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Abstract — In this study, some mathematical relations 

have been derived for the useful parameters of fixed 

window functions in fractional Fourier transform (FRFT) 

domain. These reported expressions are also verified 

with the simulation studies. The FRFT provides an 

important extension to conventional Fourier transform 

with an additional degree of freedom by which these 

parameters of window functions can be controlled while 

inherent time domain behavior of the windows remains 

intact. The behavior of fixed windows on time-

frequency plane has been varied by varying the FRFT 

order. The obtained variability in the window functions 

has been applied in the designing of FIR filters. 

 

Index Terms — Fractional Fourier Transform, Null 

Bandwidth, Half Main Lobe Width, Maximum Side 

Lobe Level. 

 

I. INTRODUCTION 

Several applications of window functions have been 

reported in the fields of signal processing and 

communications, such as digital filter design, spectrum 

estimation, beam-forming, and speech processing [1]. 

The useful parameters of window functions for these 

applications include Half Main Lobe Width (HMLW), 

Normalized Band Width (NBW), Maximum Side Lobe 

Level (MSLL), and Side Lobe Fall of Rate (SLFOR). A 

concise analysis of these parameters and their properties 

has been presented by Harris [2]. In [2], Harris has 

described time domain and frequency domain 

parameters of window functions. Frequency domain 

behavior of window functions has been studied by 

mapping the time domain window function in frequency 

domain using Fourier Transform (FT). 

In this study, characterization of window function 

parameter has been carried out in fractional Fourier 

domain which is a generalization of the FT. The 

Fractional Fourier Transform (FRFT) with an additional 

adjustable parameter, FRFT order (a), makes it more 

flexible and is having numerous applications in many 

areas [3-5], where as its implementation cost is at par 

with FT.  

The continuous-time FRFT of a signal x (t) is given as 

[5]-  
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where, the transformation kernel Kα (t, u) of the FRFT is 

defined as- 
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where, α = aπ / 2 is the rotation angle of the transformed 

signal of the FRFT.  

Prior to this work, analysis of some window functions 

in FRFT domain has been carried out by Kumar et al. 

[6], and it has been observed that the window 

parameters can be varied by changing the FRFT order. 

However, no mathematical relationships have been 

established between window parameters and FRFT 

order in [6]. It has been shown in [6] that when FRFT 

order is decreased from 1 to 0, the MSLL and SLFOR 

increase while HMLW decreases.  Same methodology 

has been used earlier in [7] to tune the Transition 

Bandwidth (TBW) of Kaiser Window [2] and PC6 

window [8] based FIR filters using FRFT. It has been 

shown in [7] that when the FRFT parameter is decreased 

the Transition Bandwidth (TBW) of the window based 

FIR filter decreases. Variations in the better TBW have 

been obtained without re-computation of filter impulse 

response coefficients. However, the applicability of this 

phenomenon has been demonstrated in [7] only for 

lower order FIR filters. 

In this paper, analysis of rectangular (Dirichlet), 

generalized 2 -term cosine (Hanning / raised cosine / 

Hamming), Blackman and triangular window functions 

in FRFT domain has been reported. These windows fall 

in the fixed windows category. Relationships between 

window function parameters and FRFT order have been 

established. These relationships have been utilized in the 

design of fixed window based FIR filters. 

The rest of paper is organized as follows: In Section-2 

characterization of windows in FRFT domain has been 

carried out. Limiting values for the length of window 
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functions, about which their NBW shrinks and expands, 

have been determined in Section-3. This analysis is 

based on the principle of uncertainty product for the 

window function [9]. The relationships established in 

previous sections have been used in Section-4 for the 

designing of FIR filters. Finally, the paper is concluded 

in Section-5. 

