
I.J. Intelligent Systems and Applications, 2018, 10, 27-41
Published Online October 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.10.04

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

A Formal Model for Legacy System

Understanding

A.Sivagnana Ganesan
Dept. of Banking Technology, Pondicherry University, Puducherry, India

E-mail: ganesanas@gmail.com

T.Chithralekha
Dept. of Computer Science & Engg., Pondicherry University, Puducherry, India

E-mail: tchithralekha@gmail.com

M. Rajapandian
Dept. of Mathematics & Computer Science, KMCPGS, Puducherry, India

E-mail: rajapan@yahoo.com

Received: 26 August 2017; Accepted: 20 December 2017; Published: 08 October 2018

Abstract—Migration of legacy system is not a single step

activity but a process that comprises of several phases of

which Legacy System Understanding (LSU) is the first

step. The intent of this work is to carry out a detailed

study on the Legacy System Understanding in terms of

Techniques and Tools used and to identify the potential

gaps in them. The understanding of the legacy system has

to be at the perspective of system level rather than the

code level which has a narrow perspective, because the

migration at code level may have a cascading impact to

different aspects of the Legacy System. These findings

have enabled us to formulate a process for building up an

artefact repository and artefact dependency repository.

These repositories along with the legacy system have

aided us in understanding the legacy system in a

comprehensive manner in terms of migrating artefacts in

the context of migration of legacy systems. A formal

mathematical model for representing the status of LSU

and application of the same on a case study has been

presented.

Index Terms—Legacy System Understanding, Artefacts,

Reverse Engineering, Migration, Formal Model, Legacy

Systems.

I. INTRODUCTION

Migration of Legacy systems is one of the approaches

of legacy systems modernization, the other approaches

being replacement, re-engineering or redevelopment and

wrapping [1]. Migration is not a single step activity but a

process that comprises of several phases [2]. Legacy

System Understanding is the first phase of the entire

migration process and is important because the result of

this phase is vital to conduct the migration feasibility

assessment, a decision making phase. Moreover, the

importance is also due to the fact that the assets

embedded in the legacy system viz., business logic and

legacy functionality, documentation in terms of code,

architecture, database etc. Several Tools and Techniques

have been used by the research community towards an

understanding of the Legacy System.

Even though many of the papers have discussed the use

of tools and techniques of Legacy System Understanding,

the significance and comprehensiveness are found

lagging in the current literature. Hence this paper entails

a consolidation of these works on the tools and

techniques of the Legacy System Understanding. Further,

through a comprehensive approach, we have explored the

Legacy System in detail which has enabled us to

formulate a comprehensive list of artefacts and the

dependencies among them in the context of Migration of

Legacy Systems. The rest of the paper is organized as

follows viz., the section II covers the background

information, section III briefs about the LSU, its tools and

techniques, section IV covers about the findings, section

V about the Artefacts Repository, Artefacts Dependency

Repository through a LSU Model, section VI about

formal mathematical model of LSU, chapter VII about

case study and section VIII about the conclusion.

II. RELATED WORKS

Legacy Systems working in a silo and having hardware

and software restrictions are difficult to maintain in the

changing technological and business environments.

Modernization forms an important phase of Information

system Life Cycle and Migration is one of the ways to

modernize legacy systems, the others being the

replacement, re-engineering or redevelopment and

wrapping. Migration can be a combination of Language

or Code Migration, Operating System Migration, data

migration, User Interface(UI) migration, Architecture

migration, System software and Hardware migration or

28 A Formal Model for Legacy System Understanding

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

migration of any of these individually[2]. Migration is not

a single step activity but a process that comprises of

many phases. J. Bisbal et al [3] and Khadka et al [4] have

provided the phases of migration in their works. The

consolidation of the various phases of migration from the

above works are Legacy System Understanding (LSU),

Target System Understanding (TSU), Migration

Feasibility Assessment, Target System Development and

Deployment and Provisioning of Target System.

A. Legacy System Understanding (LSU)

The understanding of the source code and structure of

the data of the legacy systems are essential to all

migration projects. In this phase, a detailed analysis of the

Legacy system is carried out with the techniques of

reverse engineering, program understanding and

architecture recovery. J.Ransom et al [5] in their work

have used an assessment method to gain an adequate

depth of understanding from the technical, business and

organizational perspective.

B. Target System Understanding(TSU)

The desired architectural representation of the target

system is facilitated in this phase. This phase describes

the target environment comprising of activities such as

defining major components/functionalities of the

environment, specific technologies and standards to be

used and the state of the target system.

C. Migration Feasibility Assessment

The understanding of the legacy system and the target

system help in undertaking the feasibility assessments at

technical, economical and organization level. The code

complexity in technical feasibility and cost-benefit

analysis in economic feasibility can be included in the

assessment.

D. Target System Development

The Target system is developed for the requirements

specified which were arrived based on the phases of LSU,

TSU and Migration Feasibility Assessment. Program

slicing, concept slicing, graph transformation code

translation, model-driven program transformation, screen

scraping, code query technology etc [4] are used for

extracting the legacy code as services to be incorporated

in the target system.

E. Deployment & Provisioning of Target System

The deployment & provisioning phase is concerned

with deployment and management of the developed

system or services. The system or services developed are

deployed in the corresponding infrastructure. Having had

a bird’s eye view of the phases involved in the migration

process, Legacy System Understanding will be explored

in detail in the next section.

III. LEGACY SYSTEM UNDERSTANDING (LSU) SURVEY

Legacy system understanding [3] is a core part of

migration which is crucial to any successful evolution

exercise. The understandings of the source code and

structure of the data are vital for any migration project.

LSU is required for migration of an old legacy system to

new target environment and the success of the migration

lies in the understanding of the legacy system

functionalities and its interaction with its domain.

R.Khadka et al [4] have referred it as as-is analysis of the

existing legacy systems which enables a better

understanding of technical and functional characteristics

of legacy systems. M.Srinivas et al [5] has proposed

various techniques for understanding Legacy systems in

existence. LSU is a deductive process [6] of acquiring

knowledge which aims at acquiring information which

includes characteristics of the source code, their

dependencies and architecture recovery. This phase of

migration not only provides assistance in inventory

creation on the existing features but also facilitates

decomposition of the Legacy System with the intent of

maximizing reusability.

In this paper, the Techniques and Tools that have been

applied/deployed by the research community in the LSU

have been covered. The intention of this survey is to get

an insight into LSU about the extent of the coverage of its

constituents and to explore the one that has been

uncovered. The next subsections will be covering the

Techniques that have been applied for LSU and the Tools

deployed in LSU.

