particle. 
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Step 7: Select solutions that give better fitness value than 

previous solutions as sX . 
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Step 8: If termination criteria are met then stop and 

report the particle having the best solution, otherwise 

repeat all steps from Step 3. 

  

       
(a) Generation-1                                           (b) Generation-2                                             (c) Generation-3 

       
(d) Generation-5                                           (e) Generation-10                                             (f) Generation-20 

Fig.6. Visualization of convergence of solutions for Michalewicz function for Generation-1, 2, 3, 5, 10 and 20. 

Fig. 6 shows the visualization of convergence of 

solutions for Michalewicz function for generation number 

1, 2, 3, 5, 10 and 20. In Generation 1, all 12 particles are 

randomly distributed over the contour plot of 

Michalewicz function as shown in Fig. 6(a). In 

Generation 2, three particles are moving towards local 

minima, seven particles are moving towards global 

minima and remaining two particles remain same in their 

previous position as shown in Fig. 6(b). Similarly, 

visualization of convergence of particles for Generation 3, 

5 and 10 is shown in Figs. 6(c), 6(d), and 6(e) 

respectively. From these figures, we can see that how 

rapidly convergence of particles towards global minima is 

taking place. In Generation 20, all twelve particles have 

reached to global minima as shown in Fig. 6(f). 

Table 1 shows the position and objective function 

value of particles (as expressed in (5)) for the first two 

generations (Generation 1 and Generation 2). Here, we 

consider population size of 12, and it is divided into two 

classes: class A and class B. First two particles of 

Generation 1 are in class A and remaining ten particles 

are in class B. Similarly, the same procedure is followed 

for generation 2. These two generations give the basic 

idea of working of proposed VBO algorithm. 
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Table 1. Variation of design variables and fitness function 

  
 

IV.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, we have performed different experiments 

on unconstrained and constrained benchmark functions to 

check the effectiveness of VBO with other optimization 

algorithms. These benchmark functions have different 

characteristics and functionality such as uni-modal, multi-

modal, separable, non-separable, regular, non-regular and 

so on. A function is having only one local optima 

(minima or maxima) is called uni-modal and more than 

one local optima are called multi-modal. A function is 

regular, if it differentiable at every point of its search 

space otherwise non-regular. 

A.  Experimental setup 

 Used a 64-bit Windows 8.1 operating system 

running Intel Core i7-4770 CPU @ 3.40 GHz 

having 16 GB RAM. 

 Used MATLAB 2017a as a platform for coding 

the algorithms and plotting graphs. 

 Maximum number of function evaluations set 

 

o 100000 for unconstrained benchmark functions 

o 200000 for constrained benchmark functions 

 

 Population size taken as 100. 

 

 

B.  Experiments on unconstrained benchmark functions 

 

We have used six well-known unconstrained 

benchmark functions with different functionality and 

characteristics. Details of these functions considered by 

Akay and Karaboga [17] are given in Table 2. In this 

experiment, to maintain the consistency, we use a 

common platform for comparison of VBO with other 

optimization methods such as PSO, TLBO, and Jaya. The 

performance of proposed VBO algorithm is tested on 

these six benchmark functions which are well-known in 

the literature of optimization and compared its results 

with PSO, TLBO, and Jaya. The performance of VBO is 

tested for 100 independent runs with the population size 

of 100, different dimension size (D = 2, 3, 5, 10, 20 and 

30) and number of function evaluations is set to 100000. 

Convergence plots of VBO and other optimization 

methods (PSO, TLBO, and Jaya) with different 

dimensions (D = 2, 3, 5, 10, 20 and 30) are shown in Figs. 

7, 8, 9, 10, 11 and 12. The performance of VBO and other 

optimization methods are tested on benchmark functions 

on the same platform with 100000 function evaluations 

and averaged over 100 independent runs. We consider the 

Sphere function and performance of VBO is tested on it 

with different dimension size (D = 2, 3, 5 and 10). VBO 

obtained better results as compared to other optimization 

methods as shown in Figs. 7(a), 8(a), 9(a) and 10(a). 