 

II. CHARACTERIZATION OF WINDOW 

FUNCTIONS IN FRACTIONAL DOMAIN 

The mathematical analysis of fixed windows in the 

FRFT domain has been carried out in this section to 

establish the relationships between window parameters 

and FRFT order. Plot shown in Figure 1 illustrate the 

four frequency domain parameters for a window 

function, viz. MSLL, SLFOR, HMLW, and NBW, for 

which the relationships in fractional Fourier domain 

have been established. Characterization has been carried 

out for four fixed windows- (a) Rectangular (b) 

Generalized Hamming (c) Blackman (d) Triangular 

window, as given in following section-  

 

 
 

Figure 1. Plot for illustrating the definition of the parameters 

of window function 

 

A. Rectangular Window (RW) 

The time domain expression for a RW is given as- 
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The FRFT domain expression WR (u) of RW (A1.4) 

has been included in Appendix-1.  

The magnitude of WR (u) for this window is given by-  
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The mathematical relationships for NBW, MSLL, and 

HMLW in fractional domain have been obtained by 

differentiating the fractional domain response of the 

window functions. This follows from the mathematical 

results that the position of maxima and minima of any 

function can be obtained by the differentiation of that 

function. 

The plots for the magnitude of WR (u) and its 

differentiation with respect to u for α = 0.4 are shown in 

Figure 2 and 3 respectively. From these figures it 

follows that the zeros of  R

d
W u

du
 occur at the 

positions similar to the null positions of |WR (u)|. Thus, 

the position of the window’s FRFT nulls can be 

obtained by differentiating (4) with respect to u and 

equating it to zero as given in Appendix-2 

 

 
 

Figure 2. FRFT of rectangular window for τ = 1 and a = 0.4 

 

 

 
Figure 3. Plot for the differentiation of |Wα(u)| with respect to 

u 

 

The position of nulls of |WR (u)| for various values of 

n are given by (A2.6) and for n = 1 it determines the 
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NBW of the RW. Thus, the NBW in FRFT domain for 

RW (uNR) is – 

 

 
(5)

2
            NR

sin
u

 


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The coefficient of sin(α) in the above expression 

defines the NBW of continuous time RW in Fourier 

domain. On the other hand, for N-point discrete time 

RW the transition width of mainlobe in FT domain is 

given by 4π/N [10] which can be normalized to define 

NBW as 1/N. 
 

TABLE I. DISCRETE RW PARAMETERS FOR N = 25 AND M = 2048 

 

FRFT 

Order, a 
NBW HMLW MSLL (dB) 
SR AR SR AR SR AR 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.04 

0.0396 

0.0381 

0.0357 

0.0323 

0.0284 

0.0236 

0.0183 

0.0120 

0.0060 

0.04 

0.0395 

0.038 

0.0356 

0.0324 

0.0283 

0.0235 

0.0182 

0.0124 

0.0063 

0.0323 

0.0320 

0.0310 

0.0290 

0.0263 

0.0230 

0.0200 

0.0150 

0.0110 

0.0052 

0.0324 

0.0320 

0.0300 

0.0289 

0.0262 

0.0229 

0.0190 

0.0147 

0.0100 

0.0051 

-13.23 

-13.21 

-13.20 

-13.19 

-13.15 

-13.10 

-13.01 

-12.79 

-12.20 

-9.380 

-13.2627 

-13.2618 

-13.2591 

-13.2540 

-13.2450 

-13.2293 

-13.1997 

-13.1355 

-12.955 

-12.070 

 
Thus, the above relation expresses uNR in terms of 

NBW in Fourier domain, i.e., uFT  as-  

 

  (6)sin             NR FTu u   
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It has been observed from the simulation studies that 

the MSLL occurs at 1.425 times of NBW as shown in 

Figure 4 (shown from 0 to 0.2 in place of actual range 0 

to 0.5 for the sake of clarity). Therefore, the expression 

for the position of MSLL of RW can be written as- 

 

  (7)1.425 sin            MR FTu u 

 

 
 

Figure 4. Plot for the position of NBW and MSLL of RW for 

window length N = 51 

The magnitude of MSLL has been obtained by 

substituting (7) in (4) as given by (8)- 
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It has been shown in [11, 12] that HMLW of RW is 

0.81 times of NBW. Therefore, the HMLW in FRFT 

domain, uHR, can be expressed as- 

 

  (9)0.81 sin              HR FTu u 

 

The obtained Analytical Results (AR) for NBW, 

MSLL and HMLW has been verified using Simulation 

Results (SR). The recorded values for these parameters 

are shown in Tables I. 