A. Legacy System Understanding Techniques

Researchers have applied several techniques for

understanding the legacy system in the context of

migration. The techniques surveyed have been classified

and are as shown in Fig. 1.

The LSU techniques can be broadly classified as Code

availability based Techniques and Non-Code Availability

based Techniques. The techniques under Code

Availability based Techniques depend on source code and

can be applied to the legacy systems for which source

code is very much available. Not all the time source code

will be available for older legacy systems. For these

systems, the Non-Code Availability based Techniques

can be applied. Each and every technique has a focus area

and has an outcome associated with it. Here since these

are LSU Techniques their primary intent and the focus

area is to understand the legacy system as a whole. The

outcome associated with each and every technique is

tabulated and shown below in Table 1.

B. Tool Support for Legacy System Understanding

There are two categories of tools that have been in use

for LSU, out of which one set of tools analyses the code

with the intended outcome and the other set of tools is to

analyse the data with a corresponding outcome. The

classification of the tools can be seen in Table 2 which

has been carried out based on their support for analysis of

Code or Data in the context of LSU. Some of them are

specific tools with particular intent whereas others have

been developed for catering the particular requirements

confined to the approach of the researcher. The tools

range from Reverse engineering of source code to

 A Formal Model for Legacy System Understanding 29

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

extracting knowledge from existing documentation and

reconstructing it thereon. Document reconstruction is

generating documentation. There are tools for data

separation, static analysis reverse engineering, static view

extraction, dynamic view extraction, undocumented

dependencies in the source code, architecture

reconstruction which are listed in Table 2 along with few

other tools.

Table 1. LSU Techniques

Classification Techniques Outcome
Representation of Outcome of

LSU

Non-Code

Availability
based

Techniques

Interviewing[7][8]
 Understanding architecture of legacy system

 Experience of the developments and maintainers

of legacy system

Informal Model

Documentation (technical
document ,design document,

FRS, User manuals, etc)[9][10]

 Understanding of legacy application

 Business Rules of the system

 Functionalities Implemented in the system

Formal model

Domain Analysis [11][12]
 Architectural Information of legacy system

 Design Information of legacy system
UML

Portfolio Analysis[7], [13],
[14][15]

 Prioritise the application for re-engineering

 Business Rules of the system

 Picture of Data, application and operational flow
of the legacy system are built

Chi-square chart

Design Pattern Detection[16]
 Information about organization and design of the

system
UML

Database understanding  Graphical representation of database/file schemas Graphical

Code

Availability

based
Techniques

Source Code Analysis[17]
 Extract information from legacy system

 Architecture recovery by locating and extracting

features and extracting various software metrics

Control Flow Graph

Dependency Graph

Call Graph

Reverse Engineering[4], [6][18]

 Identification of Components of legacy system

 Recreate Documentation of legacy system

 Static and dynamic behaviour of the system

 Representation of system at a higher level of

abstraction

Dependency Graph

Clustering[19]  Reusable legacy code segments Directed State Transition Graph

Program Understanding[20][21]  Functional and data concepts of the program Control Flow Graph

Architecture recovery[7][22]-

[25][26][27]
 Architectural Information/views of legacy system

Class/ Interface Relationship

Graph(CIRG)

Class/ Interface Dependency
Graph(CIDG)

Data Flow Analysis[28]
 Information to find Values of variables/data at

various stages of the program
Type Graph

Program Analysis[29]  Identification of legacy components

Control Flow Graph

Data Flow Graph
Structure Charts

Code Annotation[28]  Information from programs Type Graph

Feature Location Technique[30]  Functional Units of source code Tree

Dynamic Analysis[23], [31]-

[35]

 Dynamic coupling between classes or modules

 Dynamic information describing the organization
of the software behaviour

Process Graph

Functional Analysis[4], [8]  Functions to be exposed as services Function List

Function Mining[36]  Reusable Functions along with data from program Procedural Graph

Source Code
Visualization[6][37]

 Source code and their dependencies Directed Graph

Source Code Modelling [24]  Data models from source code

Class/Interface Relationship

Graph(CIRG)
Class/Interface Dependency

Graph(CIDG)

Static Analysis[23], [31], [35]
 Static information describing the structure of the

software
Graph Repository

30 A Formal Model for Legacy System Understanding

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

Fig.1. Classification of LSU Technique

IV. FINDINGS OF THE SURVEY ON LSU

Based on the study conducted in the previous section on

Legacy System Understanding, some of the tangible

outcomes of LSU are listed below:

 Business Rules(Logic) Extraction

 Static data analysis

 Behaviour analysis

 Identification of components of the system and

their dependency

 Representation of systems in another form or at

a higher level of abstraction

 Inventory creation of features

 Decomposing facilitation

 Architectural views extraction

 Design recovery.

Table 2. LSU Tools

Classification
Type

Tool Intent

Code Analysis

Software Refinery
Reverse Engineering Tools Generator and it supports platforms of Sunsparc; HP

9000/7xx; IBM RS/6000.

Jude Static view extraction – Extraction and diagram manipulation

Omando UML Studio Static view extraction – Generate Package diagram

Eclipse TPTP Dynamic view extraction - extract runtime information

ARMIN Identification of undocumented dependencies in source code

E-BUS Toolkit Architecture reconstruction for various java based systems

Understand explore features, functional dependencies and compute various metrics

Imagix 4D A comprehensive program understanding tool for C and C++ programs.

Rigi
Assists in structural re-documentation of source code and it supports platforms of
Sunsparc; IBM RS/6000; Pentium PC and supports viewing of parsed C, C++, PL/AS,

COBOL, and Latex code and language-independent tools.

Data Analysis

Tools by Companies
IBM, Compuware, Intersolve, Microfocus, Bachman have developed tools that isolate
the data information in COBOL applications.

Bachman Re-engineering

Product Set
Focus on recapturing the physical database designs semantics.

Software Code
Interviewer(SCI)

Static analysis reverse engineering tool with the intent of discovering data model from
COBOL source code and Job Control Statements.

DBMAIN

 Is a graphical, general-purpose, programmable, CASE environment, dedicated to

database application engineering and focus on recapturing the physical database designs
semantics.

Seedata Relational legacy database structure representation using computer graphics.

Refine/C to understand, evaluate, and re-document existing C code.