When the performance of VBO is tested on Sphere 

function of dimensions (D = 20 and 30) then initial 



8 Varna-based Optimization: A New Method for Solving Global Optimization  

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 12, 1-15 

results of VBO is better than PSO, TLBO and Jaya 

algorithms. If we increase the size of function evaluations, 

TLBO is dominated to VBO, but overall, VBO gives 

better results as compared to PSO and Jaya algorithms as 

shown in Figs. 11(a) and 12(a). 

We consider the Rosenbrock function, and 

performance of VBO with other optimization methods are 

tested on the same platform. The performance results of 

VBO on Rosenbrock function with different  dimensions 

(D = 2, 3, 5, 10, 20 and 30) are shown in Figs. 7(b), 8(b), 

9(b), 10(b), 11(b) and 12(b). From these figures, it is 

observed that VBO gives better results as compared to 

PSO, TLBO and Jaya algorithms. We use another well-

known benchmark function, i.e., Schwefel and test the 

performance of VBO on it. The performance results of 

VBO on Schwefel function are shown in Figs. 7(c), 8(c), 

9(c), 10(c), 11(c) and 12(c). From these figures, it is clear 

that VBO is better that PSO, TLBO, and Jaya algorithms. 

From Figs. 11(c) and 12(c), it is also observed that VBO 

gives much better results as compared to PSO, TLBO and 

Jaya algorithms. Similarly, we test the performance of 

VBO on Rastrigin function with different dimensions. 

After experiments, VBO gives better results and 

dominated other optimization methods (PSO, TLBO, and 

Jaya) as shown in Figs. 7(d), 8(d), 9(d), 10(d), 11(d) and 

12(d). The performance of VBO and other optimization 

methods is tested on Griewank and Ackley function with 

different dimensions. The performance results of VBO on 

Griewank function are shown in Figs. 7(e), 8(e), 9(e), 

10(e), 11(e) and 12(e). The performance results of VBO 

on Ackley function with different dimensions are shown 

in Figs. 7(f), 8(f), 9(f), 10(f), 11(f) and 12(f). From all 

these figures as mentioned earlier, it is seen that VBO 

outperforms other algorithms for all these six 

unconstrained benchmark functions. 

Table 2. Details of benchmark functions considered by Akay and Karaboga [17] 

Function Formulation Search space Multimodal? Separable? Regular? 

Sphere 
2

1

D

ii
x

  [-100, 100] No Yes Yes 

Rosenbrock     
21 22

11
100 1

D

i i ii
x x x




    [-30, 30] No No Yes 

Schwefel   1
418.9829 sin

D

i ii
D x x


  [-500, 500] Yes Yes No 

Rastrigin  2

1
10cos(2 ) 10

D

i ii
x x


   [-5.12, 5.12] Yes Yes Yes 

Griwank  2

1 1

1 1
20 20exp 0.2 exp cos 2

D D

i ii i
e x x

D D


 

   
          

   [-600, 600] Yes No Yes 

Ackley  2

1 1

1 1
20 20exp 0.2 exp cos 2

D D

i ii i
e x x

D D


 

   
          

   [-32, 32] Yes No Yes 

 

     
(a) Sphere                                                   (b) Rosenbrock                                                   (c) Schwefel 

       
(d) Rastrigin                                                   (e) Griewank                                                   (f) Ackley 

Fig.7. Convergence plots of VBO algorithm with other optimization methods on six benchmark functions (D = 2)
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(a) Sphere                                                   (b) Rosenbrock                                                   (c) Schwefel 

       
 

(d) Rastrigin                                                   (e) Griewank                                                   (f) Ackley 

Fig.8. Convergence plots of VBO algorithm with other optimization methods on six benchmark functions (D = 3) 

       
(a) Sphere                                                   (b) Rosenbrock                                                   (c) Schwefel 

      
 

(d) Rastrigin                                                   (e) Griewank                                                   (f) Ackley 

Fig.9. Convergence plots of VBO algorithm with other optimization methods on six benchmark functions (D = 5)



10 Varna-based Optimization: A New Method for Solving Global Optimization  

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 12, 1-15 

       
(a) Sphere                                                   (b) Rosenbrock                                                   (c) Schwefel 

       
 

(d) Rastrigin                                                   (e) Griewank                                                    (f) Ackley 

