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Abstract—The forced oscillations of the damping 

mechanical system of solids "Ball Vibration Absorber 

(BVA) with linearly viscous resistance – a movable 

carrier body" under the influence of external harmonic 

excitation are considered. Based on Appell's formalism, 

the dynamic equations for the joint motion of a heavy 

ball without sliding into a spherical cavity of a carrier 

body are formulated and numerically studied. The 

amplitude-frequency characteristic of the damping 

mechanical system and the curves of the dependences of 

the maximum amplitude of the oscillations of the carrier 

body on the values of the radius of the spherical cavity 

and the coefficient of viscous resistance of the BVA are 

obtained. The conditions and restrictions on the rolling of 

a heavy ball in the spherical recess of the absorber 

without sliding are determined. 

 

Index Terms—Damping Mechanical System, Carrier 

Body, Working Body, External Harmonic Excitation, 

Ball Vibration Absorber (BVA), Kinematic Ties, 

Nonholonomic Ties, Appell's Formalism, Amplitude-

Frequency Characteristic (AFC), Parameters Settings of 

Absorber, Determining the Optimum Parameters, Rolling 

of a Heavy Ball Without Sliding. 

 

I.  INTRODUCTION. THE CURRENT STATE OF THE PROBLEM 

AND SUGGESTIONS FOR ITS SOLUTION 

When processing the operating load-bearing objects 

(such as height flexible buildings and structures, 

industrial and transport machinery and mechanisms, 

cable-stayed bridges, power lines, etc.), often there are 

forced oscillations of their individual elements or the 

objects themselves. The consequence of this is additional 

dynamic loads and impacts on these load-bearing objects, 

they fight against which turns into a big technical 

problem. 

The nature of the emergence of forced oscillations is 

diverse. For example, wind, seismic, industrial, 

hydrodynamic, transport, other force, or kinematic 

influences can be classified as such. Forced oscillations 

can disrupt the normal operating conditions of the 

elements of mechanical systems, and the associated 

dynamic loads create a direct threat to their strength, 

reliability and stability. 

To suppress forced vibrations of flexible and extended 

objects, various dynamic vibration dampers use [1 – 9, 14, 

17, 19 – 21, 23 – 25]. Structurally, existing vibration 

dampers can be divided into three main groups: spring, 

pendulum, shock [1 – 9, 22, 25]. However, their dynamic 

behaviour and correct application in the vibration 

protection system is clearly regulated by the relevant 

regulatory documents only in certain frequency ranges of 

carrier objects [1, 2, 8]. 

Due to its dynamic characteristics and the functional 

purpose, a significant number of the above extended 

large objects have their own fundamental frequencies, 

which range from 12 rad/s to 3 rad/s and below. For 

example, this applies to modern high-rise structures such 

as TV towers. In this case, the design solutions of the 

absorbers essentially depend on the level of the natural 

frequencies of the fundamental tone of the oscillations of 

carrier objects. Depending on their size, the absorbers can 

be divided into three main groups with varying frequency 

bands [1, 2]: 

 

• high-frequency range: 5 – 12 rad/s; 
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• mid-range: 3 – 5 rad/s; 

• low-frequency range: below 3 rad/s. 

 

Spring dampers are usually used for vibration 

protection of objects in the mid-frequency and high-

frequency ranges with small oscillation amplitudes, so it 

is physically impossible to use them at low frequencies 

(up to 3,0 
 
rad/s) and high amplitudes (1 3  m) [1, 2, 

6, 8]. 

Acceptable dampers for medium frequencies are the 

pendulum absorbers mentioned above. At frequencies 

above 5 rad/s on pendulum absorbers it is necessary to 

install elastic elements. 

The use of pendulum dampers is completely 

determined by the length of the suspension of the 

working body of the pendulum [1, 2, 8, 25]. At small 

natural frequencies, the length of the suspension of their 

working bodies is significantly increased, and the 

amplitude of the oscillations can exceed the transverse 

dimensions of the carrier object itself. On the other hand, 

as a rule, the working space for placing, fixing and 

functioning of the absorber is limited both vertically and 

horizontally, therefore, the significant dimensions of the 

pendulum dampers exclude the possibility of their use for 

vibration protection of carrier objects in the low-

frequency range. 