 A Formal Model for Legacy System Understanding 31

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

Most of these are the outcome of the source code

analysis/data analysis. Similarly, most of the tools and

techniques discussed in Table 2 have one way or other

associated or depended only on the source code. However,

an understanding of the legacy system has to be at the

perspective of system level rather than the code level

which has a narrow perspective, because the migration at

code level may have a cascading impact to different

aspects of the Legacy System. For example, migration of

code from one platform to another platform may require a

migration of Operating System also and migration of

operating system may in turn cascade down to migration

of hardware. Hence a holistic understanding of Legacy

System at system level regarding their assets and artefacts

(commonly referred as a piece of hardware or software or

documentation) is a strong necessity from the migration

perspective.

In order to attain this understanding, it is very

important to identify the possible migrating artefacts

present in a Legacy system and their dependency with

each other to be represented as an outcome of the Legacy

System Understanding, which is an essential requirement.

It is evident from the study conducted on LSU that, the

status representation of the Legacy System which is the

outcome of Legacy System Understanding is an essential

part missing or not properly addressed in the literature

surveyed by us. Moreover, this survey also reveals that a

formal model to represent the understanding of Legacy

System with respect to migrating artefacts that could

possibly migrate and their dependency with other

migrating artefacts of the Legacy System is yet a white

space to be addressed. Our proposed approach for Legacy

System Understanding process is explained which

addresses the above mentioned gap.

V. PROPOSED APPROACH TO LSU

Our Systems approach to LSU tends to visualize a

legacy system as comprising of artefacts. An Artefact is

commonly referred as a piece of Hardware or Software or

Documentation [38]. In this paper, we focus on the

Hardware and Software artefacts only. These artefacts

reside in the different layers of the legacy system. For eg.,

a typical legacy system can be composed of the layers as

shown in Table 3 below.

Each of these layers would have its own IT artefacts.

For eg. significant artefact in the Hardware Layer is the

Processor. The System Software Layer may be composed

of the operating system, other system software like

compilers, network software etc. The middleware layer

would comprise of middleware software. The business

logic of the application running in the legacy system is

present in the Business logic layer.

Finally, the UI layer has the interface code running in it.

The artefacts in these layers communicate with each other

to constitute the functionality of the legacy system. Thus

going by this systems approach for LSU, it is essential to

provide with a standard set of artefacts that may be used

to describe a legacy system. A definition of the number

of layers in the legacy system and mapping the identified

artefacts to the same provides an organized view of

legacy systems.

Table 3. Layers of a Legacy System

Layers

UI Layer

Business Logic Layer

Data Access Layer

Middleware Layer

System Software Layer

Hardware Layer

Since the LSU is primarily to study the legacy system

which is to be subjected to migration, the relationship

between the artefacts in the different layers also needs to

be identified so that, it is easy to understand the artefacts

which are impacted by a migrating artefact to decide

whether they too have to migrate for compatibility or

portability reasons. Thus our approach to LSU requires

performing the following:

1) Identification of IT Artefacts that could possibly

migrate in Legacy System and construction of

Artefact repository.

2) Identification of dependency between Artefacts

and construction of Artefact Dependency

repository.

The Application of the artefacts and their dependencies

on candidate legacy system and formally representing the

same would result in our proposed system view of LSU.

In the description below, we explain how the artefact

repository and artefact dependency repository are to be

constructed.

A. Artefacts Repository

For any migrating Legacy System, the entities to be

focused upon are the IT Artefacts that could possibly

migrate. The migrating artefacts of the legacy system

have to be identified for the legacy system understanding.

For this purpose, one has to conduct a detailed study of

various legacy systems (i.e.) migration applications for

identification of migrating artefacts. In this regard,

representative applications for each of the milestones in

the formulated Migration Evolution Roadmap have been

taken up and migrating artefacts in each have been

identified. This road map has been formulated by us in

our previous work [2]. The various platforms in every

milestone of evolution roadmap and the application

considered for study in each are given in Table 4.

The study and in-depth analysis of the above systems

have given a holistic understanding about the constituents

of the legacy system. The study has been conducted in

terms of the following components of the Legacy System

viz., Source Code, Middleware, DBMS, System Software

and Hardware. Further, the systems have also been

explored in terms of their application architecture both on

single system deployment and multiple system

deployments. Artefacts of the migrating systems

identified using the above representative application

32 A Formal Model for Legacy System Understanding

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

systems are classified broadly as stated below:

 Implementation Artefacts

 Documentation Artefacts

Table 4. Platforms and Application Systems

Platforms
Selected Application

Systems

Mainframe
Credit Card Processing

System

Micro/Mini
Demand Collection

Balance System

Client-Server – Fat Clients Financial Accounting
System Client-Server Thin Clients

Multilayered Systems

ERP Systems

Core Banking Systems
e-Governance Systems

Multilayered Distributed Systems

Multilayered Composable Services
Systems

Multilayered Virtual Systems

The artefacts identified may not be exhaustive but

necessary and sufficient to represent the understanding of

the legacy system. The primary artefacts identified are

 Source code

 DBMS

 Middleware

 System Software

 Hardware.

Secondary Artefacts are the ones that have been found

by exploring the primary artefacts. The identified

migrating artefacts have been represented in a tree form

in Fig. 2. In this work, the focus is confined to the

Implementation artefacts.

The primary artefacts and secondary artefacts thus

identified and represented in Fig. 2 have been listed

below:

 Source Code

- User Interface

- Database

Fig.2. Migration System Artefacts

 A Formal Model for Legacy System Understanding 33

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

- Application Logic

 Middleware

- DataManagement Middleware (ODBC, JDBC,

OLE, NFS)

- Communication Middleware(CORBA,RPC,JMS)

- Platform Middleware (J2EE, DOT NET,

Customer Information Control System)

 System Software

- Operating System

- Networking Software

- Compiler

 DBMS

- Storage

- State

- Type

 Hardware

- Network

- Compute

- Platform

- Storage

The evolutions of legacy systems are dependent on its

decomposability. The evolution becomes difficult when

the decomposability is less.[4]. According to the

decomposability of a legacy system, the architecture of a

system can be decomposable, semi decomposable, or

non-decomposable. A software system usually comprises

of the components of user interface, application logic and

database. In decomposable systems, all the above three

types of components are separable. In case of semi-

decomposable systems, the user interface is separate,

whereas the application logic and database are together

and cannot be separated. The Non-decomposable systems

are the ones where all the three types of components are

inseparable and the system is a black box. Hence, the

secondary artefacts of the source code have been

identified as user interface, database and application logic.