The expressions for other fixed windows have been 

also obtained in FRFT domain by following the same 

methodology adopted in RW.  

B. Generalized Hamming Window (GHW) 

The GHW is defined in time domain as- 
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For b = 0.5, Hanning window results while for b = 

0.54, Hamming window results. 
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TABLE II. DISCRETE HW PARAMETERS FOR N = 35 AND M = 2048 

 
FRFT 

Order, a 

NBW HMLW MSLL (dB) 

SR AR SR AR SR AR 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

* 

0.0590 

0.0581 

0.0562 

0.0528 

0.0480 

0.0422 

0.0350 

0.0571 

0.0564 

0.0543 

0.0500 

0.0462 

0.0400 

0.0336 

0.055 

0.054 

0.052 

0.048 

0.045 

0.039 

0.029 

0.0534 

0.0528 

0.0500 

0.0476 

0.0432 

0.0378 

0.0310 

-31.47 

-31.44 

-31.35 

-31.16 

-30.85 

-30.29 

-29.18 

-31.4743 

-31.4717 

-31.4635 

-31.4478 

-31.4206 

-31.3731 

-31.2843 

*Unable to observe 

 

The fractional domain expression of the GHW (A3.1) 

has been obtained by following the similar steps of RW 

and given in Appendix-3. 

Since the NBW of GHW (uNH) is twice that of NBW 

of RW (uRH) [10, 13]. Therefore, using (6) uNH can be 

expressed as-  

 

  (11)sin              NH FTu u   

 

where, 

 

4
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It has been observed that the MSLL of GHW occurs 

at the 1.175 and 2.135 times of NBW for b = 0.5 and 

0.54 respectively as shown in Figure 5. Thus, it can be 

written as-  
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Figure 5. Plot for the position of NBW and MSLL of GHW for 

window length N = 51 
 

The expression for the MSLL in FRFT domain of 

GHW with b = 0.5 has been obtained by substituting (12) 

in (A3.1) and given by (A3.2). 

It has been shown in [11, 12] that the HMLW is at the 

0.935 and 0.955 times of NBW for b = 0.5 and 0.54 

respectively. Therefore, it can be expressed in FRFT 

domain as- 
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The obtained expressions for NBW, MSLL and 

HMLW of GHW have been verified with simulation 

studies. The recorded values for Hanning Window (HW) 

are shown in Tables II. 

C. Blackman Window (BW) 

The expression for the BW in time domain is given 

as- 
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The expression for the BW (A4.1) in FRFT domain is 

given in Appendix-4.  

Since the NBW of BW (uNB) is thrice that of NBW of 

RW (uRH) [10, 13]. Therefore, using (6) uNB can be 

expressed as- 

 

  (15)sin                         NB FTu u 

 
 

where, 

 

6
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3
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FT
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u

for discrete time BW of N samples
N
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
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It has been observed that the position of MSLL of 

BW is 1.18 times of NBW as shown in Figure 6. Thus, it 

can be defined in FRFT domain as- 
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  (16)1.18 sin               MB FTu u   

 

 
 

Figure 6. Plot for the position of NBW and MSLL of BW for 

window length N = 51  

 

The FRFT domain relationship for the MSLL of BW 

(A4.2) has been obtained by substituting (16) in (A4.1) 

and given in Appendix-4.
 

The position of HMLW for BW [11, 12] in FRFT 

domain can be written as-  

 

  (17)0.94 sin               HB FTu u 

 
The obtained expressions for NBW, MSLL and 

HMLW of BW have been verified with simulation 

results and recorded values are included in Tables III. 