Fig.10. Convergence plots of VBO algorithm with other optimization methods on six benchmark functions (D = 10) 

       
(a) Sphere                                                    (b) Rosenbrock                                                   (c) Schwefel 

       
 

(d) Rastrigin                                                   (e) Griewank                                                   (f) Ackley 

Fig.11. Convergence plots of VBO algorithm with other optimization methods on six benchmark functions (D = 20)
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(a) Sphere                                                   (b) Rosenbrock                                                   (c) Schwefel 

       
 

(d) Rastrigin                                                   (e) Griewank                                                   (f) Ackley 

Fig.12. Convergence plots of VBO algorithm with other optimization methods on six benchmark functions (D = 30) 

Table 3. Comparison of mean and standard deviation of PSO, TLBO, Jaya and VBO for unconstrained six benchmark functions 

  PSO TLBO Jaya VBO 

Function D Mean SD Mean SD Mean SD Mean SD 

Sphere 

2 1.69E-166 0.00E+00 3.71E-161 2.23E-160 3.16E-129 2.65E-128 3.13E-250 0.00E+00 

3 1.57E-148 8.95E-148 2.20E-127 1.95E-126 2.77E-85 1.79E-84 2.68E-186 0.00E+00 

5 4.48E-120 2.83E-119 1.74E-105 6.85E-105 6.94E-47 3.78E-46 7.98E-134 2.76E-133 

10 7.87E-69 3.56E-68 2.12E-85 4.85E-85 1.23E-17 1.49E-17 6.38E-89 3.15E-88 

20 7.74E-26  3.89E-25         3.38E-70   9.14E-70  6.86E-04   3.36E-04         4.04E-56     7.88E-56 

30 1.79E-13   1.37E-12       2.93E-64    3.61E-64     2.20E+00   8.01E-01        5.82E-41    9.69E-41 

          

Rosenbrock 

2 4.77E-32  2.75E-31  4.47E-20   2.61E-19       2.03E-11   9.85E-11       1.81E-28  5.04E-28   

3 8.49E-05      5.89E-04    3.41E-06   1.03E-05      1.50E-01  8.82E-01       6.13E-07          9.56E-07 

5 1.43E-01      2.67E-01      4.44E-02          3.93E-01     1.30E+00          3.94E+00      9.30E-02  5.49E-01 

10 3.20E+00         9.47E-01      6.16E-01    8.50E-01      7.35E+00         9.91E+00    5.53E-01          8.69E-01 

20 2.49E+01          2.28E+01    1.53E+01          5.64E-01  6.74E+01          5.46E+01   9.25E+00          2.16E+00 

30 3.63E+01          2.40E+01       2.60E+01          4.04E-01      6.60E+02          4.32E+02    2.47E+01          1.61E+01 

          

Schwefel 

2 3.55E+01  5.68E+01       2.55E-05    0.00E+00       4.94E-01    2.04E+00       2.55E-05          0.00E+00 

3 1.11E+02          9.02E+01      3.55E+00     2.02E+01    1.83E+01          3.88E+01    4.74E+00    2.32E+01 

5 3.94E+02          1.30E+02     6.98E+01         6.98E+01    1.39E+02          1.36E+02    4.74E+01          7.10E+01   

10 1.49E+03          2.99E+02       4.76E+02   2.09E+02    9.69E+02          4.07E+02     3.38E+02          1.80E+02 

20 3.73E+03     5.14E+02      2.31E+03          6.74E+02      3.66E+03          5.73E+02      1.08E+03        3.24E+02 

30 5.83E+03          8.09E+02      4.74E+03          1.34E+03    7.06E+03          6.03E+02     2.58E+03     9.38E+02 

          

Rastrigin 

2 0.00E+00          0.00E+00     0.00E+00          0.00E+00     1.78E-17     1.77E-16        0.00E+00   0.00E+00 

3 9.95E-03          9.90E-02      0.00E+00          0.00E+00      1.22E-01          1.56E-01  0.00E+00   0.00E+00 

5 1.25E+00          8.63E-01     3.11E-14          3.10E-13       4.02E+00          1.29E+00      0.00E+00   0.00E+00 

10 7.90E+00          3.62E+00    1.40E+00          1.26E+00     3.35E+01          4.92E+00      0.00E+00         0.00E+00 