The name of the language in which the source code is

developed and the type of the language such as

procedural, object-oriented etc are the attributes of these

secondary artefacts.

The Middleware Artefact is composed of three type of

middleware viz., Data Management Middleware,

Communication Middleware. Data management

middleware functionality helps programs including

application programs and DBMS read from and write to

remote databases or files. Eg. Network File System

(NFS), ODBC, JDBC, OLE. Communication middleware

helps programs talk to other programs. It is software that

supports a protocol for transmitting messages or data

between two points as well as a system programming

interface (SPI) to invoke the communication service. Eg.

RPC, CORBA/IIOP, JMS. Platform middleware provides

the runtime hosting environment (a container) for

application program logic. Eg. J2EE or .NET

Framework/COM+.

As far as DBMS is concerned, the various database

models, kinds of database and how they are stored have

been studied. This study has aided us to identify the

relevant secondary artefacts viz., DBMS State, DBMS

Type and DBMS Storage. The state of the DBMS can be

either embedded or federated. The type of DBMS can be

Relational, Hierarchical, Network and Object Oriented.

The DBMS can be stored locally or in a remote location

or can be replicated.

The secondary artefacts of the System Software have

been identified as Operating System, Network Software

and Compilers because of the following. The source code

uses a compiler/IDE for the application to run on the

designated Hardware which has an operating system

associated with it. The communication between the

systems in case of multisystem deployment requires a

network and the associated software.The Hardware

comprises of the artefacts of Compute, Storage,

Networking Hardware and Hardware Platform. The

Compute could be a Client or Server or a virtual machine.

The storage could be a Direct Access Storage (DAS) or a

Network Access Storage (NAS) or Storage Area Network

(SAN).

The Hardware Platform could be x86, IA-64, VAX,

S/60 etc. The identified migrating artefacts are to be

stored in a repository and the formal model of an instance

of the Legacy System has to be represented in terms of

these identified primary and secondary artefacts

B. Artefact Dependency Repository

The next important building block in the legacy system

understanding is the dependency among these migrating

artefacts. The artefact dependency repository is a

collection of information on the possible dependencies

with one migrating artefact to the other migrating

artefacts in the artefacts repository.

The dependencies among the migrating artefacts play

an important role in the migration of legacy system

understanding process. This is because the change due to

the migration of one artefact can impact not only the

immediate depending artefact but can have a cascading

effect on the further depending artefacts also.

Inter and intra dependency among the artefacts have

been analysed and explored. They have been identified as

primary and secondary. The intra dependency is the

dependency between secondary artefacts of a primary

artefact. Eg. the dependencies between Operating System,

Compiler and Networking Software in the System

Software primary artefact. The inter dependency is the

dependency between secondary artefacts of primary

artefacts with secondary artefacts belonging to the other

primary artefacts. Eg. The dependency of Operating

System of System Software primary artefact with that of

Platform and storage of Hardware primary artefact. The

dependency between artefacts A and B have been

categorised as Singular Dependency and Dual

Dependency. Singular Dependency between A and B

implies that if Artefact A is changed due to migration, it

impacts Artefact B. If the reverse is also true in addition

to the above, it implies a Dual Dependency. Every

primary artefact is taken and dependency with every

other primary artefact has been identified. Similarly, the

dependency between each and every secondary artefact

with every other secondary artefact is explored and

34 A Formal Model for Legacy System Understanding

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

identified. The dependencies among the artefacts thus

identified have been depicted in Table 5 below. The

dependency repository captures the default dependencies

between the artefacts in a system, but may not be an

exhaustive set of dependencies as certain dependencies

may vary in different candidate legacy systems and need

to be captured/updated accordingly

The dependency between same artefacts either primary

or secondary is not an applicable dependency. These

artefact dependencies are to be stored in a repository

named Artefact Dependency Repository which is another

important repository in the Legacy System Understanding.

The analysis of a typical instance of a Legacy System

in terms the identified artefacts and their dependencies as

stored in two repositories respectively can help in

representing the outcome of the LSU carried out on a

legacy system.

Table 5. Artefacts Dependency

Artefacts Name S
o

u
r
c

e

C
o

d
e

D
B

M
S

H
a

r
d

w
a

r
e

N
e

t
w

o
r
k

C
o

m
p

u
t
e

H
/
w

P
l
a

t
f
o

r
m

S
t
o

r
a

g
e

S
y
s
t
e

m

S
o

f
t
w

a
r
e

O
S

N
/
w

S

/
w

C
o

m
p

i
l
e

r
s

M
i
d

d
l
e

w
a

r
e

M
/
w

P
l
a

t
f
o

r
m

Source Code

DBMS

Hardware

Network

Compute

H/w Platform

Storage

System

Software

OS

N/w S/w

Compilers

Middleware

M/w Platform

Primary Artefacts Secondary Artefacts Not Applicable

C. Application of Artefacts and their dependencies on

Candidate Legacy Systems

Using the artefacts stored in the artefact repository, the

understanding of a candidate legacy system needs to be

performed.

Fig.3. LSU Model

The relationship between the artefacts also needs to be

captured from the legacy system using the artefact

repository. Thus, the artefact repository, artefact

dependency repository and application on a candidate

legacy system for its understanding constitutes for our

proposed System model of LSU as shown in Fig. 3.

In order to represent the understanding of the legacy

system in terms of our identified artefacts, a formal

mathematical model as described in the next section is

proposed by us.

VI. FORMAL MATHEMATICAL MODEL OF LSU

The deployment of legacy systems can be deployed as

a Single System Deployment or Multi-System

Deployment. In Single System Deployment the entire

application will be running on a single standalone system.

The Multi-System deployment is the one where the

deployment spans across systems. Hence the identified

artefacts and their dependencies have been formally

represented viz., Single System Deployment and

Multisystem Deployment of legacy system.

A. Single System Deployment (SSD)

Single System Deployment is a five tuple

 A Formal Model for Legacy System Understanding 35

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

(L,A,C,RLA,RAA) Where

L represents Layers of the Legacy System

A represents Artefacts

C represents Communication between Layers

RLA Relationships between Layers & Artefacts is

which artefacts are in which layer.