 

 

 

 

TABLE III.  DISCRETE TW PARAMETERS FOR N = 35, M = 1024 

 
FRFT 

Order, a 

NBW HMLW MSLL (dB) 

SR AR SR AR SR AR 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

* 

0.0590 

0.0576 

0.0552 

0.0514 

0.0473 

0.0421 

0.0359 

0.0307 

0.0229 

 

0.0571 

0.0564 

0.0543 

0.0509 

0.0462 

0.0404 

0.0336 

0.0259 

0.0177 

0.0480 

0.0473 

0.0453 

0.0431 

0.0396 

0.0358 

0.0315 

0.0261 

0.0198 

0.0465 

0.0459 

0.0442 

0.0414 

0.0376 

0.0329 

0.0273 

0.0211 

0.0144 

-26.32 

-26.32 

-26.33 

-26.36 

-26.46 

-26.45 

-26.56 

-26.80 

-27.38 

-26.5325 

-26.5323 

-26.5353 

-26.5351 

-26.5383 

-26.5439 

-26.5545 

-26.5777 

-26.6443 

 

*Unable to observe 

 
TABLE IV. DISCRETE BW PARAMETERS FOR N = 45 AND M = 1024 

 
FRFT 

Order, a 

NBW HMLW MSLL (dB) 

SR AR SR AR SR AR 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

* 

0.0683 

0.0702 

0.0688 

0.0655 

0.0602 

0.0471 

0.0667 

0.0658 

0.0634 

0.0594 

0.0539 

0.0530 

0.0641 

0.0642 

0.0644 

0.0624 

0.0575 

0.0443 

0.0627 

0.0619 

0.0596   

0.0558 

0.0507 

0.0514 

-58.12 

-58.14 

-58.21 

-58.27 

-58.19 

-57.45 

 

-58.1115 

-58.1124 

-58.1155 

-58.1212 

-58.1311 

-58.1480 

*Unable to observe 

 

D. Triangular Window (TW) 

The expression for the TW in time domain is given 

as- 
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The FRFT domain expression of TW (A5.1) is given 

in Appendix-5. 

Since the NBW of TW (uNT) is twice that of NBW of 

RW (uRH) [10, 13]. Therefore, using (6) uNT can be 

expressed as- 

  (19)sin                     NT FTu u 

 
where, 

 

4
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2
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u

for discrete time TW of N samples
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Again, it has been observed by the simulation studies 

that the position of MSLL of this window is 1.45 times 

of NBW as shown in Figure 7. Therefore, it can be 

defined in FRFT domain as- 

 

  (20)1.45 sin               MT FTu u 

 

The fractional domain expression for the MSLL of 

TW has been obtained by substituting (20) in (A5.1) and 

is given by (A5.2) as shown in Appendix-5. 

The position of HMLW of TW [11, 12] can be written 

as- 

 

  (21)0.815 sin                 HT FTu u 

 

The derived expressions for NBW, MSLL and 

HMLW of have been verified with simulation results. 

The recorded values are included in Tables IV.  

 

 
 

Figure 7. Plot for the position of NBW and MSLL of TW for 

window length N = 51 

 

III. UNCERTAINTY PRODUCT IN FRACTIONAL 

DOMAIN 

It is easy to verify from that the FRFT holds an 

identity operator i.e. signal attains fully time domain 

behavior for a = 0 while it is conventional FT i.e. signal 

jumps into frequency domain completely for a = 1. If 

the FRFT order a lies between these two ranges signal 

will be composed of frequency and time components 

both. In FT domain, the NBW is having inverse 

relationship to the window length and the product of 

these two parameters remains constant for every 

window function. This property of window functions 

can be thought of as the uncertainty principle [9] 

according to which a function in time domain and its FT 

cannot both be highly concentrated. If the window 

length is small the NBW is large and at particular 

window length these two parameters become equal and 

further increment from this window length NBW 

becomes smaller than the window length. This property 

of window functions has been exploited in this work to 

analyze the behavior of windows for below and above of 

this particular window length in FRFT domain. It has 

been observed in simulation studies that the NBW 

shrinks for small window length and expands for large 

window length when the FRFT order is varied from 1 to 

zero because frequency plane moves toward time plane 

i.e. window length. Thus, the FRFT provides another 

parameter to vary the NBW without varying the window 

length.  

It has been observed by simulation studies that the 

time spread of M zero padded discrete windows of 

length N equals to the main lobe width of window 

function at particular window length (limiting length, N) 

for a = 1. To find this limiting length N, time domain 

and frequency domain spread of RW has been shown in 

Figure 8.  