20 1.92E+01          6.47E+00      5.34E+00         2.67E+00      1.31E+02          1.14E+01      2.69E+00          2.85E+00 

30 3.14E+01          1.16E+01    7.31E+00          4.35E+00    2.42E+02          1.99E+01       7.47E+00          3.48E+00 

          

Griewank 

2 7.40E-05          7.36E-04     1.11E-18         1.10E-17  5.28E-04          6.77E-04  0.00E+00          0.00E+00   

3 2.19E-03          3.55E-03      6.10E-04          1.91E-03     1.62E-02          7.04E-03        8.03E-05          7.37E-04 

5 1.52E-02          8.58E-03  1.23E-02          7.77E-03       1.32E-01          3.34E-02      3.52E-03          4.70E-03 

10 6.74E-02          2.73E-02     5.10E-03          8.66E-03      4.95E-01          8.16E-02        2.83E-04          2.45E-03 

20 3.51E-02          2.83E-02       1.41E-04         1.24E-03       5.70E-01          1.03E-01         5.55E-06          3.61E-05 

30 1.37E-02        1.40E-02      7.51E-05          7.47E-04       9.78E-01          4.94E-02     3.26E-04         2.94E-03 

          

Ackley 

2 -8.88E-16          0.00E+00       -8.88E-16        0.00E+00         -8.88E-16          0.00E+00        -8.88E-16          0.00E+00 

3 -8.88E-16          0.00E+00      -8.88E-16         0.00E+00      -8.88E-16         0.00E+00        -8.88E-16          0.00E+00 

5 -6.04E-16          9.64E-16         -8.88E-16         0.00E+00 -6.39E-16          9.06E-16 -8.88E-16          0.00E+00 

10 2.66E-15          0.00E+00        2.24E-15          1.15E-15       2.37E-07          8.86E-07     -8.88E-16          0.00E+00 

20 1.44E-14          5.18E-14      2.86E-06          2.80E-05  1.22E+00          4.11E+00       2.59E-15          4.97E-16 

30 2.19E-08          8.79E-08       3.29E-02          2.30E-01       3.85E+00          4.38E+00       2.66E-15          0.00E+00 
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The comparison of mean and standard deviation (SD) 

of PSO, TLBO, Jaya and VBO for above mentioned six 

benchmark functions is given in Table 3. These mean and 

SD of PSO, TLBO, Jaya, and VBO are obtained from the 

100 independent runs of each benchmark functions. From 

the Table 3, it is clear that overall VBO gives better 

results as compared to other optimization algorithms 

(PSO, TLBO, and Jaya) for all six unconstrained 

benchmark functions. 

C.  Experiments on constrained benchmark functions 

We have used five different constrained benchmark 

functions with different functionality and characteristics. 

These functions were considered by Liang et al.[18]. In 

this experiment, we test our proposed VBO algorithm on 

these five benchmark functions and compare its results 

with that of PSO, TLBO, and Jaya. 

1)  Constrained benchmark function 1 

This test function is minimization problem which is 

quadratic in nature. It has nine linear inequality 

constraints and thirteen design variables. The ratio 

between the feasible region and search space is about 

0.0111% [19]. 

 

Minimize 
4 4 13

2

=1 =1 =5

( ) = 5 5i i i

i i i

f x x x x                   (6) 

 

Subject to 

 

1 1 2 10 11

2 1 3 10 12

3 2 3 11 12

4 1 10

5 2 11

6 3 12

7 4 5 10

8 6 7 11

9 8 9 12

( ) = 2 2 10 0

( ) = 2 2 10 0

( ) = 2 2 10 0

( ) = 8 0

( ) = 8 0

( ) = 8 0

( ) = 2 0

( ) = 2 0

( ) = 2 0

g x x x x x

g x x x x x

g x x x x x

g x x x

g x x x

g x x x

g x x x x

g x x x x

g x x x x

    

    

    

  

  

  

   

   

   

                (7) 

 

The search space are 0 ≤ xi ≤ 1, where i = 1, 2, 3,... 9, 0 

≤ xi ≤ 100 , where i = 10, 11, 12 and 0 ≤ x13 ≤ 1. The 

global minima is at x
*
 = (1 1 1 1 1 1 1 1 1 3 3 3 1) where 

six constraints are active  (g1, g2, g3, g7, g8 and g9) and 

f(x
*
) = -15. 