RAA represents Relationships Among Artefacts

Definition 1: LAYERS

L = (L(i) | i = 1 to NL where NL = Number of Layers)

/*The NL Layers, L, is identified*/

Table 6. Operations on Layer

Possible Operations on Layer

definition for artefacts
Functionality

ADDLAYER(l,b,a) Add Layer l

SWITCH_LA(i: {1.2.,,NL};
a :String; val: {0,1})

Switch/Change the values

of Arefacts in a particular

Layer

Definition 2: ARTEFACTS

A = {x| x is an artefact};

/*The set of artefacts, A, is identified*/

NA = |A|

/*NA = Number of artefacts in A*/

NG = Number of grouping of artefacts

AG = (AG(i) for i = 1 to NG)

/*NG groupings of artefacts are identified*/

G: A → AG

G(x) = AG(i) for x in A and for some i ∈ {1,2,.. NG} |

AG is a partition of A

/*G assigns each artefact to some AG(k) in AG such that

AG is a partition of A */

Table 7. Operations on Artefacts

Possible Operations on

Artefacts
Functionality

ADDART(a, AG(k), P(l):

String; m,n,p: {0,1})
Add artefacts a

REMOVEART(a) Remove artefacts a

SPLITART(a,b,c,l: String;
m,n,p,q,r: {0,1})

Split the artefacts a into b and c

REASSIGN_G(a, AG(k))
Reassign the artefacts to the

Group G

ADDGROUP(g,a)) Adding artefacts to the Group G

Definition 3: COMMUNICATION,

C(i,j) = either 0 or 1 if |i – j| =1 and i, j ∈ {1,2,.. NL}

C = {C(i,j) if |i – j| =1 and i, j ∈ {1,2,.. NL}}

/*The communication between neighboring Layers is

assigned C(i,j) = Communication between L(i) and L(j)*/

Table 8. Operations on Artefacts Communication

Possible Operations on Artefact
Communication

Functionality

SWITCH_C(i,i+1: int; val: {0,1})
Change the communication

settings between layers

SWITCH_C(i,i-1: int; val: {0,1})
Change the communication

settings between layers

Definition 4: RELATIONS BETWEEN LAYERS

AND ASSOCIATED ARTEFACTS

P = {P(i) | i = 1 to NL)

/*NL groupings of artefacts to be assigned to the Layers

are identified*/

F: A → P:

 x in A, F(x) = P(i) for some i ∈ {1,2,.. NL} | P is a

partition of A

/*F assigns each artefact to some P(i) in P such that P is a

partition of A.

For i = 1 to NL, RLA(L(i),x) = 0 or 1 if F(x) = L(i)

RLA = {RLA(L(i),x) for i = 1 to NL, if F(x) = L(i)}

/*The relations between, each layer and artefacts assigned

to that layer, are

defined*/

Table 9. Operations on Layer and Its Artefacts

Possible Operations on Layers and

its associated Artefacts
Functionality

ADDAGFLRL(a, g, b,

layer:String; p,s,t: {0,1})

Add Artefacts A, Group G,
Layer

Definition 5: RELATIONS AMONG ARTEFACTS

RAA(x,y) = either 0 or 1, for x and y ∈ A, and x ≠ y

RAA = {RAA(x,y) }

/*The relation between pairs of different artefacts is

assigned*/

Table 10. Operations on Artefact Relationship

Possible Operation on Artefact
Relationship

Functionality

SWITCH_RA(a,b:String; val:

{0,1})

Switch/Change the

Relationship values among
the Artefacts

B. Multi-System Deployment(MSD)

Multi-System Deployment is connected Multiple

Systems with interaction among them

MSD is a two tuple (S,RS)

Where S represents Systems deployed

RS represents Relationship among Systems

deployed

36 A Formal Model for Legacy System Understanding

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

S is a two tuple (CS,SS)

Where CS represents Client Systems

 SS represents Server Systems

Client Systems(CS)

When the Client is deployed in multiple systems we

have

{ | 1 }iCS CS i to N 

When Modules deployed among Client System are

different we have

() ()i jm CS m CS

, {1,2 }i j N and i j 

Where ()im CS and ()jm CS represents the modules of

the thi and
thj Client System respectively.

When Modules deployed among Clients System are

same we have

() ()i jm CS m CS

, {1,2 }i j N and i j 

Where ()im CS and ()jm CS represents the modules of

the thi and
thj Client System respectively.

Server Systems (SS)

When the Server is deployed in multiple systems we

have

{ | 1 }iSS CS i toM 

When the modules deployed among Server System are

different for eg. Distributed Server functionality such as

Application Server, Web Server, Database Server can be

represented in notations given below. We have

() ()i jm SS m SS

, {1,2 }i j M and i j 

Where ()im SS and ()jm SS represents the modules of

the
thi and

thj Server System respectively.

Relation between Systems(RS)

RS is three tuple (CR,SR,CSR)

Where CR represents the relationship among Clients

 SR represents the relationship among Servers

 CSR represents the relationship among Clients

 and Servers

Relation among Clients(CR)

: {0,1}CS CS  

/ * */is the relation pairs of Client system

,{ (,) , {1,2.... } }i j i jCR CR CS CS i j N and i j   

Relation among Servers (SR)

: {0,1}SS SS  

/ * */is the relation pairs of Server system

,{ (,) , {1,2.... } }i j i jSR SR SS SS i j N and i j   

/ * Server *SR is the relation between systems

Relation among Clients and Servers (CSR)

: {0,1}CS SS  

/ * and * /is the relation pairs of Clients Server system

,
{ (,) {1, 2.... } {1, 2.... }}

i j i j
CSR CSR CS SS i N and j M   

/ * Clients and Server * /CSR is the relation between systems

VII. CASE STUDY

The proposed model for legacy system understanding

is applied on different case studies. As a sample case

study, the Consumer Billing application of an Electricity

Department in the e-Governance domain is discussed.

The application is decades old legacy application running

and in use for more than 25 years. The application has

been developed in Clipper 5.01. The application is

deployed on a Client-Server Platform with Novell

Netware 3.12 as the Operating System. There is

standalone system deployment also in certain locations.

The database used for this application is the native clipper

database which is compatible with FoxPro database. The

application has to be migrated to the Web Technology to

cope up with the emerging trend to serve the consumers

at their doorsteps.

The case study presented here has two types of

deployment scenarios viz., (i) Central Office/Regional

Office and (ii) Collection Centres. The deployment in the

Central Office/Regional Office is a multi-system

deployment(MSD) and whereas the one at the collection

centres is single system deployment(SSD). The

application is billing application that covers the billing

and collections aspects of the consumer pertaining to

LT(Low tension) and HT(High Tension). The Collection

Centres work in offline mode. At the end of the day, the

transactions in the collections centers are batch processed

and updated for the next day collections. However, the

collection centre in the Central/Regional Office functions

in online mode since they are on the same network.