Shock absorbers on these objects (for example, on TV 

towers or radio masts) are generally not recommended 

because of the attendance of maintenance personnel and 

the availability of precise equipment and transceiver 

equipment [1, 2, 8]. 

Thus, to solve the problem of vibration protection of 

carrier objects in the low-frequency range, fundamentally 

new design solutions of absorbers should be sought that 

will significantly reduce their dimensions while 

maintaining the same pendulum nature of their 

functioning [8, 14, 19 – 21]. 

At the same time, the conditions of operation of the 

absorbers are characterized by the fact that their 

structures cannot be under constant supervision. In this 

regard, they must be functionally simple and resistant to 

the external effects of atmospheric phenomena, turning 

into a permanent working element of a carrier object (for 

example, a high-altitude structure). 

Recently, alternative designs of dynamic absorbers 

have been developed, in which other principles of 

suppression of forced oscillations are used. They are 

based on the provision of large mutual displacements of 

carrying and working bodies in various directions. To 

realize such displacements, the most successful 

mechanical systems with rolling without sliding of 

certain solids over the moving surfaces of other bodies 

(so-called rolling-damping systems). One of the authors 

was one of the first to drew attention to the possibility of 

using such systems for dampening shock on transport and 

vibration suppression of forced vibrations of load-bearing 

bodies [10 – 13]. In such systems with rolling, the 

oscillating motion of solids is limited by kinematic tiers. 

The analytical consideration of these tiers requires new 

approaches and methods for constructing and studying 

mathematical models that correctly describe the dynamic 

processes of vibration suppression of forced vibrations of 

load-bearing bodies. 

In the domain of the dynamics of bound rigid bodies, 

nonholonomic problems were previously considered in 

which dynamic effects associated with the proper motion 

of heavy balls and cylinders over fixed algebraic surfaces 

of the second order were studied [16, 18], as well as the 

dynamic behaviour of other mechanical systems bounded 

by nonholonomic constraints [15]. However, the 

influence of oscillating motions of heavy balls and 

cylinders (as working bodies of absorbers or their 

elements) on mobile carrier bodies and the dynamic 

effects of vibration suppression connected with this 

motion have not been considered at all until recently. 

In this connection, we note several papers [14, 17, 19 – 

21, 23, 24], aimed at studying the dynamics of damping 

systems of load-bearing bodies with a spherical absorber 

of forced oscillations (Ball Vibration Absorber - BVA). 

The effects of suppressing forced oscillations of a carrier 

object using BVA consists in rolling a heavy ball without 

sliding on spherical recess with a constant radius laid out 

by a special flexible material with a high coefficient of 

friction. Simultaneously, this flexible material plays the 

role of an uncontrolled friction-damping device for 

suppressing the oscillations of the heavy ball in the notch. 

In this case, the ball movement with proper tuning must 

occur in antiphase with respect to the motion of the 

carrier body. The ball has a radius r  smaller than the 

radius R  of the spherical recess BVA, and is a BVA 

working body with a relatively large mass. The 

difference R R r   between these radii is the main 

regulating parameter of the natural frequency 
abs

 
of the 

spherical absorber, which for small oscillations of the 

ball in the recess is determined by the formula: 

 

1,4
abs

g

R
  .  

 

Therefore, for carrier objects with natural frequency 

from the interval 3,0 /rad s  , it is necessary that the 

BVA parameter R  is in the interval: 0,78R m . 

The main constructive disadvantage of BVA-absorbers 

is the non-isochronism of vibrations of the working body 

(ball) in the spherical cavity. Namely, at low frequencies 

(up to 3,0 /rad s  ) of the carrier body and large 

relative displacements (1,0 3,0 m) of the BVA working 

body, this significantly affects the quality of its 

functioning. However, with small relative movements of 

the working body, the BVA may well work in the normal 

mode of vibration protection of the carrier objects. In 

addition, there is another design disadvantage of BVA-

absorbers. The flexible material with which the spherical 

cavity is lined loses its frictional-dampening properties 

and the absorber ceases to function as a damper. 

As for the essence of the research [14, 17, 19-21, 23, 

24], there is one significant omission in them: they do not 

say anything about the conditions and restrictions on the 
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"clean" ball rolling in the spherical cavity of the absorber, 

and has not been studied the possibility of tearing the ball 

away from the spherical surface of the recess. But these 

conditions are an important theoretical basis of physical 

realizability and a justification for the adequate 

functioning of such absorbers. In addition, they do not 

offer a technique for determining the optimal settings for 

the BVA-absorber. 