 

 
 

Figure 8. Expanded view of RW (a) time domain (b) 

frequency domain for different length N and M = 512 with a = 

1 

 

The x-axis of both the domains of N sampled and M 

zero padded RW has been normalized in the same range 

i.e. -0.5 to 0.5 however, it has been shown only in the 

range of -0.1 to 0.1 for the sake of clarity. The non-zero 

time spread of the normalized window is given by 

(N+1)/(M+N) and N/(M+N) for N is odd and even 

respectively. The range of main lobe width of RW in the 

normalized frequency domain spread is given by -1/N to 

1/N.   Thus, the generalized expression of the limiting 

length of fixed windows at which half width of the 

window function in time domain equals to the NBW in 

frequency domain can be obtained for above reported 

window functions from (6), (11), (15), (19) respectively 

at α = π/2 as- 

 

 
1

            
2

N p
if N is odd

M N N





 

 

 
(22)               

2

N p
if N is even

M N N



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where, M is number of padded samples in either sides of 

the window function to increase resolution and p = 1 for 

RW, 2 for GHW & TW and 3 for BW.  

The mathematical relation given in (22) is a quadratic 

equation and its positive root, which defines the limiting 

length of window functions, is given as- 

 

(23)
2

                  
M

N p p
p

  

 

The value of N given by (23) is the limiting length of 

the fixed window functions above which the NBW 

expands by decreasing the value of FRFT order a from 1 

to zero. The obtained limiting length for RW (p = 1) 

with padded zeroes M = 512 is N = 32 at which NBW 

and half width of RW becomes equal as shown in Figure 

8. It can be also observed from Figures. 9-10 that the 

NBW of RW reduces by decreasing the value of a from 

1 to zero if the number of samples in the window are 

less than 32 and expands if the samples are more than 

32  Similar behavior has been also observed for other 

fixed windows as shown in Figures.11-16. Figures 9-16 

have been shown from 0 to 8 bins only in place of actual 

range 0 to N/2 bins for the sake of more clarity. 

 

 
 

Figure 9. Frequency response of RW with a for N = 27 and M 

= 512. 

 

 
 

Figure 10. Frequency response of RW with a for N = 37 and M 

= 512 

 
 

Figure 11. Frequency response of HW with a for N = 43 and 

M = 512 

 

 
 

Figure 12. Frequency response of HW with a for N = 53 and 

M = 512 

 

 
 

Figure 13. Frequency response of BW with a for N = 70 and M 

= 1024 

 

 
 

Figure 14. Frequency response of BW with a for N = 90 and M 

= 1024
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Figure 15.  Frequency response of BW with a for N = 39 and 

M = 512 

 

 

 
Figure 16. Frequency response of BW with a for N = 57 and M 

= 512 

 

IV. TUNING OF FIR FILTERS 

The TBW of window based FIR filters is proportional 

to the filter order. Thus, it can be varied by the variation 

of filter order which needs the re-computation of the 

impulse response coefficients of the filter. An 

alternative FRFT based method to tune the TBW of 

these filters using ideal impulse response has been 

developed by Sharma et al. [7] which eliminates the re-

computation problem. In this work, in place of ideal 

impulse response of the filter, realistic impulse response 

h(n) has been used and characteristics of FIR filter i. e. 

TBW, Stopband Attenuation (SBA) and Passband 

Ripple (PBR) are being varied by varying the frequency 

response of window function w(n) with the variation of 

FRFT order a. To obtain the filtered output in frequency 

domain the circularly convolved output of FFT of 

impulse response h(n) i.e. H(k) and FRFT of w(n) is 

multiplied by FFT of input signal x(n) i.e. X(k) as shown 

in Figure 17.  

 

 

 

 

 

 

 
 

 

Figure 17. Tuning scheme of FIR filters using FRFT 

 

The tuning of frequency responses of FIR filters using 

Hanning and Blackman windows are shown in Figures. 