Despite this, there is a provision for payment of Bills

through net banking, where there is a backend

reconciliation/updation process for these payments. The

application of the LSU model and its formal

representation on the case study are as follows.

 A Formal Model for Legacy System Understanding 37

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

LOCAL AREA NETWORK

Pentium
Pro

Server

Pentium
II Server

Celeron
Clients

PIV
Clients

Clipper Presentation
Services

Clipper DBMS

Clipper 5.01
Compiler

Novell Netware
3.12 Operating

System

Pentium Pro

Application Logic

Clipper Presentation
Services

DOS/Novell/
Windows Client

Operating System

Celeron

Core i3
Clients

Client
System

Server
System

SS1 SS2

CS1 CS2 CS3

(a) Architecture (b) System Model

UI Layer

System
Software

Layer

Hardware
Layer

UI Layer

Business
Layer

Database
Layer

System
Software

Layer

Hardware
Layer

Fig.4. Architecture and System Model of the Central/Regional Office Deployment

A. Central/Regional Offices Deployment Scenario

The application has been studied and analyzed using

the proposed approach of LSU in the context of

Migration. First, the architecture model of the legacy

system is taken and converted to a system model

comprising of layers and artefacts as shown above in Fig.

4(a) and 4(b). The conversion from architecture to the

system model is explained below:

1 The architecture of the case study system of

central/regional office deployment is depicted in

Fig. 4(a) above. The above scenario is a typical

multi-system deployment case which comprises of

Servers, Clients and network connectivity.

2 The architecture is a host-based processing of a

Client-Server Model and the notations used for

Servers and Clients are as mentioned below.

 SS1 represents the Pentium Pro Server

 SS2 represents the Backup Server

 CS1 represents the Celeron Client

 CS2 represents the Pentium IV Client and

 CS3 represent the Core i3 Client

3 SS1 Server houses the application pertaining to

consumer billing and collection including the

Source Code, executable Binaries, Clipper

Database, Clipper Compiler, Novell Netware

Operating System and its Networking Software.

 The clipper database is the native database of the

Clipper Compiler Ver. 5.01, the language type

being procedural.

 The operating system is Novell Netware 3.12

with character user interface (CUI).

 The Hardware Platform is x86 and Server HDD

is the storage.

4 SS2 Server is a backup Server which has the

backup of the SS1 Server’s Source Code and

Database in addition to the Novell Netware

Operating System and its Networking Software.

From the above, the modules of the SS1 and SS2

are not equal and is represented by m(SS1) ≠

m(SS2) as mentioned in our model.

5 Even though the configuration is different for the

clients CS1, CS2 and CS3 they act as a dumb

terminal which is a DOS and Novell client that has

the requisite networking software. These Clients

access the application residing in the Server in a

Local Area Network and is represented as m(CS1)

= m(CS2) =m(CS3).

6 The Server SS1 and CS1 are considered for the

further process. CS2 has been left out due to the

reason that they have the same functionality as

CS1. The Server SS2 is not considered as the same

is a backup server.

The Layers, Artefacts and mapping of the artefacts

with the corresponding Layers of the case study system

are as follows:

Layers

The layers required or the case study system based on

the architecture and the study made in line with our

proposed model are as mentioned below:

 Presentation Layer

 Business Logic Layer

 Data Access Layer

 System Software Layer

 Hardware Layer

Artefacts

The study made on the constituents of the Servers and

Clients of the case study system had enabled us to find

the relevant list of artefacts. The artefacts are listed

below:

 User Interface

 Database

 Application Logic

 Operating System

 Network Software

 Compiler

 Server

 Client

 Network

 Hardware Platform

 Storage

The mapping of artefacts with the corresponding layers

is shown in the following Table 11.

38 A Formal Model for Legacy System Understanding

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

Table 11. Mapping Of Artefacts with Layers

Layers Artefacts

Presentation Layer User Interface

Business Logic Layer Application Logic

Data Access Layer Database

System Software
Operating System, Compiler,

Network Software

Hardware Layer
Server, Client, Hardware Platform,

Storage

The system model using the SS1 and CS1 has been

derived based on the above steps and is represented in Fig.

4(b). As per our proposed model, the formal

representations of the Layers, Artefacts and their

mapping with the associated layers have been presented

below:

Layers L = { “Presentation”, ”Business Logic”, ”Data Access”, “System Software”, ”Hardware”}

" ", " ", " ", " ", " ", " ", " / ",

 " ", " "," "," "," ",

" "," "," "," ","

Source Code UI database App logic System Software OS N w Software

Artefacts A Compilers DBMS Storage DBMS DBMS State DBMS Type

Hardware Network Compute Server H



 "ardware Storage

 
 
 
 
 

Relationship

Between

Layers and
Associated

Artefacts

RLA =

(L,A) =

Layers/Artefacts UI Database

App

Logic
OS

N/w

Software
Compilers Network Server

Hardware

Storage

Presentation

Layer
1 0 0 0 0 0 0 0 0

Business Logic
Layer

0 0 1 0 0 0 0 0 0

Data Access
Layer

0 1 0 0 0 0 0 0 0

System

Software Layer
0 0 0 1 1 1 0 0 0

Hardware Layer 0 0 0 0 0 0 1 1 1

The matrix RLA has been used to represent the

mapping of Layers L with the artefacts A. The system

Software Layer has mapped its artefacts of Operating

System, Networking Software and Compilers, whereas

the Hardware has its artefacts mapped viz., Network,

Server and Hardware Storage. The UI, database and

Application Logic artefacts have been mapped to the

corresponding layers of Presentation, database and

application respectively. In the above matrix, the value

represents its association with the Layers.

The relationship among the artefacts is represented by

the above matrix RAA which is based on the Artefact

Dependency Repository. The value of 1 represents the

relationship between the corresponding artefacts in the

row and its column whereas the value 0 indicates no

relationship among the artefacts. The relationship is not

applicable when the cell value is blank.

The above scenario is a typical multi-system

deployment case which comprises of Servers, Clients and

network connectivity as shown in Fig. 4.

The relationship among the multiple systems viz.,

Servers(SS1, SS2), Clients(CS1, CS2, CS3) and both

Servers and Clients are represented by RS as shown

below.