Thus, the lack of appropriate theoretical basis for 

justifying the dynamic behaviour of damping systems 

with cat-and-dampening devices (considering the 

specificity of their movement) hampers their widespread 

introduction into modern practice of vibration protection 

of load-bearing objects. At the same time, experimental 

studies of the dynamic behaviour of roller mechanisms in 

vibration protection systems used in shipbuilding, 

transport engineering, and earthquake-proof construction 

have proven their high efficiency. 

In this paper we consider the simplest type of damping 

system, which consists of a ball absorber with an 

adjustable linear viscous resistance. A dynamic problem 

of this class belongs to the class of problems of 

nonholonomic mechanics. Therefore, a special 

methodical approach based on the Appell’s formalism 

was used to construct the equations of motion of the 

damping system under investigation [16, 18]. 

This work is a continuation of the studies initiated by 

one of the authors about the creation of a new class of 

roller absorber and published earlier in articles [10 – 13]. 

 

II.  STATEMENT OF THE PROBLEM AND RESEARCH 

PURPOSES  

The dynamics of the damping mechanical system of 

two coupled solid bodies is considered ―VBA with a 

viscous resistance – a movable carrier body‖, which is 

under the action of an external periodic action (Fig.1). 

The effect of vibration protection of BVA is based on the 

rolling of a working body in the form of a heavy ball 

with mass m  and radius r  without sliding in a spherical 

cavity with a radius R . The latter is rigidly connected to 

the carrier body and, together with it, has mass M . The 

body moves horizontally along the axis OX . This 

movement is impeded by a system of elastic elements 

with an equivalent stiffness coefficient k  and viscous 

dampers with a coefficient of viscous resistance 
XC . 

The effect of vibration protection of BVA is based on 

the rolling of a working body in the form of a heavy ball 

with mass m  and radius r  without sliding in a spherical 

cavity with a radius R . The latter is rigidly connected to 

the carrier body and, together with it, has mass M . The 

body moves horizontally along the axis OX . This 

movement is impeded by a system of elastic elements 

with an equivalent stiffness coefficient k  and viscous 

dampers with a coefficient of viscous resistance 
XC . 

A heavy ball with a weightless spherical clip 

connected to the body carrying system of adjustable air 

dampers. On one hand, the rods of air dampers are 

hingedly connected to the spherical cage of the heavy 

ball, and on the other hand to the carrier body. This 

spherical cage without friction interacts with the heavy 

ball. This pair creates a spherical hinge that works in any 

horizontal direction, passing the interaction forces to the 

air dams, which in turn transmit them to the carrier body 

and vice versa. 

 

 

Fig.1. The scheme adopted for modeling the dynamic behavior of a 
damping system with a BVA  

During the simulation, the dampers operating in one 

longitudinal direction were replaced by a single damper 

with an equivalent viscous friction coefficient C . The 

resistance force of such an equivalent damper is 

determined by the linear function of the relative velocity 

of the centre of mass of the ball: .F C R     The mass 

of air dampers is not considered. 

The external force acts on the carrier body, which is 

described by a harmonic function with a stable carrier 

frequency  : 

 

   0 sinF t F t                          (2.1) 

 

This design of the BVA-absorber is distinguished from 

the known ones in it is possible to control the level of 

damping of the absorber's working body. 

The purpose of the work is: 

 

1) to construct a mathematical model of the process of 

vibration suppression of forced oscillations of a carrier 

body using a ball absorber; 

2) to determine the conditions and restrictions on the 

"clean" rolling of the ball in the spherical recess of the 

absorber, thereby justifying the possibility of the physical 

application of such roller systems as vibration dampers; 

3) to evaluate the efficiency of the proposed absorber. 

 

We now turn to the formulation of geometric and 

kinematic relations, which will be used in further 

transformations. 

 

 



 Mathematical Model of the Damping Process in a One System with a Ball Vibration Absorber 27 

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 1, 24-33 

III.  GEOMETRIC AND KINEMATIC RELATIONS 

We denote by n  the vector of the inner normal drawn 

at the point B  – contact point of the sphere and the 

spherical cavity. We introduce two independent 

generalized coordinates for the two-mass system under 

investigation: x  –  displacement of the centre of mass of 

the carrier body M along the axis OX ;   –  angle of 

deviation of the inner normal n   from the vertical axis 

OZ   2 2
    . 