Convergence plots of VBO with other optimization 

methods (PSO, TLBO, and Jaya) are shown in Fig. 13. 

VBO, PSO, TLBO, and Jaya algorithms are using the 

same platform to maintain the consistency. The 

performance of VBO over other optimization algorithms 

experiments on function 1, is better as compared to other 

techniques (PSO, TLBO, and Jaya algorithm) which are 

shown in Fig. 13(a). From Fig. 13(b), it is observed that 

VBO gives better results as compared to TLBO and Jaya 

but not from PSO (for function 2). When we increase the 

number of function evaluations, then VBO produces 

almost same results as PSO. 

 

 

 
(a) function 1 

 
 

(b) function 2 

Fig.13. Convergence plots of VBO algorithm with other optimization 
algorithms on constrained benchmark function 1 and 2. 

2)  Constrained benchmark function 2 

This test function is also a minimization problem 

which is polynomial in nature. It has one non-linear 

equality constraint and ten design variables. The ratio 

between the feasible region and search space is about 

0.0000% [19]. 

 

Minimize 
=1

( ) = ( )
n

n

i

i

x n x                     (8) 

 

Subject to 

 

2( ) = 1= 0
=1

n
h x x

i
i

                        (9) 

 

Where, n = 10 and the search space are 0 ≤ xi ≤ 1, where i 

= 1, 2, 3, ... n. The global minima is at x* = 

(0.31624357647283069, 0.316243577,...,0.316243576) 

and f(x*) = -1.0005001000. 
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Convergence plots of VBO with other optimization 

methods (PSO, TLBO, and Jaya) are shown in Fig. 14. 

VBO, PSO, TLBO, and Jaya algorithms are using the 

same platform to maintain the consistency. The 

experimental results on function 3, 4 and 5 show that 

VBO gives better performance than other optimization 

algorithms. For function 3 and 4, it is observed that VBO 

gives better results as compared to Jaya and almost same 

as PSO and TLBO. For function 5, it is clear that 

performance of VBO is better as compared to PSO, 

TLBO and Jaya algorithms.  

3)  Constrained benchmark function 3 

This test function is also a minimization problem 

which is also polynomial in nature. It has four non-linear 

inequality constraints and seven design variables. The 

ratio between the feasible region and search space is 

about 0.5121%. 

 

Minimize 
 

2 2 4

1 2 3

2 6 2

4 5 6

4

7 6 7

6 7

( ) = ( 10) 5( 12)

3( 11) 10 7

4

10 8

f x x x x

x x x

x x x

x x

   

   

 

 

            (10) 

 
Subject to  

 
2 4

1 1 2 3

2

4 5

2

2 1 2 3

4 5

2 2

3 1 2 6

7

2 2 2

4 1 2 1 2 3

6 7

( ) = 127 2 3

4 5 0

( ) = 282 7 3 10

0

( ) = 196 23 6

8 0

( ) = 4 3 2

5 11 0

g x x x x

x x

g x x x x

x x

g x x x x

x

g x x x x x x

x x

   

  

   

  

   

 

  

  

             (11) 

 

 
(a) function 3 

 
(b) function 4 

 
(c) function 5 

Fig.14. Convergence plots of VBO algorithm with other optimization 
algorithms on constrained benchmark function 3, 4 and 5. 

The search space is -10 ≤ xi ≤ 10, where i = 1, 2,...,7. 

The global minima is at x
*
 = (2.33049935147405174, 

1.95137236847114592,...,1.5942266780671519) and f(x
*
) 

= 680.630057374402. Two constraints (g1 and g4) are 

active. 

4)  Constrained benchmark function 4 

This test function is minimization problem which is 

quadratic in nature. It has only one non-linear equality 

constraints and two design variables. The ratio between 

the feasible region and search space is about 0.0000%. 