 A Formal Model for Legacy System Understanding 39

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

B. Collection Centre Deployment Scenario

The deployment scenario for Collection Centres is

Single System Deployment, where the standalone

systems are used for collection of payments from the

citizen. The data required for the collections are brought

on the offline media and uploaded in the standalone

systems for their daily collections. There is no online

updation of data, however, the updation is carried out at

the end of the day on offline mode with the

central/regional office server. The Collection Centres that

have a standalone deployment type uses executable

binaries of the collection module that generate receipts

for the collection made and the data gets updated with the

central server on offline mode on a daily basis at the end

of the day. From the above case study, having two

different types of deployment, it is evident that the LSU

model and its formal mathematical model proposed is

complete and is capable of representing any Legacy

System in the context of LSU.

VIII. CONCLUSION

The LSU an important phase in the process of

migration of legacy systems have been surveyed and

discussed in detail along with the techniques and tools in

use. The need for exploring the artefacts at the system

level in addition to source code has been emphasised. The

Artefact Repository has been built using the artefacts

identified at the system level that are part and parcel of

any legacy system. Further, they have been classified as

implementation and documentation artefacts. The

Artefact Dependency Repository has been enunciated

through an exhaustive and explorative process and the

dependencies among the artefacts have also been depicted.

Formal representation of LSU using a formal language

found lagging in the literature we have surveyed has been

presented and demonstrated with the help of a case study.

Migration impact analysis of artefacts consequence to

LSU and Migration Analysis is our work in progress and

future work.

REFERENCES

[1] S. Comella-Dorda, K. Wallnau, R. C. Seacord, and J.

Robert, “A survey of black-box modernization

approaches for information systems,” in Proceedings of

the International Conference on Software Maintenance

(ICSM’00), 2000, p. 173.

[2] A. Sivagnana ganesan and T. Chithralekha, “A Survey on

Survey of Migration of Legacy Systems,” in Proceedings

of the International Conference on Informatics and

Analytics,ACM, 2016, p. 72.

[3] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, D.

O’Sullivan, and R. Richardson, “Legacy Systems

Migration - A Method and its Tool-kit Framework,” in

Proceedings of the APSEC’97/ICSC’97: Joint 1997 Asia

Pacific Software Engineering Conference and

International Computer Science Conference. Hong Kong,

China, 1997, pp. 312–320.

[4] R. Khadka, A. Saeidi, A. Idu, J. Hage, and S. Jansen,

“Legacy to SOA Evolution: A Systematic Literature

Review,” A.D. Ionita, G. Lewis & M. Litoiu (Eds.)

Migrating to SOA and Cloud Environments: Challenges

in Service Oriented Architecture and Cloud Computing

Environments: IGI Global, 2013. [Online].

Available:http://www.igi-global.com/chapter/lega cy-soa-

evolution/72212.

[5] M. Srinivas, G. Ramakrishna, K. Rajasekhara Rao, and E.

Suresh Babu, “Analysis of legacy system in software

application development: A comparative survey,” Int. J.

Electr. Comput. Eng., vol. 6, no. 1, pp. 292–297, 2016.

[6] R. Khadka, A. Saeidi, S. Jansen, and J. Hage, “A

structured legacy to SOA migration process and its

evaluation in practice,” c2013 IEEE 7th Int. Symp. Maint.

Evol. Serv. Cloud-Based Syst. MESOCA 2013, vol. 4, no.

March, pp. 2–11, 2013.

[7] S. Alahmari, D. De Roure, and E. Zaluska, “A Model-

Driven Architecture approach to the efficient

identification of services on Service-Oriented Enterprise

Architecture,” in Proceedings - IEEE International

Enterprise Distributed Object Computing Workshop,

EDOC, 2010, pp. 165–172.

[8] R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J.

Hage, “A Method Engineering Based Legacy to SOA

Migration Method,” in Proceedings of the 27th

International Conference on Software

Mainenance(ICSM), 2011, pp. 163–172.

[9] A. E. Roger, “Migration of Legacy Information System

based on Business Process Theory,” Int. J. Comput. Appl.,

vol. 33, no. 2, pp. 27–34, 2011.

[10] S. P. Reiss, “Constraining software evolution,” in

International Conference on Software Maintenance, 2002.

Proceedings., 2002, pp. 162–171.

[11] J. Cha, C. Kim, and Y. Yang, “Architecture Based

Software Reengineering Approach for Transforming from

Legacy System to Component,” pp. 266–278, 2004.

[12] J. Lavery, C. Boldyreff, B. Ling, and C. Allison,

“Modelling the evolution of legacy systems to Web-based

systems,” J. Softw. Maint. Evol. Res. Pract., vol. 16, no.

1–2, pp. 5–30, 2004.

[13] A. Erradi, S. Anand, and N. Kulkarni, “Evaluation of

Strategies for Integrating Legacy Applications as Services

in a Service Oriented Architecture,” in Proceedings of the

IEEE International Conference on Services Computing

SCC06, 2006, pp. 257–260.

[14] Y. Pena, D. Correal, and T. Hernandez, Reusing legacy

systems in a service-oriented architecture: A model-based

analysis, vol. 6413 LNCS. 2010.

[15] M. Sneed, “Planning the Reengineering of Legacy

Systems,” IEEE Softw., vol. 12, no. 1, pp. 24–34, 1995.

[16] F. Arcelli, C. Tosi, and M. Zanoni, “Can design pattern

40 A Formal Model for Legacy System Understanding

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

detection be useful for legacy system migration towards

SOA?,” Proc. 2nd Int. Work. Syst. Dev. SOA Environ.

SDSOA ’08,Germany, pp. 63–68, 2008.

[17] D. Binkley, “Source Code Analysis : A Road Map Source

Code Analysis : A Road Map,” in Proceedings of the

Future of Software Engineering FOSE ’07, 2007, pp.

104–119.

[18] M. Razavian and P. Lago, “A systematic literature review

on SOA migration,” Jourrnal SoftwareEvolution Process,

vol. 27, no. May, pp. 337–372, 2015.

[19] E. Stroulia, P. Iglinski, and P. Sorenson, “User Interface

Reverse Engineering in Support of Interface Migration to

the Web,” World Wide Web Internet Web Inf. Syst., pp.

271–301, 2003.

[20] S. R. Tilley, S. Paul, and D. B. Smith, “Towards a

framework for program understanding,” in WPC ’96. 4th

Workshop on Program Comprehension, 1996, pp. 19–28.