The coordinates of the internal normal vector are 

expressed by the angle of its deviation from the vertical 

OZ  (Fig.1): 

 

    sin ; 0; cosn                       (3.1) 

 

We write the vector kinematic equation, which follows 

from the non-sliding condition for the sphere relative to 

the spherical surface of the recess: 

 

V x i j r n                            (3.2) 

 

where   – is the angular velocity of the sphere relative 

to its centre of mass; r  – is the radius of the ball; V  – 

the linear velocity of the centre of mass of the ball, 

 ; 0;V x z   ; R  – radius of the spherical surface of 

the recess. 

We rewrite (3.2) in a scalar form considering the 

introduced generalized coordinates, formula (3.1), and 

the fact that, r R    , where R R r  . This follows 

from the non-sliding condition of the ball with the centre 

of mass at the point C with respect to the movable 

spherical recess at the point B . Here it should be 

emphasized that the vectors j   and j   are directed 

in opposite directions, therefore the angular velocities   

and   have different signs: 

 

 

 

cos ;

sin .

x x R

z R





 

 

    


  

                     (3.3) 

 

We now turn to the derivation of the equations of 

motion of the investigated vibration protection system. 

To do this, we use the Appell’s formalism for 

nonholonomic systems [16, 18]. 

 

IV.  CONSTRUCTION OF THE EQUATIONS OF MOTION OF 

THE DAMPING SYSTEM  

In a general form, we write S   the function of the 

energy of the accelerations of all masses of the system 

[16, 18]: 

 

 2 22 2

2 2 2

m x zM x J
S

    
    ,             (4.1) 

 

where 20,4 ;
R

J m r
r

      . 

Considering (3.3), we define all the second derivatives 

that enter into expression (4.1): 

 

    2cos sinx x R          ,             (4.2) 

 

    2sin cosz R         .               (4.3) 

 

We substitute the obtained expressions (4.2) and (4.3) 

into (4.1) and consider only those terms of the 

acceleration function S , which depend on the second 

derivatives of the generalized coordinates x  and  . The 

function thus obtained is denoted by S 
: 

 

2 2 20,7
2

M m
S x m R  

        

    2 sin cosm R x           .          (4.4) 

 

We write Appell's equations in a general form: 

 

;X

S S
P P

x


 

 

 

  .                  (4.5) 

 

We define the right-hand sides of Appell's equations 

,XP P
 
related to independent generalized coordinates x  

and  . To do this, we write down the expressions for the 

sum of elementary works А , noting that the mechanical 

system moves under the action of the following force 

factors: 

 

1) the force of gravity, which acts on the heavy ball,  

 

ballP mgk  ; 

 

2) a viscous resistance whose modulus of the vector is 

equal F C R      and which acts on the heavy ball in 

the direction opposite to the vector 
MV V  ; where MV   

the vector of the linear velocity of the centre of mass of 

the carrier body, and V   the vector of the linear 

velocity of the centre of mass of the heavy ball; 

3) elastic force SPF k x i    , which acts on the 

carrier body; 

4) viscous resistance X XF C x i    , which acts on 

the carrier body; 

5) external periodic force acting horizontally on the 

carrier body; its modulus is    0 sinF t F t   . 
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In this problem, the work of the reaction of the 

kinematic tie at the point B  is zero, since the virtual 

displacement of this point is zero due to the absence of 

slippage. Therefore, the expression А  has the form: 

 

  XA F t k x C x x         

2C R m g z          .                 (4.6) 

 

Considering the relation (3.3), the expression (4.6) in 

the variations of the generalized coordinates takes the 

following form: 

 

  XA F t k x C x x       
 

 2 sinC R m g R             .       (4.7) 

 

On the other hand, the expression for the sum of 

elementary works А  through generalized forces 
XP , P  

assigned to independent generalized coordinates, x  and 

 , thus, write: 

 

 
XA P x P                          (4.8) 

 

Using the relations (4.7) and (4.8), we obtain 

expressions for 
XP , P : 

 

 X XP F t k x C x     ,                   (4.9) 

 

 
 2 sinP C R m g R           .          (4.10) 

 