18-21. It has been observed from these responses that, 

by varying FRFT order from 1 to 0, the TBW of FIR 

filters decreases according to fc + uFT sin (α) 

approximately, where fc is the cutoff frequency of the 

filter, and SBA and PBR increases if the filter order is 

less than (23) while behavior of these parameters 

becomes opposite if the order of filter is greater than 

(23). Theoretically, this happens because if the length of 

window is equal to (23) then the window spans in time 

domain and frequency domain are equal at FRFT order 

1 while time span becomes less than frequency span and 

tends toward impulse function if the length of window is 

less than (23) when FRFT order decreases from 1 to 0 

and it becomes vice versa for the window length greater 

than (23). This behavior of window functions is directly 

affecting parameters of FIR filters designed using these 

fixed window functions. Thus it can be said that 

parameters of windowed FIR filters can be tuned using 

FRFT up to the filter designed without windowing i. e. 

impulse response method without re-computing the 

filter coefficients. 

 

  
 

Figure 18. Frequency responses of LPF using HW with fp = 

0.2, fs = 0.3, N = 31 (a) Comparative frequency responses (b) 

expanded view of passband 

FFT 

FRFT

T 

h(n) 

 w(n) 
* Cir. Conv. × 

X(k) 

Filtered 

Output 
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Figure 19. Frequency responses of LPF using HW with fp = 

0.2, fs = 0.3, N = 51 (a) Comparative frequency responses (b) 

expanded view of passband 

 

 
 

Figure 20. Frequency responses of LPF using BW with fp = 

0.2, fs = 0.3, N = 41 (a) Comparative frequency responses (b) 

expanded view of passband 

 

 
 

Figure 21. Frequency responses of LPF using BW with fp = 

0.2, fs = 0.3, N = 71 (a) Comparative frequency responses (b) 

expanded view of passband 

 

V. CONCLUSION 

The analytical expressions have been derived for four 

popular fixed window functions. It has been observed 

that the window parameters like NBW, HMLW and 

MSLL may have one more controlling variable (FRFT 

order a). The derived expressions have been verified 

with simulation studies in all situations. Thus, it can be 

said that these windows can be considered as variable 

windows in time-frequency plane, keeping their time 

domain nature unchanged, which are inherently fixed in 

nature. The derived expressions can be considered very 

useful in more efficient design of window based digital 

FIR filters and spectral analysis. The obtained 

adaptability in the fixed windows has been exploited in 

the tuning of the parameters of FIR filters. 
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APPENDIX-1 

The RW can be expressed in FRFT domain by using (1) as- 

 

 
 

     
2 2

/2

/2

1
exp cot 1 exp cot             ( 1.1)

2 2 2
R

icot u t
W u i i iutcosec dt A






  

 

    
     

   


 
 

BY REWRITING THE EXPRESSION FOR WR (U) –  

 

 
 

         
2

/2 2 2

/2

1
exp cot exp cot  ( 1.2)

2 2 2
R

icot u i
W u i t usec usec dt A






   

 

            
  

 

Substituting, {t-u sec (α)} = R and changing the limits of the integration of (A1.2), 

 

 
 

   
 

 
2

0.5
2

0.5

1
exp cot exp cot                                 ( 1.3)

2 2 2

usec

R
usec

icot u i
W u i R dR A

 

 


 





 

    
    

  
  

 

Now, solving the integration, following expression results for RW in FRFT domain – 

 

 
 

 2
1

exp tan
8 2

R

icot i
W u u




  
    

 
  

                      
1 1

cot cot          
2 2 2 2

1.4
i i

erfi usec erfi usec A
 

   
         

           
         

 

where, erfi (z) is an analytical function of z which is defined in the whole complex z-plane. 

 

 



 Fixed Windows in Fractional Fourier Domain 11 

Copyright © 2014 MECS                                                          I.J. Image, Graphics and Signal Processing, 2014, 2, 1-13 

APPENDIX-2 

The differentiation of WR (u) with respect to u is given by- 

 

 
 

       
2 2

12

8

1 1
              exp cot exp cot             ( 2.1)

2 2 2 2

R

icotd
W u

du

i i
usec usec A





 
   


 

        
         

      

 

 

The position of nulls can be obtained by equating the differentiation of WR (u) to zero as- 

 

       
2 2

1 1
exp cot exp cot 0                     ( 2.2)

2 2 2 2

i i
usec usec A

 
   