[21] A. A. Belevantsev, E. A. Veselevich, and V. P. Ivannikov,

“Analysis of Entities in C and C ++ Programs and

Relations between Them for Program Understanding,”

Program. Comput. Softw., vol. 42, no. 1, pp. 49–53, 2016.

[22] P. Bhallamudi and S. Tilley, “SOA migration case studies

and lessons learned,” in 2011 IEEE International Systems

Conference, 2011, pp. 123–128.

[23] F. Cuadrado, B. García, J. C. Dueñas, and H. A. Parada,

“A Case Study on Software Evolution towards Service-

Oriented Architecture,” in 22nd International Conference

on Advanced Information Networking and Applications -

Workshops,Okinawa, Japan, 2008, pp. 1399–1404.

[24] S. Li and L. Tahvildari, “E-BUS : A Toolkit for

Extracting Business Services from Java Software

Systems,” in Proceedings of Companion of the 30th

international conference on Software engineering ICSE

Companion ’08, Leipzig,Germany, 2008, pp. 961–962.

[25] Z. Zhang, R. Liu, and H. Yang, “Service Identification

and Packaging in Service Oriented Reengineering,” in

Proceedings of the 17th International Conference on

Software Engineering and Knowledge Engineering, 2005.

[26] G. Mazlami, J. Cito, and P. Leitner, “Extraction of

Microservices from Monolithic Software Architectures,”

in 2017 IEEE International Conference on Web Services

(ICWS), 2017.

[27] A. Ahmad and M. A. Babar, “A framework for

architecture-driven migration of legacy systems to cloud-

enabled software,” in Proceedings of the First

International Conference on Dependable and Secure

Cloud Computing Architecture - DASCCA ’14, 2014, pp.

1–8.

[28] R. Heckel, R. Correia, C. Matos, M. El-Ramly, G.

Koutsoukos, and L. Andrade, “Architectural

transformations: From legacy to three-tier and services,”

in Software Evolution, 2008, pp. 139–170.

[29] S. Tilley, “A Reverse- Engineering Environment

Framework,” 1998. [Online]. Available:

http://resources.sei.cmu.edu/library/asset-

view.cfm?AssetID=13047. [Accessed: 15-Jun-2017].

[30] S. Li, F. Chen, Z. Liang, and H. Yang, “Using Feature-

Oriented Analysis to Recover Legacy Software Design

for Software Evolution .,” in Proceedings of the 17th

International Conference on Software Engineering and

Knowledge Engineering (SEKE’2005), Taipei, Taiwan,

Republic of China, 2005, pp. 336–341.

[31] G. Canfora, A. R. Fasolino, G. Frattolillo, and P.

Tramontana, “A wrapping approach for migrating legacy

system interactive functionalities to Service Oriented

Architectures,” J. Syst. Softw., vol. 81, no. 4, pp. 463–480,

2008.

[32] P. Dugerdil and D. Sennhauser, “Applying financial time

series analysis to the dynamic analysis of software,” in

proceedings of the 4th International Conference on

Software and Data Technologies, Sofia, Bulgaria, 2002,

pp. 194–201.

[33] H. Y. Huang, H. F. Tan, J. Zhu, and W. Zhao, A

lightweight approach to partially reuse existing

component-based system in service-oriented environment,

vol. 5030 LNCS. Springer, Berlin, Heidelberg, 2008.

[34] Z. Zhang, D. D. Zhou, H. J. Yang, and S. C. Zhong, “A

service composition approach based on sequence mining

for migrating e-learning legacy system to SOA,” Int. J.

Autom. Comput., vol. 7, no. 4, pp. 584–595, 2010.

[35] C. Zillmann, A. Winter, A. Herget, W. Teppe, M. Theurer,

A. Fuhr, T. Horn, V. Riediger, U. Erdmenger, U. Kaiser,

D. Uhlig, and Y. Zimmermann, “The SOAMIG Process

Model in Industrial Applications,” in 15th European

Conference on Software Maintenance and Reengineering

(CSMR), 2011, pp. 339–342.

[36] H. M. Sneed and S. H. Sneed, “Creating Web services

from legacy host programs,” in Proceedings - 5th IEEE

International Workshop on Web Site Evolution:

Architecture, Gernmany, 2003, pp. 59–65.

[37] J. Van Geet and S. Demeyer, “Lightweight Visualisations

of COBOL Code for Supporting Migration to SOA

Lightweight Visualisations of COBOL Code for

Supporting Migrating to SOA,” vol. 8, 2008.

[38] P. C. C. Linda M. Northrop and L. O. with Felix

Bachmann, John Bergey, Gary Chastek, Sholom Cohen,

Patrick Donohoe, Lawrence Jones, Robert Krut, Reed

Little, John McGregor, “A Framework for Software

Product Line Practice, Version 5,” 2012.

[Online].Available:

http://www.sei.cmu.edu/productlines/frame_report/config

.man.htm. [Accessed: 20-Jul-2017].

Authors’ Profiles

A. Sivagnana Ganesan received his M.C.A.

degree from Madras University in the year

1997 and M.Tech in Computer Science and

Engineering from Pondicherry University in

the year 2001. He is currently pursuing his

Ph.D in the Department of Banking

technology, Pondicherry University,

Puducherry, India. His research interests

include e-Governance, Modernization, Migration, Software

Evolution.

T. Chithralekha received her M.Tech

Computer Science Engineering from

Pondicherry University. She also received

her Doctorate in Computer Science and

Engineering from the same University.

She is currently working as a Associate

Professor & Head in the Department of

Computer Science, Pondicherry University, Puducherry, India.

She has published a number of papers in international

conferences and journals and her research interests include

information security for Banking and Financial sectors,

Machine learning and Multi-agent Systems.

 A Formal Model for Legacy System Understanding 41

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 10, 27-41

Prof. M. Rajapandian received his

B.A.(Hons) in Mathematics in the Loyola

college, Chennai, India and Established

computer science course in Pondicherry

state, India. He is a reetired Professor and

Head of Department of Mathematics and

Computer Science, KMCPGS,

Pondicherry University, Puducherry,

India. His research interest includes Mathematical Modelling,

Theory of Computation and Cryptography

How to cite this paper: A.Sivagnana Ganesan, T.Chithralekha,

M. Rajapandian, "A Formal Model for Legacy System

Understanding", International Journal of Intelligent Systems and

Applications(IJISA), Vol.10, No.10, pp.27-41, 2018. DOI:

10.5815/ijisa.2018.10.04