We differentiate expression (4.4) in accordance with 

equations (4.5) and consider relations (4.9) and (4.10) in 

the right-hand sides of equations (4.5). As a result, after 

some transformations, we obtain the following equations 

of motion for the mechanical system under investigation 

in generalized coordinates x  and  : 

 

  Xm M x k x C x      
 

      2 sin cosm R F t          ,    (4.11) 

 

   cos 1,4 sin
C

x R R g
m


           .      (4.12) 

 

We divide by M  the first equation of system (4.11) – 

(4.12). Let us write down the final system of nonlinear 

differential equations of motion of the vibration 

protection system in new notation, based on which we 

will carry out further investigations: 

 

  2

01 2 Xx n x x      
 

   2
0sin( ) cos( ) sinR F t             ,    (4.13) 

 

cos( ) 1,4 2 sin( )x R n R g           ,      (4.14) 

where; 

 

2

0

k

M
  ; 2 ;X

X

C
n

M
 2

C
n

m



  ; 0
0

F
F

M
 ;  

m

M
  . 

 

V.  NUMERICAL – GRAPHICAL METHOD FOR 

DETERMINING OPTIMAL SETTINGS FOR BALL  

ABSORBERS (LINEAR MODEL) 

Using the known methods [8, 22] for determining the 

frequency response for linear problems, we write the 

final AFC equation  A A 
 
in explicit form for the 

problem in a linear formulation (here no intermediate 

computations are given): 

 

 
 

     
7

0

8 9 10

F
A F

F F F




  


 
,         (5.1) 

 

where  1 2 xF n  ;   2
2 1,4F g R   ;

 3 2F n R  ;          4 1 3 2F F F F       ;

  4
5F R   ;    2 2

0 1       ; 

     2 2
6 1F F    ;      2 2

7 2 3F F F    ; 

     8 6 7F F F   ;      9 4 52F F F  

   2
10 5F F  . 

 

Let's briefly outline the essence of the numerical-

graphical method for determining the optimal tuning 

parameters of BVA-absorbers. It is based on the principle 

of "equality of two maxima" AFC [5, 8, 22], which are 

achieved at two main frequencies 1  
and 2  

located 

near the fundamental frequency 0  
of the carrier body.

 
With the optimum setting of the absorber, the frequency 

response curve of the system must have a form 

symmetrical with respect to the frequency 1 2

2

 





 
with two peaks equal in amplitude at the two indicated 

frequencies 1  
and 2 . One of the maxima of the curve 

 A A 
 
corresponds to the reduced mass M  of the 

carrier body, and the other to the mass m  of the working 

body of the absorber. 

As parameter settings for the BVA-absorber are 

considered: the geometric characteristic R R r   and 

the damping factor n
 
of its working body. The value of 

the absorber's mass parameter 
m

M
 

 

is assumed to be 

set and equal 0,05  . 

A numerical implementation was carried out for a 

concrete vibration protection system with the following 

parameters:
 0 1,3 /rad s  ; 0 0,03F g ; 0,05  ; 

10,03xn s .  

The result of determining the optimum value of the 
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damper parameter R  using the numerical-graphical 

method is shown in the graph (Fig.2). 

 

4.2 4.32 4.44 4.56 4.68 4.8
0.7

0.8

0.9

1

1.1

1.2

1.3

A1

A2

R  

Fig.2. Determining the optimum value of the absorber parameter R  
for a linear model  

First, we determine the frequencies 1  
and 2 , at 

which two AFC maxima for a linear system are reached, 

according to [5, 8, 22]: 

 

2
1,2

1
1

1 2




 

 
     

, where 
1,2

1,2
0





 .    (5.1) 

 

Next, we graphically determine the point of 

intersection of fragments of curves 1A  and 2A , 

constructed for two fixed frequencies 

1( 1,1654 /rad s   and 
2 1,3641 /rad s  ) with a 

change in the BVA parameter R , at which the function 

 A A   reaches two equal maxima. The value at 

which this intersection takes place determines the optimal 

value of the BVA parameter ( 4,559R m ). 

Now, we proceed to determine the optimum value of 

the damping coefficient n using the proposed graphical 

method. We use the same frequencies 1  
and 2 , on 

which two maximums of the AFC are reached, and the 

value of the above-defined frequency parameter of the 

absorber ( 4,559optR m ). The graph (Fig.3) shows 

fragments of the curves 
1A  and 

2A  constructed for two 

fixed frequencies 
1  and 

2  with a change in the 

damping coefficient n  of the absorber's working body. 