        
          

      
 

 

The expression (A2.2) after further simplification can be written as- 

 

        2 2 2exp 0.5 0.25 sec exp 0.5 exp 0.5 0    (A2.3)icot u iu cosec iu cosec                   
 

 

Equation (A2.3) when solved for u involves following steps- 

 

       2 2 22 0.5 0.25 sec sin 0.5 0           (A2.4)iexp icot u u cosec       
 

 

                                          0.5 ( )          0,1, 2                 (A2.5)u cosec n for n      

                         
 2

                            0,1,2                           ( 2.6)
n sin

u for n A
 


    

 

APPENDIX-3 

The GHW for b = 0.5 can be expressed in FRFT domain as- 

 

        

          

            

1 2 3 3

4 3 5

6 3 7

0.5cos 0.5cos

         0.5cos 2 0.5cos 2

    
         0.5cos 2 2 0.5

HW u c c erfi c u erfi c u

c erfi c u sin erfi c u sin

c erfi c u sin erfi c sec cosec usec

 

     

      

          

            
                

 (A3.1)

 

 

where, 

 

 
 

 
2 2( 8 ) tan3

24
1 0.3536 1 tan

i
u

c e i
 


 

     ;                              
 24 tan

2 2
i

c be
 

  

 

 

1
4

3

1
;

sin 2
c




                     2i ec in

4 1 e ;
s u s

c b
                   5 (0.5 0.5i) / 0.5 in(2 );c s  
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     2i ec in

6 1 e
s u s

c b
                            and                 

1
4

7 0.5 1 sin 2c   
 

 

    

    

    

    

 

3

1 2

3

3

4

5

3

6

1.175 sin 0.5cos

1.175 sin 0.5cos

sin 1.175 0.5cot 2
       

sin 1.175 0.5cot 2

sin 1.17
          

FT

FT

FT

H

FT

erfi c u
c c

erfi c u

erfi c u
MSLL c

erfi c u

erfi c
c

 

 
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  



      
 

      

      
   

      




  

    7

                  ( 3.2)

5 0.5cot 2

sec 2 0.5cot 1.175

FT

FT

A

u

erfi c u

 
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



       

 
         

 

APPENDIX-4 

The FRFT domain expression for BW can be written as-  

 

 

      
      
          
        

2 2
2 7 8

2 2
3 8 9 8 9

cos 4 4 cos 2 21 4 10 8 9

cos 8 4 cos 2 2
5 10 8

c erfi c u cos erfi c u cos

c erfi c u cos c erfi c u cos c

W u c c erfi c ec Sec u ec erfi c u cos cB

c erfi c ec sec u ec erfi c u cos

 

 

    

    

       
   

        
   

         
   

      
    

      

           ( 4.1)

2
9

2 2 2 2
6 8 9 8 9

A

c

c erfi c u cos c erfi c u cos c 

 
 
 
 
 
 
 

  
  

         
     

 

 

where, 

 
2 2 23/4 i( 0.5 ot[ ](1 ec [ ]) 4 ec[ ]( in[ ](1 sec [ ]c )))

1 0.25( 1) e tan[ ] i;u s s u s coc                 

4i sec[2 ]( 3 os[2 ] 2 in[ ])

2 0.84e ;co c usc                                        
2i sec[2 ]( 5 os[2 ] 2 in[ ])

3 0.5e ;co c usc           

2i sec[2 ]( 5 os[2 ] 6 in[ ])

4 0.5e ;co c usc                
4 i( ot[ ] 2 ec[ ])

5 0.08e ;c usc      

24i ot[ ]

6

c0.08e ;c       
1/4

7 ( 1) / (2 sin[2 ]);c           8 (0.25 0.25i) / cos[ ] in[ ];c s    

9 4 in[ ];c s      and  
1/4

10 0.25( 1) Sin[2 ];c     

 

Therefore, the MSLL of BW in FRFT domain can be written as- 

 

    3 8 9 8 9
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1

1
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APPENDIX-5 

The TW can be expressed in fractional domain as- 

 

 

        
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T
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  
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The expression for MSLL of TW in FRFT domain can be written as- 
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