 

Minimize 

 
2 2

1 2( ) = ( 1)f x x x                       (12) 

 

Subject to 

 
2

2 1( ) = = 0h x x x                         (13) 

 
The search space is -1 ≤ x1, x2 ≤ 1. The global minima 

is at x
*
 = (-0.7070360700, 0.5000000043) and f(x

*
) = 

0.7499. 
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5)  Constrained benchmark function 5 

This test function is minimization problem which is 

quadratic in nature. It has one linear and one non-linear 

equality constraint and three design variables. The ratio 

between the feasible region and search space is about 

0.0000%. 

 
Minimize  

 
2 2 2

1 2 3 1 2 1 3( ) =1000 2x x x x x x x x                (14) 

 

Subject to 
 

2 2 2

1 1 2 3

2 1 2 3

( ) = 25 = 0

( ) = 8 14 7 56 = 0

h x x x x

h x x x x

  

  
             (15) 

 
The search space is 0 ≤ xi ≤ 10; i = 1, 2, 3. The global 

minima is at x* = (3.51212, 0.21698, 3.55217) and f(x*) = 

961.71502. 

As shown in Figs. 14(a) and 14(b), it is observed that 

VBO gives better results as compared to Jaya algorithm 

and almost same as PSO and TLBO algorithms. Fig. 

14(c), clearly shows that performance of VBO is better 

than PSO, TLBO and Jaya algorithms. Comparison of 

mean and SD of PSO, TLBO, Jaya and VBO for these 

five constrained benchmark functions are given in Table 

4. 

Table 4. Comparison of mean and standard deviation of PSO, TLBO, Jaya and VBO for constrained five benchmark functions 

Function  PSO TLBO Jaya VBO 

function 1 

Best -15.000002 -15.000002 -15.000002 -15.000002 

Worst -7.000003 -9.453129 -5.235363 -9.453129 

Mean -11.277191 -13.584221 -12.136220 -13.913284 

SD 1.734421 1.351544 2.345873 1.234300 

Median -10.828129 -13.414066 -12.031023 -15.000002 

      

function 2 

Best -1.000062 -1.000030 -0.862619 -1.000021 

Worst -1.000043 0.000000 0.000004 0.000000 

Mean -1.000059 -0.826376 -0.302791 -0.886730 

SD 0.000003 0.312795 0.327108 0.278101 

Median -1.000059 -0.980579 -0.130772 -0.998173 

      

function 3 

Best 680.630345 680.630253 680.660017 680.630600 

Worst 680.687428 680.635115 680.939540 680.636358 

Mean 680.643580 680.632369 680.787702 680.632782 

SD 0.009407 0.001014 0.055329 0.001244 

Median 680.642060 680.632192 680.784454 680.632625 

      

function 4 

Best 0.749998 0.749998 0.749998 0.749998 

Worst 0.749998 0.750701 1.000000 0.750175 

Mean 0.749998 0.750051 0.769687 0.750016 

SD 0.000000 0.000102 0.056470 0.000033 

Median 0.749998 0.750012 0.750627 0.750002 

      

function 5 

Best 961.715672 961.715180 961.732253 961.716083 

Worst 972.317118 970.057870 1797.193466 964.548640 

Mean 965.120070 962.718444 983.365117 962.023756 

SD 3.220657 1.751791 93.505626 0.527172 

Median 964.207835 961.933729 967.427820 961.813006 

 

V.  CONCLUSION 

We propose an optimization algorithm, named as a 

Varna-based optimization (VBO). It is inspired by the 

human-society structure and human behavior. This 

method classifies particles into two classes (namely class 

A and class B) based on their superiority. VBO is tested 

on six well-defined unconstrained and five constrained 

optimization problems. These problems have different 

functionality and characteristics. The experimental results 

show that VBO gives better results as compared to other 

well-known optimization algorithms like PSO, TLBO, 

and Jaya. We may not say that VBO algorithm is best 

optimization algorithm, but its performance is 

comparable to good ones. 

VBO can further be improved by classifying particles 

in more than two classes, where each class has a specific 

task. We are also thinking of changing the sizes of classes 

dynamically across generations. One can also experiment 

with miss-classifying some particles across generations. 
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