As we can see, the intersection of the curves 
1A  and 

2A  is achieved in two places – for larger and smaller 

amplitudes. We choose a variant with a smaller 

amplitude, and the required damping coefficient will 

have a value of 
10,18n s
 . 

Now, we construct the resulting graph of the 

amplitude-frequency characteristic (Fig.4) of a damping 

system with optimally selected ball absorber parameters 

4,559R m  and 
10,18n s
  (in a linear setting). The 

AFC graph clearly shows that it has two equal maximum 

amplitudes of the carrier body, each of which is equal 

max 1,03A m . 
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Fig.3. Determining the optimum value of the absorber parameter 
n  

for a linear model  
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Fig.4. AFC of the suppression system with the optimal parameters of 
the absorber (linear model) 

For comparison, we graph the frequency response of a 

mechanical system without an absorber, i.e. for the case 

when the mass of the working body (ball) is zero (Fig.5). 

In this case, the maximum amplitude reaches a value 

max 3,774A m . 
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Fig.5. AFC of the system without an absorber 

Comparing the maximum amplitudes in graphs 5.3 and 

5.4, we are convinced of a significant decrease in the 

level of the amplitudes of the forced vibrations of the 

carrier body under the condition that the absorbers of this 



30 Mathematical Model of the Damping Process in a One System with a Ball Vibration Absorber  

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 1, 24-33 

type are optimally applied. 

All that was said above was possible under the 

condition of rolling a heavy ball without sliding occurs in 

the spherical recess of the supporting body. Therefore, an 

important integral task of this study is to determine the 

conditions for ensuring and realizing the ―pure‖ rolling of 

the ball in the recess of the carrier body. 

 

VI.  CONDITIONS FOR REALIZING ROLLING OF A BALL 

WITHOUT SLIDING IN THE SPHERICAL RECESS OF THE 

CARRIER BODY 

Let us write the vector equation of motion of a heavy 

ball, which includes the reaction of the kinematic ties BR : 

 

 B MmV R mgk C V V      ,             (6.1) 

 

where V   is the linear velocity of the CM of the heavy 

ball; MV   is the linear velocity of the CM of the carrier 

body. 

We define the projections of the coupling reaction BR  

on the coordinate axes OX and OZ , respectively: 

 

 
2( cos sin ) cosX

BR m x R C R           ,   (6.2) 

 
2( sin cos ) sinZ

BR mg mR C R         .    (6.3) 

 

Using relations (6.2) and (6.3), we define the 

projections of the reaction BR  to the normal n  and the 

tangent   to the spherical surface of the recess of the 

carrier body (Fig.1). After some transformations, we get: 

 

  2( cos sin )N

B BR R n m g x R       ,   (6.4) 

 

  N

B B B BR R R R n      
 

( sin cos )m g x R C R       .          (6.5) 

 

Here the scalar product on the corresponding vectors is 

written in parentheses. write down the condition for 

rolling a ball with respect to a spherical surface without 

sliding: 

 
N

B BR R  .                             (6.6) 

 

We substitute the expressions (6.4) and (6.5) into the 

inequality (6.6) with allowance for the equation (4.14). 

As a result, we get the basic formula for determining the 

minimum required coefficient of dry friction, which 

ensures a clean rolling of the ball: 

 

2

0,4 cos

1,4 sin 2 sin cos
g

n
R 

 


     



  

       (6.7) 

 

For a numerical experiment to determine the minimum 

required coefficient of dry friction, we choose a specific 

system with parameters from V. 

Fig.6 shows a plot of the dry friction coefficient 

( )T   versus time ( )T s , obtained at a fixed 

frequency 
2 1.3641 /rad s   of forced oscillations. The 

maximum value of the coefficient of friction, which 

ensures the pure rolling of the ball, in this case is equal to

0.296  . 
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Fig.6. The graph ( )T   of the dry friction coefficient versus time 

( )T s  

Fig.7 graphs the dependence ( )    of the dry 

friction coefficient on the frequency   of the forced 

oscillations of the damping. It is constructed for the 

maximum dry friction coefficients   that were 

determined at each fixed frequency   in the "resonant" 

interval 1.1 1.4   from the graphs, one of which is 

shown in Fig. 6.  
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Fig.7. The graph of the dependence ( )     of the dry friction 

coefficient on the frequency   of the forced oscillations 

We have established the following important fact: 

when designing a rolling absorber for a friction pair 

"ball-spherical surface", one should choose such 

structural materials, the coefficient of dry friction of 

which has a value not lower than the value defined above. 
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In this case, the interaction of conventional friction pairs 

(such as "steel – steel", "concrete – steel" or "concrete – 

concrete") does not ensure the rolling of the ball without 

sliding in a spherical cavity. Thus, it is necessary either 

to use special constructional materials to artificially 

increase the coefficient of friction between the ball and 

the spherical surface (as was done in [19 – 21]), or in 

general to change the design of the absorber in which the 

role of its working body will be played not by a ball, but 

by a completely another body [10]. 

Now, we write the condition under which the ball can 

be separated from the spherical surface. For this, we 

equate to zero the projection of the coupling reaction BR  

on the normal n . As a result, we obtain the required 

condition for detachment in the general form: 

 

0N

BR  .                              (6.8) 

 

Starting from (6.3) and (6.8), it is possible to 

determine possible cases of ball breaking for such, for 

example, mutual positions and motions of the ball and 

the carrier body, as: 
2


   , 0  , 0x  . In these 

cases, the ball stops (the condition 0  ) in the two 

extreme positions with the angles 
2


    of deviation 

from the vertical OZ , and the carrier body at this instant 

of time moves without acceleration (condition 0x  ). 

We give a graph of the functional dependence N

BR  on 

time ( )T s  (Fig.8), obtained up to constant factors in the 

numerical integration of the system of non-linear 

equations (4.13) – (4.14) for the case under study. 
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Fig.8. The time evolution of the projection of the reaction BR   

to the normal n   

As seen in Fig.8, the periodic curve N

BR  does not 

intersect the horizontal axis at any point. From this it 

follows that the movement of the ball in a spherical 

recess for a given damping system and with the selected 

power and frequency characteristics takes place without 

the loss of contact of the ball with the surface of the 

spherical recess. 

 

 

VII.  CONCLUSION AND RECOMMENDATIONS 

In the work, a mathematical model is constructed that 

describes the forced oscillations of a damping system 

with a ball vibration absorber. The model analytically 

considers the effect of the "pure" ball rolling relative to 

the spherical cavity and the effect of such motion on the 

dynamic behaviour of the carrier object. 

The principal possibility of using the device "ball in a 

spherical cavity" as a damper for forced oscillations of 

load-carrier objects is substantiated. 

Dynamic behaviour of a damping system with a ball 

absorber is analyzed depending on the parameters of its 

setting. It is established that the main parameters of 

regulation and setting of the absorber are: a) the 

difference between the radii of a spherical cavity and a 

heavy ball; b) coefficient of damping of the working 

body of the absorber; c) the mass ratio of the heavy ball 

and the carrier object. 

Based on the obtained model, a simple numerical-

graphical method for determining the optimum values of 

the setting parameters of a ball absorber is developed. 

The effectiveness of the method of vibration protection 

of large-sized carrier objects with the use of the proposed 

ball absorber is proved. It is shown that with the optimal 

adjustment of its parameters, the amplitude of the forced 

oscillations of the carrier objects can be reduced by a 

factor of 3.5. 

The conditions for physical realization of the pure 

rolling of the ball in the spherical recess of the absorber 

are established, as well as the conditions for its rolling 

without detachments. When designing a ball absorber for 

a friction pair "ball – spherical recess", it is necessary to 

choose such structural materials that ensure rolling of the 

ball in the recess without sliding. 

Significant structural drawbacks of ball absorbers of 

this type are noted: 

 

1) they are not isochronous (i.e., they do not retain the 

required setting frequency) and can be correctly applied 

only for small relative deviations of the ball from the 

equilibrium position. 

2) the frequency of the input action significantly 

affects the value of the coefficient of dry friction, which 

is minimally necessary for the physical realization of the 

―pure‖ rolling of the ball in a spherical cavity. 

 

In future research, designs of new roller absorbers will 

be proposed, which are free from the indicated 

drawbacks. 

The results of this research can be used by scientific 

experts and developers of new absorbers in preparation of 

their design decisions and in the process of selecting the 

optimal parameters. 
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